COMP 206:
Computer Architecture and
Implementation

Montek Singh
Mon, Oct 3, 2005

Topic: Instruction-Level Parallelism

(Dynamic Scheduling: Introduction)

Instruction-Level Parallelism

Relevant Book Reading (HP3):

e Dynamic Scheduling (in hardware): Appendix A & Chapter 3
e Compiler Scheduling (in software): Chapter 4

Hardware Schemes for ILP

0 Why do it in hardware at run time?
e Works when can’t know dependences at compile time
e Simpler compiler
e Code for one machine runs well on another machine

0 Key idea: Allow instructions behind stall to proceed

DIV.D FO, F2, F4
ADD.D F10, FO, F8
SUB.D F8, F8, F14

e Enables out-of-order execution
e Implies out-of-order completion
e ID stage check for both structural and data dependences

Dynamic Scheduling

DIV.D FO, F2, F4

ADD.D F10, FO, F8 */-cycle divider
SUB.D Fl2, F8, Fl4 o4-Cy(;|e adder
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
In-order DIV.D FO, F2, F4 F DI EEEEEEEMW
ADD.D F10, FO, F8 F DI 1 I 1 I |1 | EEE E MW
SUB.D F12, F8, F14 F D I 1 1 I 1 1 I 1 | | EE E E MW
Out-of-order DIV.D F0, F2, F4 F DI EEEEEEEMW
ADD.D F10, FO, F8 F DI I I 1 I | | EEE E MW
SUB.D F12, F8, F14 F DI EEEE MW

0 Instructions are issued in order (leftmost I)

0 Execution can begin out of order (leftmost E)
0 Execution can terminate out of order (W)

0 What is I?

Explanation of

0 To be able to execute the SUB.D instruction
e A function unit must be available
0 Adder is free in example
e There should be no data hazards preventing early execution
0 None in this example

e We must be able to recognize the two previous conditions
0 Must examine several instructions before deciding on what to execute

0 I represents the instruction window (Or issue

window) in which this examination happens

e If every instruction starts execution in order, then I is
superfluous

e Otherwise:
0 Instruction enter the issue window in order
0 Several instructions may be in issue window at any instant
0 Execution can begin out of order

Out-of-order Execution and Renaming

DIV.D FO, F2, F4
ADD.D F10, FO, F8
SUB.D F10, F8, F14

0 WAW hazard on register F10: prevents out-of-order
execution on machine like CDC 6600

0 If processor was capable of register renaming:

o the WAW hazard would be eliminated
0 SUB.D could execute early as before

e example: IBM 360/91

Memory Consistency

0 Memory consistency refers to the order of main
memory accesses as compared to the order seen in
sequential (unpipelined) execution

e Strong memory consistency: All memory accesses are made in
strict program order

o Weak memory consistency: Memory accesses may be made
out of order, provided that no dependences are violated

0 Weak memory consistency is more desirable
e leads to increased performance

0 In what follows, ignore register hazards

0 Q: When can two memory accesses be re-ordered?

Load-Load
LW R1l, (R2)
LW R3, (R4)

Load-Store
IW R1l, (R2)
SW (R3), R4

Store-Store
SW R1l, (R2)
SW R3, (R4)

Store-Load
SW (R1), R2

LW R3, (R4)

Load-Load can always be
interchanged (if no volatiles)

Load-Store and Store-Store are
never interchanged

Store-Load is the only promising
program transformation

e Load is done earlier than
planned, which can only help

e Store is done later than planned,
which should cause no harm

Two variants of transformation

e If load is independent of store,
we have load bypassing

e If load is dependent on store
through memory (e.g., (R1) ==
(R4)), we have load forwarding

0 Either transformation can be

performed at compile time if
S1 L2
I — I the memory addresses are
L2 S1 known, or at run-time if the

necessary hardware
capabilities are available

0 Compiler performs load

St MIRL -~ R bypassing in loop unrolling
L2: R4 — M[R1] example (next lecture)

0 In general, if compiler is not

\ R4 - R2 sure, it should not do the
M[R1] R2 transformation

0 Hardware is never “not sure”

Load Bypassing

Load Forwarding

Load Bypassing in Hardware

0 Requires two separate queues for LOADs and STOREs

0 Every LOAD has to be checked for every STORE waiting in the
store queue to determine whether there is a hazard on a
memory location

e assume that processor knows original program order of all these
memory instructions

0 In general, LOAD has priority over STORE
0 For the selected LOAD instruction, if there exists a STORE
instruction in the store queue such that ...

e LOAD is behind STORE (in program order), and
e their memory addresses are the same

... then the LOAD cannot be sent to memory, and must wait to
be executed only after the store is executed

6 7 8 9(10 11 12 13|14 15 16 17 18 19 20 21 22 23 24 25

(O)RO=M{u) | |
(1) M(v) = R1 : :
(2) R2 = R3+R4 | E E|E
(3) R5 = M(w) |-
(4) R6 = M(x) |- - - -[E EE E
(5) R7 = M(v) IR EEEE
(6) R8 = R9 +R10 | E E|E

(7) M{w) = R11 |)

— mjiro
v T o

m |~
v (MM jon

ETECE E

ENENENE

ENENENE

0 Memory access takes four cycles
Actions at various points in time
e End of cycle 1: LQ = [(0)]; SQ = []; execute first load
e End of cycle 5: LQ = [(3), (4)]; SQ = [(1)]; execute first load
e End of cycle 9: LQ = [(4), (5)]; SQ = [(1), (7)]; execute first load
e End of cycle 13: LQ = [(5)]; SQ = [(1), (7)]; load yields to store

0 We are assuming that no LOADs or STOREs issue between instructions 7
and 22

History of Dynamic Scheduling

0 First implemented on CDC 6600 and IBM 360/91 in the
early 1960s

Fetched and decoded single instr. at a time in program order

Between decoding and execution, instructions stayed in issue
window where hazards were detected and resolved

Some hazards resolved before issuing (e.qg., availability of FU)
Most data hazards resolved only after issuing

Hazard resolution done with sophisticated hardware scheme

0 For each instruction in issue window, separately track, monitor,
enforce, and eventually resolve all hazards affecting the instruction
before it could begin execution

Result: Instructions started execution when they were ready to
execute, rather than starting in program order

