Touchscreen Implementation for Multi-Touch

Design Team 2:

Joey Grover

Ahmad Alqudaihi

Jason Grimes

Dennis Wey

Touchscreens & Graphical User Interface

- Guiding principles behind GUI
 - Displays relevant information
 - Intuitive technology
- Touchscreen
 - Electronic Display
 - Recognizes presence of user's touch
 - Provides GUI and user control

Touchscreen Technologies

- Resistive
- Capacitive
 - Surface
 - Projected
- Optical imaging
 - Infrared

Resistive Touchscreen

- Composed of multiple layers separated by thin spaces
- Using indium tin oxide (ITO) layers
- Different standards
 - 4, 5, and 8 wire types
 - Each have advantages

Resistive Touchscreen

- User Presses Down
- Contact is Made
- Uniform Voltage on First Screen for X
- Same on Second screen for Y
- Happens instantaneously

4-Wire design

- One screen for X
- Another screen for Y
- Both create voltage gradient.
- Uses voltage divider

Advantages

- Works well with fingertip or stylus input
- Generally most affordable touchscreen technology
- Rugged/Durable
- Has multi-touch input capabilities
 - Stantum
 - Touchco

Disadvantages

- Not as accurate
- Multi-touch much more complex
- Usually no discretion between stylus and hand
- More pressure needed

Capacitive Touch Technology

- Consists of:
 - Insulator (glass or Air)
 - Conductive coating (ITO)
- Two types:
 - Surface
 - projected

Surface Capacitance

- Only one side is coated
- Electrodes at the edges
 - Distribute voltage

Surface Capacitance Cont.

Before

After

- Capacitor forms
- Current flows

- Determine location
 - Controller
 - Ratio of currents

$$R = \frac{\mathbb{X} \times \rho}{A}$$
 , $i\alpha \frac{1}{\mathbb{X}}$

XY coordinates

Projected Capacitance

- Two parallel ITO layers
- Two sheets of glass

Projected Capacitance

Capacitor at each point on the surface

Projected Capacitance Cont.

- E Field is projected through glass
- Finger couples with E field
- Capacitance changes

$$C_{\text{new}} = (C_1 * C_t) / (C_1 + C_t)$$

Surface vs. Projected

- Limited resolution
- Single touch
- Operation with direct contact

- High resolution
- Multi touch
- Operation with indirect contact

Multi-Touch Using Infrared

Frustrated Total Internal Reflection

A process by which light is trapped within a medium and can be interrupted by a third medium of higher reflective index to cause light to escape.

http://cs.nyu.edu/~jhan/ftirsense/ftirschematic.gi

Rear Projection

http://reactivision.sourceforge.net/images/reactivision03.pn

Hardware

- Infrared LED's or lasers with line generator for optical dispersion
- Glass surface or plexi-glass
- Infrared Camera
- Projector
- Cost
- Scalability

Alternative Single-Unit Design

- Eliminates rear projection
- Expensive
- Robustness

http://wiki.fluidproject.org/display/fluid/Benchmarking+-+Touch+Screen+Options

Software

Surface Capture via Detector

Digitized View

Software Cont.

- Interpret and Relay Information
 - Assign Objects or gestures with Unique ID# and location
 - Compare and Execute

Improving Accessibility?

- Universal Design Principles
 - Utility for all users
 - Simple and intuitive
- Touchscreens depend on visual feedback in order to use

Pointing Device Gestures

- Cursor movements as command shortcuts
- Takes place of keyboard shortcuts
- Useful in applications where keyboard use is less prominent or undesirable

Above: Some possible cursor movement patterns for use in gesture support.

Implementation: Step 1

- Filter Input
 - Sampling rate
 - Smooth out input data, get rid of unnecessary "noise"
 - Simplify data analysis

Implementation: Step 2

Vectorize

- Separate x- and y-component
- Compute dominant component and ignore smaller one
- Store in array

Implementation: Step 3

Matching

- Match captured vector array to pre-defined gesture library
- If no match, pop smallest vector from array and repeat matching process

Example

Fig. 1 – User input

Fig. 2 – Captured/filtered pointer data

Fig. 3 – After vectorization

Fig. 4 – Final matching result

Goal

- Allows for a quicker and more efficient UI
- Universal Design
 - Enhances usability for visually-impaired as well as non-impaired
- Easily added to existing touchscreen devices, no additional hardware required

Questions?