Техническое обслуживание средств вычислительной техники.

Основные понятия ТО СВТ

- Техническое обслуживание (ТО) (по ГОСТ 18322-78) комплекс операций или операция по поддержанию работоспособности или исправности изделия при использовании по назначению, ожидания, хранения и транспортирования.
- Задачей ТО средств вычислительной техники (СВТ) является: «Обеспечение надежной правильной и бесперебойной) работы СВТ, позволяющих пользователям использовать в полном объеме информационные массивы организации и другие сторонние источники информации».

Основные понятия ТО СВТ

Т.е., понятие ТО СВТ неотрывно связано с его надежностью (ГОСТ 27.002-89) - свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонта, хранения и транспортирования.

Надежность может подразумевать:

- безотказность,
- долговечность,
- ремонтопригодность
- сохраняемость.

Виды технического состояния объекта (по ГОСТ 27.002-89)

- Исправное состояние. Состояние объекта, при котором он соответствует всем требованиям нормативно-технической и/или конструкторской (проектной) документации.
- **Неисправное состояние.** Состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации.
- **Работоспособное состояние.** Состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации.
- **Неработоспособное состояние.** Состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации.
- **Предельное состояние.** Состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно.
- Переход объекта (изделия) из одного состояния в другое происходит из-за:
- отказ это событие, заключающееся в нарушении работоспособного состояния объекта.
- **повреждение** событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния.
- **Дефект** (по ГОСТ 15467-79) каждое отдельное несоответствие объекта установленным нормам или требованиям. Дефект состояние отличное от отказа.

Показатели надежности

- Для количественной оценки надежности применяются показатели характеризующие готовность и эффективность использования технических объектов:
- **Вероятность безотказной работы** это вероятность того, что в пределах заданий наработки отказ объекта не возникает.
- Средней наработкой до отказа ожидание наработки объекта до первого отказа.
- Среднее время восстановления время восстановления работоспособного состояния объекта после отказа.

Комплексные показатели надежности

- **Коэффициент готовности** это вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается. Этот показатель одновременно оценивает свойства работоспособности и ремонтопригодности объекта.
- **Коэффициент оперативной готовности** КОГ определяется как вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени (кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается) и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени.

Виды зависимости интенсивности отказов от времени:

- **Приработка** интервал характеризуется повышенным уровнем отказов, интенсивность отказов большая, но с течением времени уменьшается;
- **Нормальная эксплуатация** уровень отказов не значителен, интенсивность отказов большая практически постоянная;
- Износ уровень отказов возрастает, интенсивность отказов растет стечением времени.

Организация ТО СВТ

Система ТО и ремонта техники (СТОиР) - совокупность взаимосвязанных средств, документации ТОиР и исполнителей, необходимых для поддержания и восстановления качества изделии, входящих в эту систему.

Задачи СТОиР

- 1. Обеспечение работоспособности СВТ. Контроль работоспособности и прогнозирование потребностей в обновлении парка СВТ. При решении данной задачи необходимо использовать анализ и прогнозирование состояния СВТ, ПО и существующих задач, что позволит планово решать существующие проблемы;
- **2. Обеспечение работоспособности ОС и прикладного ПО.** Состоит в:
- правильном подборе драйверов, решении проблем их взаимодействия друг с другом и другим аппаратно – программным обеспечением,
- необходимости контролировать работоспособность установленного программного обеспечения и прогнозировать потребности в его обновлении;
- 3. Обеспечение целостности, сохранности и работоспособности информационных массивов. Данная задача сводится к резервному архивированию данных, обеспечению их защиты от вирусов и других искажающих действий;
- 4. Обеспечение работоспособности периферийного, сетевого и коммуникационного оборудования

Требования к СТОиР

- обеспечение заданных уровней эксплуатационной надежности парка СВТ при рациональных материальных и трудовых затратах;
- планово-нормативный характер, позволяющий планировать и организовывать ТО и ремонт на всех уровнях;
- **обязательность** для всех организаций и предприятий, владеющих СВТ, вне зависимости от их ведомственной подчиненности;
- конкретность, доступность и пригодность для руководства и принятия решений всеми звеньями инженерно-технической (сервисной) службы;
- **стабильность** основных принципов и гибкость конкретных нормативов, учитывающих изменения условий эксплуатации, конструкции, качества и надежности СВТ;
- **учет** разнообразия условий эксплуатации СВТ.

Методы формирования СТОиР

Принципиальной основой построения СТОиР являются:

- 1. цель, которая поставлена перед СВТ;
- 2. уровень надежности и качество СВТ;
- 3. организационно-технические ограничения.
- технико-экономический метод (определяют такую групповую периодичность, которая соответствует минимальным затратам на ТО и ремонт СВТ);
- группировка по стержневым операциям ТО (выполнение группы операций ТО приурочивается к оптимальной периодичности, т.н. стержневых операций, обладающих следующими признаками:
- 1. влияют на работоспособность СВТ;
- 2. невыполнение их снижает безотказность, экономичность работы СВТ;
- 3. характеризуются большой трудоемкостью, требуют специального оборудования и инструментов;
- 4. регулярно повторяются.

Мероприятия ТО

- Контроль технического состояния СВТ
- Текущее ТО
- Профилактическое обслуживание.
 - **1. активное** (меры, напреленные на продление срока безотказной службы)
 - 2. пассивное (меры, направленные на защиту компьютера от внешних неблагоприятных воздействий)

Методы активного профилактического обслуживания

- Резервное копирование системы
- Чистка
- Установка микросхем на свои места
- Чистка контактов разъемов
- Чистка клавиатуры и мыши
- Профилактическое обслуживание жестких дисков
- Дефрагментация файлов
- Антивирусные программы

Методы пассивного профилактического обслуживания

- Эргономика рабочего места
- Эксплуатация при допустимом диапазоне температур и влажности
- Оптимизация количества циклов включения и выключения
- Исключение электростатических зарядов
- Исключение помех в сети питания

Виды ТО

определяются периодичностью и комплексом технологических операций по поддержанию эксплуатационных свойств СВТ.

Различают:

- регламентированное;
- периодическое;
- с периодическим контролем;
- с непрерывным контролем.

Этапы устранения неисправностей

- 1. анализ характера неисправностей по текущему состоянию СВТ;
- 2. контроль параметров окружающей среды и меры по устранению их отклонений;
- 3. локализация ошибки и определение места неисправности с помощью аппаратурных и программных средств СВТ и с помощью дополнительной аппаратуры;
- 4. устранение неисправностей;
- 5. возобновление решения задачи.

виды СТОиР

- Планово-предупредительное обслуживание
- Достоинства обеспечивает наивысшую готовность СВТ.
- Недостатки требует больших материальных и физических затрат.
- Может включать в себя:
 - контрольные осмотры (КО)
 - ежедневные TO (ETO)
 - еженедельные ТО
 - двухнедельные ТО
 - декадные ТО
 - ежемесячные ТО
 - двухмесячные ТО
 - полугодовые или сезонные
 - годовые ТО

виды СТОиР

- Обслуживание по техническому состоянию
- Носит внеплановый характер и выполняется по мере необходимости
- Объем работ определяется характером возникшей неисправности и её возможными последствиями.
- Вывод СВТ на внеплановую профилактику можно также производить, когда количество сбоев, возникающих за определенный установленный период времени, превышает допустимые значения.
- Требует наличие и правильное применение различных тестирующих средств (ПО).
- Позволяет минимизировать затраты на эксплуатацию СВТ, но готовность СВТ к использованию ниже, чем при использовании планово-предупредительной СТО.

виды СТОиР

- Комбинированное обслуживание.
- «Младшие виды ТО» проводятся по мере необходимости.
- Выполнение «старших видов ТО» и ремонтов планируется.

Методы ТО по признаку организации

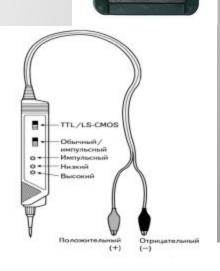
- Фирменный метод (предприятиемизготовителем)
- Автономный метод (пользователь своими силами)
- Специализированный метод (предприятием сервиса)
- Комбинированный метод (распределение работ между пользователем и сервисом/изготовителем)

Методы ТО по характеру выполнения

- Индивидуальное обслуживание одного СВТ силами и средствами персонала данного СВТ.
- Групповое служит для обслуживания нескольких СВТ, сосредоточенных в одном месте, средствами и силами специального персонала.
- Централизованное техническое обслуживание является более прогрессивной формой обслуживания СВТ.
 - сокращаются расходы на содержание технического персонала, сервисной аппаратуры и ЗИП.
 - накапливается статистика отказов элементов, узлов, блоков и устройств СВТ, что позволяет прогнозировать необходимый ЗИП и выдавать рекомендации по эксплуатации СВТ.

Текущее техническое обслуживание

Сервисная аппаратура


- Для поиска неисправностей и ремонта РС необходимо иметь специальные инструментальные средства, которые позволяют выявить проблемы и устранить их просто и быстро.
- К их числу относятся:
- набор инструментов для разборки и сборки;
- химические препараты (раствор для протирания контактов),
- пульверизатор с охлаждающей жидкостью и баллончик со сжатым газом (воздухом) для чистки деталей компьютера;
- набор тампонов для протирания контактов;
- специализированные подручные инструменты (например, инструменты, необходимые для замены микросхем (чипов));
- сервисная аппаратура.

Сервисная аппаратура

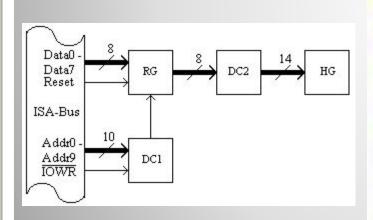

- Сервисная аппаратура набор устройств разработанных специально для диагностирования, тестирования и ремонта СВТ. Включает следующие элементы:
- Измерительные приборы
- тестовые разъемы для проверки последовательных и параллельных портов;
- приборы тестирования памяти, позволяющие оценить функционирование модулей памяти, чипов DIP и других модулей памяти;
- оборудование для тестирования БП;
- диагностические устройства и программы для тестирования компонентов компьютера (программно - аппаратные комплексы, ПАК).

Измерительные приборы и тестовые разъемы для проверки портов ПК

- Для проверки и ремонта ПК применяются:
- цифровой мультиметр;
- логические пробники;
- генераторы одиночных импульсов для проверки цифровых схем

 Тестовые разъемы обеспечивают проверку на программном и аппаратном уровне портов ввода- вывода ПК (параллельных и последовательных).

Программно-аппаратные комплексы (ПАК)


- ПАК можно подразделяются на:
- Платы мониторинга системы
- ПАК проверки материнской платы
- Специализированные ПАК
- ПАК проверки отдельных элементов системы
- ПАК проверки НЖМД


Платы мониторинга системы (POST- платы).

- Плата-тестер PC-POST предназначена для мониторинга POSTкодов (POST - Power On Self Test / самотестирование по включению питания), посылаемых в порт ввода-вывода 80h программой BIOS на этапе самотестирования.
- Плата POST состоит из четырех основных блоков:
- RG восьмиразрядный параллельный регистр; предназначен для записи и хранения очередного поступившего значения POST-кода;
- DC1 дешифратор разрешения записи в регистр; сигнал на выходе дешифратора становится активным в случае появления на адресной шине адреса диагностического регистра, а на шине управления - сигнала записи в устройства ввода-вывода;
- DC2 дешифратор-преобразователь двоичного кода в код семисегментного индикатора;
- HG двухразрядный семисегментный индикатор; отображает значение кода ошибки в виде шестнадцатеричных символов 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, b, C, d, E, F.

POST- платы

Индикатор Super POST Code служит для быстрой диагностики и выявления неисправностей CHIPSEToв шины PCI и устройств, работающих с этой шиной

ПАК проверки материнской платы PC POWER PCI-2.2

- Тестер представляет собой плату расширения компьютера, устанавливаемую в 33МГц, 32-х разрядный РСІ слот.
- Комплекс позволяет выполнять ряд диагностических тестов, запускаемых из установленного на плате ПЗУ, ориентированных на выявление системных ошибок и конфликтов оборудования, при этом в состав входит широких набор инструментов для аппаратной диагностики материнской платы.
- Аппаратно реализованный режим пошаговой POST диагностики с декодированием в реальном времени всех POST кодов. (Время удержания каждого POST кода задается пользователем).

Специализированные ПАК - ПАК «RAM Stress Test Professional 2» (RST Pro2).

- RAM Stress Test Professional 2, предназначен для тщательного тестирования оперативной памяти компьютера.
- Тестирование памяти с помощью RST Pro2 позволяет устранить влияние операционной системы, драйверов и пользовательских программ, поскольку устройство загружает собственное ПО при запуске системы.
- Для проверки модулей памяти в устройстве реализовано свыше 30 различных алгоритмов, поддерживающих память типа SIMM, DIMM (SDRAM, DDR, DDR2), RIMM (RDRAM/RAMBus); имеется также возможность тестирования кэш-памяти процессора (SRAM). Тестирование осуществляется в защищенном режиме с расширенной физической адресацией (PAE), позволяющей оперировать с объемами памяти до 64 ГБ.

ПАК проверки отдельных элементов системы

- ПАК для ремонта HDD ATA, SATA PC-3000 for Windows (UDMA) предназначен для диагностики и ремонта HDD (восстановления работоспособности) с интерфейсом ATA (IDE) и SATA (Serial ATA 1.0, 2.0), емкостью от 1 Гб до 750 Гб.
- Диагностика HDD осуществляется в режимах:
- обычном (пользовательском) режиме
- в специальном технологическом (заводском) режиме.
- В ПАК PC-3000 for Windows (UDMA) входит набор технологических переходников и адаптеров, которые используются для ремонта HDD и восстановления данных.
- Для первоначальной диагностики HDD запускается универсальная утилита, которая диагностирует HDD и указывает все его неисправности.
- Далее запускается специализированная утилита, которая и осуществляет ремонт HDD.
- Специализированные утилиты позволяют выполнить следующие действия:
- тестировать HDD в технологическом режиме;
- тестировать и восстанавливать служебную информацию HDD;
- читать и записывать содержимое Flash ПЗУ HDD;
- загружать программу доступа к служебной информации;
- просматривать таблицы скрытых дефектов Р-лист, G-лист, Т-лист;
- скрывать найденные дефекты на поверхностях магнитных

Виды конфликтов при установке оборудования, способы их устранения

- Системными ресурсами называются коммуникационные каналы, адреса и сигналы, используемые узлами компьютера для обмена данными с помощью шин. Обычно под системными ресурсами подразумевают:
- адреса памяти;
- каналы запросов прерываний (IRQ);
- каналы прямого доступа к памяти (DMA);
- адреса портов ввода-вывода.
- Все эти ресурсы необходимы для различных компонентов компьютера. По мере установки дополнительных плат в компьютере значительно повышается вероятность возникновения конфликтов, связанных с использованием ресурсов.
- Конфликт возникает при установке двух или более плат, каждой из которых требуется линия IRQ или адрес порта ввода-вывода. Для предотвращения конфликтов на большинстве плат устанавливаются перемычки или переключатели, с помощью которых можно изменить адрес порта вводавывода, номер IRQ и т.д.

Адреса памяти

 Некоторым устройствам для работы необходим буфер для временного хранения используемых данных. Необходимо следить, чтобы эти области не пересекались для различных устройств.

Прерывания

 Каналы запросов прерывания (IRQ), или аппаратные прерывания, используются различными устройствами для сообщения системной плате (процессору) о том, что должен быть обработан определенный запрос.

- Прерывания шины РСІ
- Локальная шина РСІ была спроектирована с учетом совместного использования прерываний.
- Т.к. у компьютера IBM РС АТ была только одна шина, по которой устройства могли общаться с процессором и памятью -ISA. для распределения прерываний введена система АСРІ.
- Система АСРІ занимается:
- 1. менеджментом энергосберегающих функций компьютера
- 2. автоматическое распределение системных ресурсов внутри компьютера. Пока ACPI в действии, вы не можете изменить никаких параметров, связанных с прерываниями. Более того, система ACPI поддерживает работу расширенного контроллера прерываний APIC.
- APIC (Advanced Programmable Interrupt Controller) усовершенствованный программируемый контроллер прерываний. Применяется в многопроцессорных и многоядерных системах, т.к. позволяет распределить нагрузку по работе с устройствами.

Каналы прямого доступа к памяти (DMA)

- DMA используются устройствами, осуществляющими высокоскоростной обмен данными (сетевой адаптер, жесткий диск).
- Один канал DMA может использоваться разными устройствами, но не одновременно. Для этого каждому адаптеру необходимо выделить свой канал DMA

Адреса портов ввода-вывода

- Через порты ввода-вывода к компьютеру можно подключать разнообразные устройства для расширения его возможностей.
- Порты ввода-вывода позволяют установить связь между устройствами и программным обеспечением в компьютере.
- Современные системы с автоматической самонастройкой (Plug and Play) сами разрешают любые конфликты из-за портов, выбирая альтернативные порты для одного из конфликтующих устройств.
- Специальные программы драйверы взаимодействуют, прежде всего, с устройствами, используя различные адреса портов. Драйвер должен знать, какие порты использует устройство, чтобы работать с ним.

Предотвращение конфликтов, возникающих при использовании ресурсов

Признаки конфликтов:

- устройство не работает
- данные передаются с ошибками;
- компьютер часто зависает;
- звуковая плата искажает звук;
- мышь не функционирует;
- на экране неожиданно появляется "мусор";
- принтер печатает бессмыслицу;
- невозможно отформатировать гибкий диск;
- Windows при загрузке переключается в безопасный режим.

- Диспетчер устройств в Windows-версиях отмечает конфликтующие устройства желтой или красной пиктограммой. Это самый быстрый способ обнаружения конфликтов.
- Все ресурсы ПК распределяются дважды

 сначала средствами BIOS, затем средствами Windows, соответственно и распределение ресурсов системы возможно на двух уровнях (BIOS, Windows).

Предотвращение конфликтов вручную

- 1. Распределение номеров IRQ средствами BIOS
- 2. Распределение номеров IRQ средствами Windows
- 2.1. полноценное использование систем ACPI и IRQ Sharing.
- 2.2. отказ от использования ACPI и APIC, но с параллельным использованием IRQ Sharing

- **APIC** (Advanced Programmable Interrupt Controller) усовершенствованный программируемый контроллер прерываний
- IRQ Sharing ОС позволяет двум устройствам одновременно находиться на одном прерывании.

Системы Plug and Play (P&P)

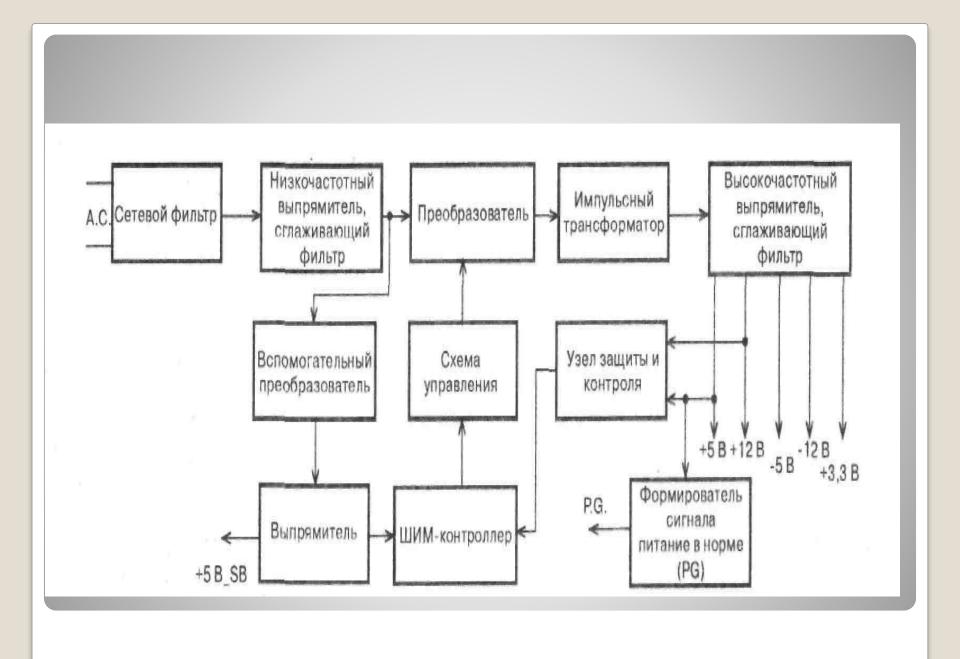
Впервые они появились на рынке в 1995 году.

Сейчас спецификации Plug and Play применяются в стандартах ISA, PCI, SCSI, IDE, SATA и PCMCIA.

Чтобы реализовать возможности Plug and Play, необходимо следующее:

- аппаратные средства поддержки Plug and Play;
- поддержка Plug and Play в BIOS;
- поддержка режима Plug and Play операционной системой.

Аппаратные средства. Под аппаратными средствами подразумеваются как компьютеры, так и платы адаптеров. Возможности PnP в BIOS реализуются при выполнения расширенной процедуры POST при включении компьютера. BIOS идентифицирует и определяет расположение плат в слотах, а также настраивает адаптеры PnP


Эти действия выполняются в несколько этапов.

- 1. На системной плате и платах адаптеров отключаются настраиваемые узлы.
- 2. Обнаруживаются все ISA и PCI-устройства типа PnP.
- 3. Создается исходная карта распределения ресурсов: портов, линий IRQ, каналов DMA и памяти.
- 4. Подключаются устройства ввода-вывода.
- 5. Сканируются ROM в ISA и PCI -устройствах.
- 6. Выполняется конфигурация устройств программами начальной загрузки, которые затем участвуют в запуске всей системы.
- 7. Настраиваемым устройствам передается информация о выделенных им ресурсах.
- 8. Запускается начальный загрузчик.
- 9. Управление передается ОС

OC PnP

В ПК можно установить как новую версию Windows, так и расширения к имеющейся ОС. ОС должна сообщить вам о конфликтах, которые не были устранены BIOS. В зависимости от возможностей ОС вы можете настроить параметры адаптеров вручную (с экрана) или выключить компьютер и изменить положение перемычек и переключателей на самих платах. При перезагрузке будет выполнена повторная проверка и выданы сообщения об оставшихся (или новых) конфликтах. После нескольких "заходов" все конфликты, как правило, устраняются.

Типовые алгоритмы нахождения неисправностей Поиск неисправностей системного блока

Неисправности БП

- 1. **Очевидные:** компьютер вообще не работает, появляется дым, сгорает предохранитель.
- **2. Неочевидные** (часто нужно доп. диагностика)
 - 🔷 любые ошибки и зависания при включении питания;
 - спонтанная перезагрузка и периодические зависания во время обычной работы;
 - 🔷 хаотические ошибки четности и другие ошибки памяти;
 - одновременная остановка жесткого диска и вентилятора (нет +12 В), перегрев компьютера из-за выхода из строя вентилятора;
 - перезапуск компьютера при малейшем снижении напряжения сети;
 - удары эл. током при прикосновении к корпусу компьютера или к разъемам;
 - 🔷 небольшие статические разряды, нарушающие работу сети.

Методы ремонта БП

- Метод органолептического анализа монтажа (посторонние звуки, запахи, повреждения)
- Метод измерений
- Метод замены
- Метод исключения
- Метод воздействия
- Метод электропрогона
- Метод простука
- Метод эквивалентов

Типовые неисправности БП ПК

- "пробой" диодов выпрямительного моста или мощных ключевых транзисторов, ведущий к возникновению КЗ в первичной цепи БП
- выход из строя управляющей микросхемы
- выход из строя выпрямительных диодов во вторичных цепях БП

Основные неисправности системной платы

- Аппаратные (нарушение контакта в многослойной печатной плате или в одном из разъемов расширения СП);
- Программные (переполнение ОЗУ резидентными программами, подключение программного драйвера, несовместимого с подключенным периферийным устройством);
- программно-аппаратные (выход из строя ПЗУ BIOS, потеря или искажение информации CMOS на СП).

Диагностика неисправностей

осуществляется двумя способами:

- Программно (встроенной программы POST, специальных диагностических программ (Checkit, Norton Disk Doctor), а также с использованием диагностических плат и ПАК МВ);
- с помощью приборов (осциллографа, логического пробника и анализатора).

Методика поиска неисправностей с помощью приборов

состоит в последовательной проверке:

- правильности установки всех переключателей режимов работы системной платы и интерфейсных разъемов;
- напряжений питания системной платы +5 В и +12 В;
- - напряжений питаний ВИП МВ
- всех кварцевых генераторов, тактовых генераторов и линий задержки;
- работы микропроцессора (наличие штатных сигналов на выводах);
- функционирования шин адресов, данных и управления;
- сигналов на контактах микросхем ПЗУ и ОЗУ;
- сигналов на контактах разъемов расширения системной платы;
- временной диаграммы работы набора СБИС и схем малой степени интеграции.

Неисправности НОД

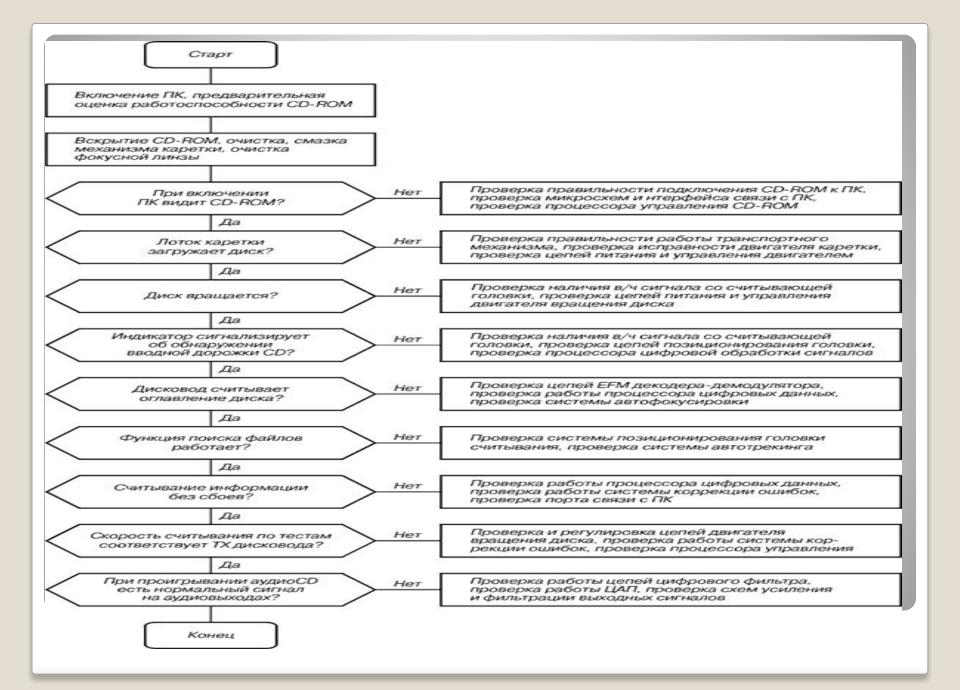
Типовой привод НОД состоит из

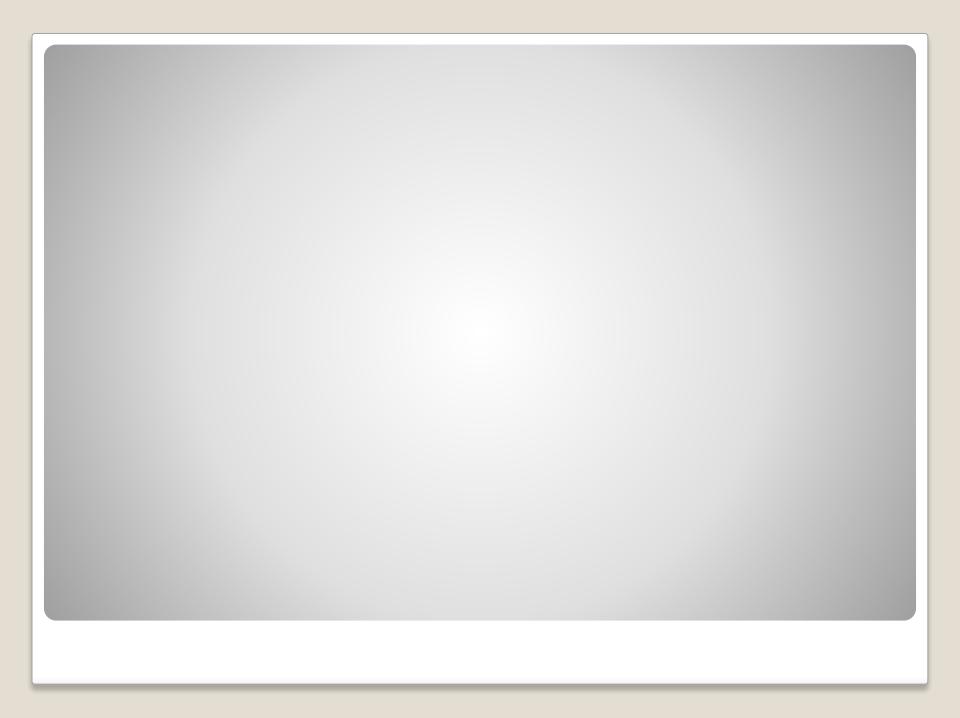
- платы электроники,
- шпиндельного двигателя,
- оптической системы считывающей головки
- системы загрузки диска.

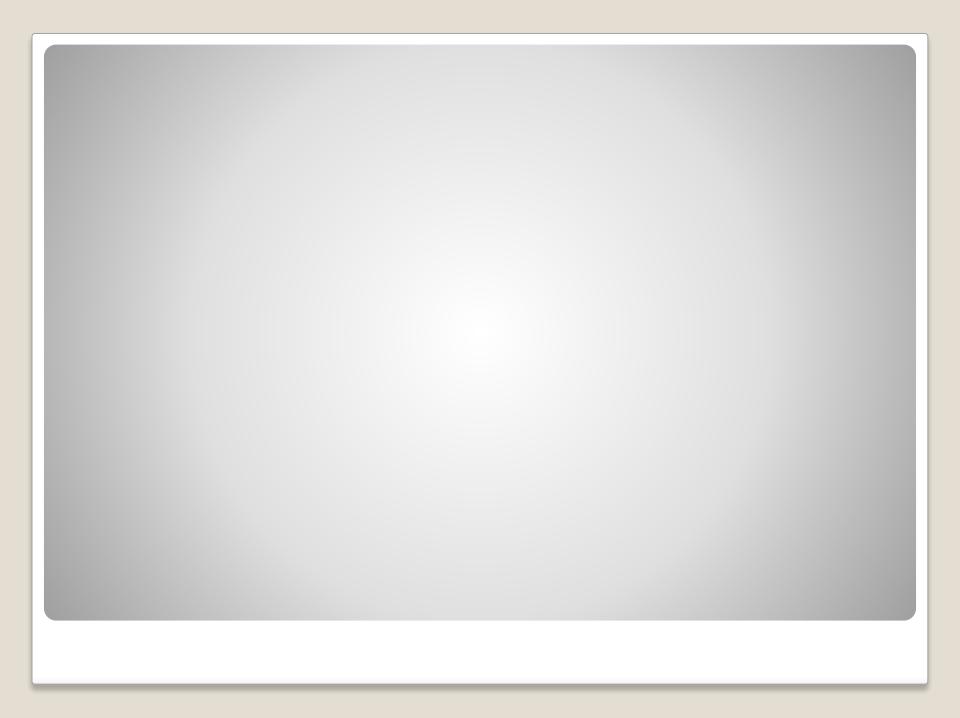
Виды неисправностей:

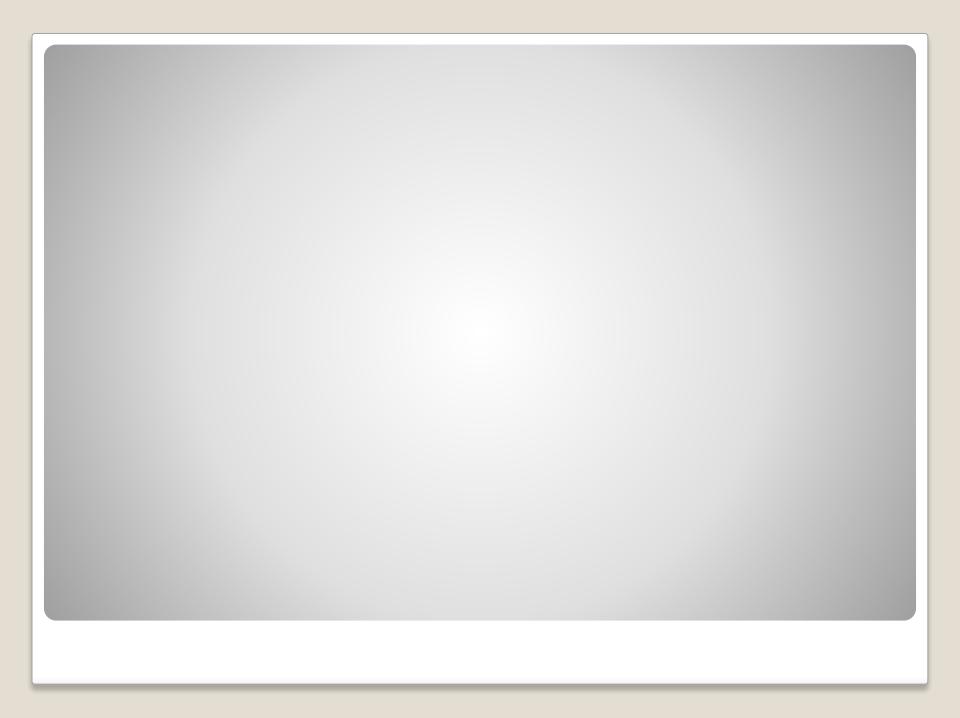
- механические неисправности;
- неисправности оптической системы;
- неисправности электронных компонентов.

Механические неисправности


- составляют 80…85% общего числа неисправностей.
 - отсутствие смазки трущихся частей;
 - скопление пыли и грязи на подвижных частях механизма транспортировки диска;
 - засаливание фрикционных поверхностей;
 - нарушения регулировок;
 - механические поломки деталей транспортного механизма.


- Неисправности оптико-электронной системы считывания информации.
- Несмотря на небольшие размеры, система эта - очень сложное и точное оптическое устройство. По частоте появления в течение первых полуторадвух лет эксплуатации отказы оптической системы составляют 10...15% от общего числа неисправностей.


Типовые неисправности НОД


Можно выделить следующие типовые неисправности компонентов НОД:

- Компьютер не идентифицирует накопитель
- Не работает механизм загрузки/выгрузки компакт – диска
- Не проходят тесты НОД

