Нетрадиционные электростанции

Типы электростанций.

- Тепловые электростанции(ТЭС).
- Гидравлические электростанции(ГЭС).
- Атомные электростанции(АЭС).
- Нетрадиционные типы электростанций.

Нетрадиционное получение электроэнергии

 Повышение цен на нефть, газ послужило главной причиной того, что человечество вновь обратило внимание на нетрадиционную электроэнергию.

Виды электростанций,

работающие на нетрадиционных источниках энергии

ПРИЛИВНЫЕ (**ПЭС**)

СОЛНЕЧНЫЕ (C3C)

ГЕОТЕРМАЛЬНЫЕ

ВЕТРОВЫЕ

Солнечная энергия

Кинетическая энергия излучения света и тепла.

Солнечная энергия

Геотермальная энергия

□ ГеоТЭС в мире насчитывает около 6 тыс.

Геотермальная энергия

Геотермальные электростанции на парогидротермах

Ветроэнергетика

Преобразование кинетической энергии ветра.

Установленная мощность ветряных электростанций в стране на 2007 год составляет около 16,5 МВт, суммарная выработка не превышает 25 млн кВт·ч/год

Ветроэнергетика

Ветроэнергетика

Приливная электростанции (ПЭС)

Производство электрической энергии

Приливная электростанция (ПЭС) — особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли.

Преимущества и недостатки

- 1. Высокая стоимость электростанций.
 - 2. Большая занимаемая площадь.
 - 3. Зависит от погодных условий.
 - 4. Трудоёмкое техническое обслуживание (чистка зеркал и т. д.).
 - 5. Экологическое загрязнение.

- 1. Деш ёвая электроэнергия.
- 2. Дешёвая утилизация.
- Энергия солнечной радиации может быть преобразована в постоянный электрический ток посредством фотоэлектрических преобразователей (ФЭП).
- 1. Модульный тип конструкций позволяет создавать установки практически любой мощности.
- 2. Срок службы практически не ограничен.
- 3. Отсутствие подвижных частей, высокая надежность и стабильность.
- 4. Имеют малую массу, отличаются простотой обслуживания, эффективным использованием как прямой, так и рассеянной солнечной радиации.

- 1. Высокая стоимость.
- 2. Низкий КПД (в настоящее время практически 10-12 %).

