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Figure 4.1. Two particles interact with each other. According to 
Newton’s third law, we must have F12 = - F21.



The linear momentum of a particle or an object that can be 
modeled as a particle of mass m moving with a velocity v is 
defined to be the product of the mass and velocity:

(4.1)

(4.2)

Linear momentum is a vector quantity because it equals the 
product of a scalar quantity m and a vector quantity v. Its 
direction is along v, it has dimensions ML/T, and its SI unit 
is kg · m/s.



As you can see from its definition, the concept of 
momentum provides a quantitative distinction between 
heavy and light particles moving at the same velocity. For 
example, the momentum of a bowling ball moving at 10 
m/s is much greater than that of a tennis ball moving at the 
same speed. Newton called the product mv quantity of 
motion; this is perhaps a more graphic description than our 
present-day word momentum, which comes from the Latin 
word for movement.

If a particle is moving in an arbitrary direction, p must have three 
components



Using Newton’s second law of motion, we can relate the linear 
momentum of a particle to the resultant force acting on the particle. We 
start with Newton’s second law and substitute the definition of 
acceleration:

(4.3)

As m=const:

The time rate of change of the linear momentum of a 
particle is equal to the net force acting on the particle.



Using the definition of momentum, Equation 4.1 can be written

where p1i and p2i are the initial values and p1f and p2f the final values 
of the momenta for the two particles for the time interval during 
which the particles interact.

(4.5)

(4.4)



This result, known as the law of conservation of linear momentum, 
can be extended to any number of particles in an isolated system. It is 
considered one of the most important laws of mechanics. We can state 
it as follows:

Whenever two or more particles in an isolated system 
interact, the total momentum of the system remains 
constant.

This law tells us that the total momentum of an isolated 
system at all times equals its initial momentum.
Notice that we have made no statement concerning the 
nature of the forces acting on the particles of the system. 
The only requirement is that the forces must be internal to 
the system.

(4.6)



The momentum of a particle changes if a net force acts on the particle.

According to Newton’s second law

(4.7)

(4.8)



(4.9)

To evaluate the integral, we need to know how the force varies with 
time. The quantity on the right side of this equation is called the 
impulse of the force F acting on a particle over the time interval ∆t=tf 
- ti. Impulse is a vector defined by

Equation 4.8 is an important statement known as the 
impulse–momentum theorem:

The impulse of the force F acting on a particle equals the 
change in the momentum of the particle.



The direction of the impulse vector is the same as the direction of the 
change in momentum. Impulse has the dimensions of 
momentum—that is, ML/T. Note that impulse is not a property of a 
particle; rather, it is a measure of the degree to which an external 
force changes the momentum of the particle. Therefore, when we say 
that an impulse is given to a particle, we mean that momentum is 
transferred from an external agent to that particle.

Figure 4.2 (a) A force acting on a particle may vary in time. The impulse imparted to the particle 
by the force is the area under the force-versus-time curve. (b) In the time interval (t, the 
time-averaged force (horizontal dashed line) gives the same impulse to a particle as does the 
time-varying force described in part (a).

(a) (b)



Because the force imparting an impulse can generally vary in time, it 
is convenient to define a time-averaged force

where ∆t=tf - ti. 

(4.10)

(4.12)

The calculation becomes especially simple if the force acting on the 
particle is constant. In this case,             and Equation 4.11 becomes

In many physical situations, we shall use what is called the impulse 
approximation, in which we assume that one of the forces exerted 
on a particle acts for a short time but is much greater than any 
other force present.

(4.11)



We use the term collision to represent an event during which two 
particles come close to each other and interact by means of forces. 
The time interval during which the velocities of the particles change 
from initial to final values is assumed to be short. The interaction 
forces are assumed to be much greater than any external forces 
present, so we can use the impulse approximation.

Figure 4.3 (a) The collision between two 
objects as the result of direct contact. (b) 
The “collision” between two charged 
particles.



The total momentum of an isolated system just before a collision 
equals the total momentum of the system just after the collision.

The total kinetic energy of the system of particles may or may not 
be conserved, depending on the type of collision. In fact, whether or 
not kinetic energy is conserved is used to classify collisions as either 
elastic or inelastic.

An elastic collision between two objects is one in which the total 
kinetic energy (as well as total momentum) of the system is the 
same before and after the collision. Collisions between certain 
objects in the macroscopic world, such as billiard balls, are only 
approximately elastic because some deformation and loss of kinetic 
energy take place. For example, you can hear a billiard ball collision, 
so you know that some of the energy is being transferred away from 
the system by sound. An elastic collision must be perfectly silent! 
Truly elastic collisions occur between atomic and subatomic 
particles.



An inelastic collision is one in which the total kinetic energy of the 
system is not the same before and after the collision (even though 
the momentum of the system is conserved). 
Inelastic collisions are of two types. 
When the colliding objects stick together after the collision, as happens 
when a meteorite collides with the Earth, the collision is called 
perfectly inelastic. 
When the colliding objects do not stick together, but some kinetic 
energy is lost, as in the case of a rubber ball colliding with a hard 
surface, the collision is called inelastic (with no modifying adverb). 
In most collisions, the kinetic energy of the system is not conserved 
because some of the energy is converted to internal energy and some of 
it is transferred away by means of sound. Elastic and perfectly inelastic 
collisions are limiting cases; most collisions fall somewhere between 
them.
The important distinction between these two types of collisions is that 
momentum of the system is conserved in all collisions, but kinetic 
energy of the system is conserved only in elastic collisions.



Figure 4.4 Schematic representation of a perfectly inelastic head-on 
collision between two particles: (a) before collision and (b) after 
collision.

(a) (b)

(4.13)

(4.14)



Figure 4.5 Schematic representation of an elastic head-on collision 
between two particles: (a) before collision and (b) after collision.

(4.15)

(4.16)



Next, let us separate the terms containing m1 and m2 in Equation 4.15 
to obtain

(4.17)

(4.18)

(4.19)

To obtain our final result, we divide Equation 4.17 by Equation 4.18 
and obtain



Suppose that the masses and initial velocities of both particles are 
known.

(4.20)

(4.21)

Let us consider some special cases. If m1 = m2, then Equations 4.20 
and 4.21 show us that v1f = v2i and v2f = v1i .

That is, the particles exchange velocities if they have equal masses. 
This is approximately what one observes in head-on billiard ball 
collisions - the cue ball stops, and the struck ball moves away from the 
collision with the same velocity that the cue ball had.



If particle 2 is initially at rest, then v2i = 0, and Equations 4.20 and 
4.21 become

(4.22)

(4.23)

If m1 is much greater than m2 and v2i = 0, we see from Equations 4.22 
and 4.23 that v1f ≈ v1i and v2f ≈ 2v1i .

If m2 is much greater than m1 and particle 2 is initially at rest, then v1f 
≈ -v1i and v2f ≈ 0.



The momentum of a system of two particles is conserved when the 
system is isolated. For any collision of two particles, this result 
implies that the momentum in each of the directions x, y, and z is 
conserved.

For such two-dimensional collisions, we obtain two component 
equations for conservation of momentum:



Figure 4.6 An elastic glancing 
collision between two particles.

glancing collision

(4.25)

(4.24)



(4.26)

If the collision is elastic, we can also use Equation 4.16 
(conservation of kinetic energy) with v2i = 0 to give

If the collision is inelastic, kinetic energy is not 
conserved and Equation 4.26 does not apply.



Figure 4.7 Two particles of unequal mass are 
connected by a light, rigid rod. (a) The system 
rotates clockwise when a force is applied 
between the less massive particle and the 
center of mass. (b) The system rotates 
counterclockwise when a force is applied 
between the more massive particle and the 
center of mass. (c) The system moves in the 
direction of the force without rotating when a 
force is applied at the center of mass.



Figure 4.8 The center of mass of two 
particles of unequal mass on the x axis is 
located at xCM, a point between the 
particles, closer to the one having the 
larger mass.

(4.27)

(4.28)

(4.29)



(4.30)

Figure 4.9 An extended object can 
be considered to be a distribution of 
small elements of mass ∆mi. The 
center of mass is located at the 
vector position rCM, which has 
coordinates xCM, yCM, and zCM.

The center of mass of any 
symmetric object lies on an axis 
of symmetry and on any plane of 
symmetry.

a continuous mass distribution



Assuming M remains constant for a system of particles, that is, no 
articles enter or leave the system, we obtain the following expression 
for the velocity of the center of mass of the system:

where vi is the velocity of the ith particle. Rearranging Equation 4.34 
gives

(4.34)

(4.35)

Therefore, we conclude that the total linear momentum of the 
system equals the total mass multiplied by the velocity of the 
center of mass. In other words, the total linear momentum of the 
system is equal to that of a single particle of mass M moving with a 
velocity vCM.



If we now differentiate Equation 4.34 with respect to time, we obtain 
the acceleration of the center of mass of the system:

Rearranging this expression and using Newton’s second law, we 
obtain

where Fi is the net force on particle i.

(4.36)

(4.37)



That is, the net external force on a system of particles equals the 
total mass of the system multiplied by the acceleration of the 
center of mass. If we compare this with Newton’s second law for a 
single particle, we see that the particle model that we have used for 
several chapters can be described in terms of the center of mass:

The center of mass of a system of particles of combined mass M 
moves like an equivalent particle of mass M would move under the 
influence of the net external force on the system.

(4.38)



The angular position 
of the rigid object is 
the angle θ between 
this reference line on 
the object and the 
fixed reference line in 
space, which is often 
chosen as the x axis.

Figure 5.1 A compact disc 
rotating about a fixed axis 
through O perpendicular to the 
plane of the figure.

Rotation of a Rigid Object About a Fixed Axis

(5.1)



Rotation of a Rigid Object About a Fixed Axis

Figure 5.2 A particle on a rotating rigid object moves from A to B along the 
arc of a circle. In the time interval ∆t = tf - ti , the radius vector moves 
through an angular displacement ∆θ = θf - θi.

The average angular speed

The instantaneous angular speed

(5.2)

(5.3)



The average angular acceleration

The instantaneous angular acceleration

When a rigid object is rotating about a fixed axis, 
every particle on the object rotates through the 
same angle in a given time interval and has the 
same angular speed and the same angular 
acceleration.

(5.4)

(5.5)



Direction for angular speed and angular 
acceleration

Figure 5.3 The right-hand rule 
for determining the direction 
of the angular velocity vector.



Rotational Kinematics: Rotational Motion with 
Constant Angular Acceleration

(5.6)

is the angular speed of the rigid object at time t = 0.

Equation 5.6 allows us to find the angular speed ωf of 
the object at any later time t.



(5.7)
is the angular position of the rigid object 
at time t = 0.

Equation 5.7 allows us to find the angular position θf 
of the object at any later time t.



If we eliminate t from Equations 5.6 and 5.7, we obtain

This equation allows us to find the angular speed ωf of 
the rigid object for any value of its angular position θf .

If we eliminate α between Equations 5.6 and 5.7, we 
obtain

(5.8)

(5.9)



Table 5.1



Angular and Linear Quantities

Figure 5.4 As a rigid object 
rotates about the fixed axis 
through O, the point P has a 
tangential velocity v that is 
always tangent to the circular 
path of radius r.

(5.10)

That is, the tangential speed of a 
point on a rotating rigid object 
equals the perpendicular distance of 
that point from the axis of rotation 
multiplied by the angular speed.



We can relate the angular acceleration of the rotating rigid object to 
the tangential acceleration of the point P by taking the time 
derivative of v:

That is, the tangential component of the linear acceleration of a 
point on a rotating rigid object equals the point’s distance from the 
axis of rotation multiplied by the angular acceleration.

(5.11)



Figure 5.5 As a rigid object rotates about a 
fixed axis through O, the point P experiences 
a tangential component of linear acceleration 
at and a radial component of linear 
acceleration ar. The total linear acceleration 
of this point is a = at + ar.

A point moving in a circular path undergoes a 
radial acceleration ar of magnitude v2/r directed 
toward the center of rotation .
Because v = rω for a point P on a rotating 
object, we can express the centripetal 
acceleration at that point in terms of angular 
speed as

(5.12)

(5.13)



Rotational Kinetic Energy

Figure 10.7 A rigid object 
rotating about the z axis 
with angular speed ω.

(5.14)



We simplify this expression by defining the quantity in 
parentheses as the moment of inertia I:

From the definition of moment of inertia, we see that it has 
dimensions of ML2 (kg ·m2 in SI units). With this notation, Equation 
5.14 becomes

(5.15)

Where KR is Rotational kinetic energy.

(5.16)



Calculation of Moments of Inertia

(5.17)



Table 5.2





Torque

Figure 5.8 The force F has a greater rotating 
tendency about O as F increases and as the 
moment arm d increases. The component 
Fsinφ tends to rotate the wrench about O.

When a force is 
exerted on a rigid 
object pivoted about an 
axis, the object tends to 
rotate about that axis. 
The tendency of a 
force to rotate an 
object about some axis 
is measured by a 
vector quantity called 
torque τ (Greek tau).

(5.18)



Figure 5.9 The force F1 
tends to rotate the object 
counterclockwise about 
O, and F2 tends to rotate 
it clockwise.

(5.19)



Relationship Between Torque 
and Angular Acceleration

Figure 5.10 A particle rotating in a 
circle under the influence of a 
tangential force Ft. A force Fr in the 
radial direction also must be present to 
maintain the circular motion.



The torque acting on the particle is proportional 
to its angular acceleration, and the proportionality 
constant is the moment of inertia.

(5.20)



Figure 5.11 A rigid object rotating 
about an axis through O.



Although each mass element of the rigid object may have a 
different linear acceleration at , they all have the same angular 
acceleration α.

So, again we see that the net torque about the rotation axis is 
proportional to the angular acceleration of the object, with the 
proportionality factor being I, a quantity that depends upon the 
axis of rotation and upon the size and shape of the object.

(5.21)



Work, Power, and Energy in 
Rotational Motion

Figure 5.12 A rigid object rotates 
about an axis through O under the 
action of an external force F 
applied at P.

The work done by F on the object as it 
rotates through an infinitesimal distance

where Fsinφ is the tangential component of  F, or, in 
other words, the component of the force along the 
displacement.

(5.22)



The rate at which work is being done by F as the object rotates about 
the fixed axis through the angle dθ in a time interval dt is

(5.23)



(5.24)



That is, the work–kinetic energy theorem for rotational motion states 
that

the net work done by external forces in rotating a 
symmetric rigid object about a fixed axis equals the 
change in the object’s rotational energy.



Table 5.3



Rolling Motion of a Rigid Object

Figure 5.13 For pure rolling 
motion, as the cylinder rotates 
through an angle θ, its center 
moves a linear distance s = Rθ.

(5.25)

(5.26)



Figure 5.14 All points on a rolling object move in a direction 
perpendicular to an axis through the instantaneous point of contact P. 
In other words, all points rotate about P. The center of mass of the 
object moves with a velocity vCM, and the point P’ moves with a 
velocity 2 vCM .



Figure 5.15 The motion of a 
rolling object can be modeled 
as a combination of pure 
translation and pure rotation.



Find v1f and v2f. 

Quiz

Figure 4.5 Schematic representation of an elastic head-on collision 
between two particles: (a) before collision and (b) after collision.



Quick Quiz 1 A block of mass m is projected across a horizontal 
surface with an initial speed v. It slides until it stops due to the 
friction force between the block and the surface. The same block 
is now projected across the horizontal surface with an initial 
speed 2v. When the block has come to rest, how does the 
distance from the projection point compare to that in the first 
case? (a) It is the same. (b) It is twice as large. (c) It is four 
times as large. (d) The relationship cannot be determined.

Quick Quiz 2 A car and a large truck traveling at the same 
speed make a head-on collision and stick together. Which 
vehicle experiences the larger change in the magnitude of 
momentum? (a) the car (b) the truck (c) The change in the 
magnitude of momentum is the same for both. (d) impossible to 
determine.


