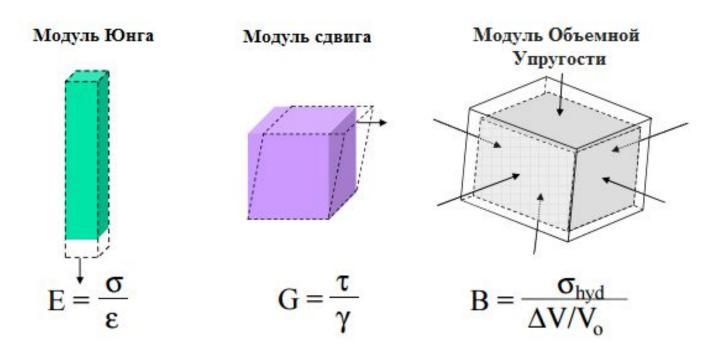
Пермский национальный исследовательский политехнический университет Кафедра конструирование и технологии в электротехнике

Выпускная квалификационная работа на тему:

Экспериментальное исследование вязкоупругих свойств твердых полимерных материалов в зависимости от температуры


Утвердил: зав. кафедры Труфанова Н.М.

Научный руководитель: канд. техн. наук, доцент Субботин Е.В.

Выполнил: студент группы КТЭИ – 11 – 1б Лукин М.Д.

Пермь 2015 г.

Динамический механический анализ.



Где пунктирные линии указывают на первоначальное состояние напряжений:

- σ одноосное растягивающее или сжимающее напряжение;
- ε нормальная деформация
- τ напряжение сдвига;
- γ деформация сдвига;
- σ_{hyd} гидростатических растягивающих или сжимающих напряжений;
- Величина $\Delta V/Vo$ фракционного объемного расширения или сужения

Вязкоэластичность и комплексный модуль

tgδ характеризует соотношение между вязкой и эластичной компонентами:

- Для эластичных материалов tgб пренебрежимо мал, поэтому модуль упругости выражается просто как соотношение напряжения к деформации.
- Для вязких материалов tgδ будет значителен, вследствие значительных потерь (рассеивания) энергии на внутреннее движение и на трение.

Динамический механический анализатор DMA Q800

Рис. 1. Внешний вид DMA Q800.

Дополнительные системы:

Рис. 2. Система охлаждения жидким азотом GCA.

Рис.3. Система контроля влажности DMA-RH.

Калибровка DMA Q800

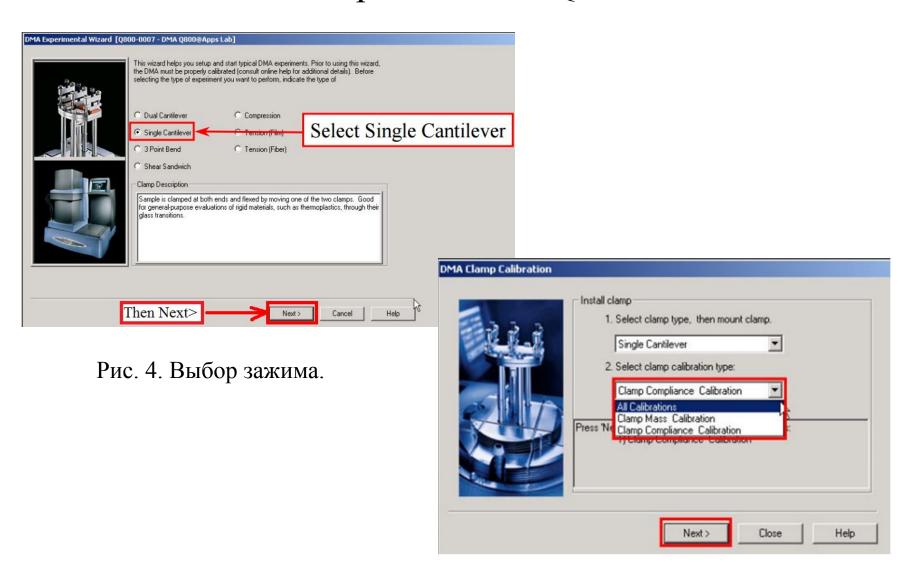


Рис. 5. Все калибровки.

Экспериментальное исследование вязкоупругих свойств электроизоляционных материалов при отрицательных температурах.

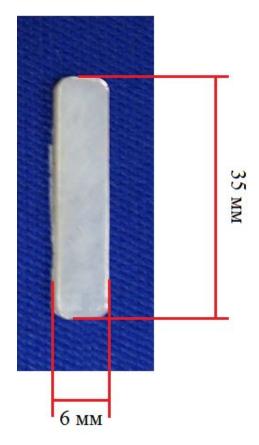


Рис.6 Образцы в виде пластин.

Рис. 7 Установка образца в зажимы растяжения.

Результаты исследований.

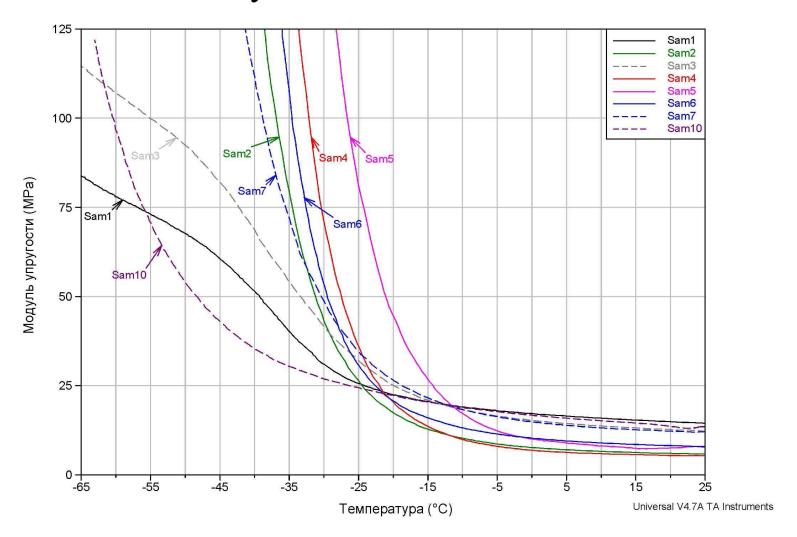


Рис. 8. Зависимости модуля упругости от температуры

Результаты исследований.

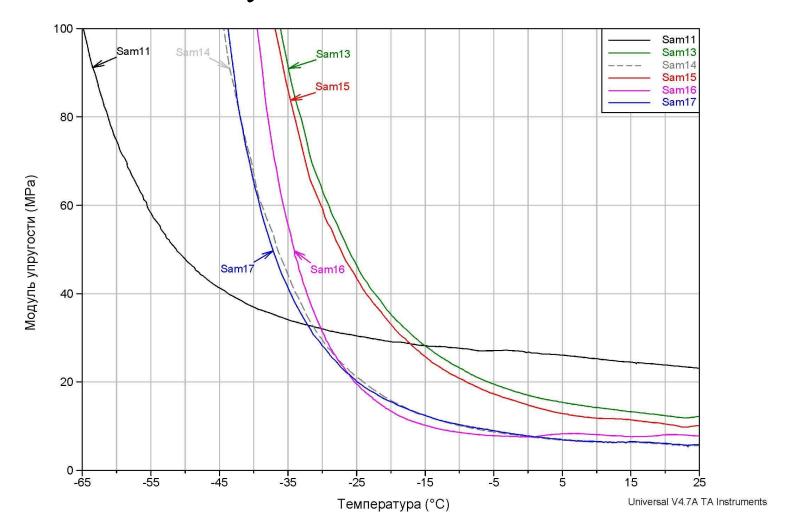


Рис. 9. Зависимости модуля упругости от температуры

Результаты исследований.

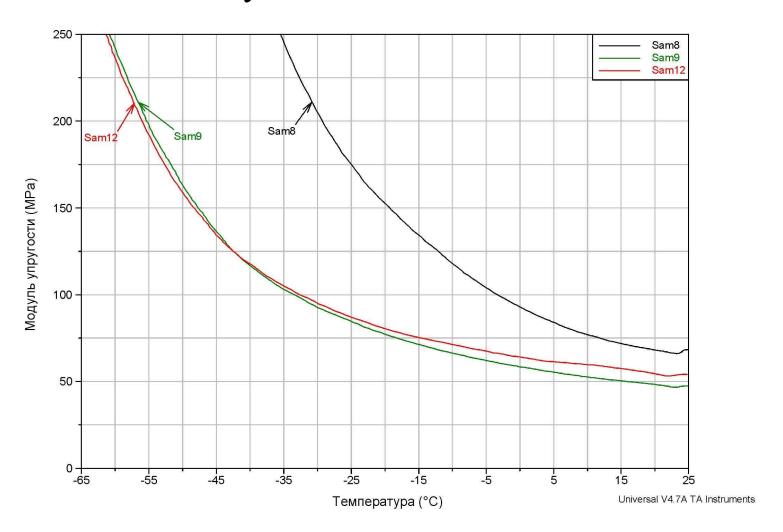


Рис. 10. Зависимости модуля упругости от температуры

Минимально допустимую температуру эксплуатации материала.

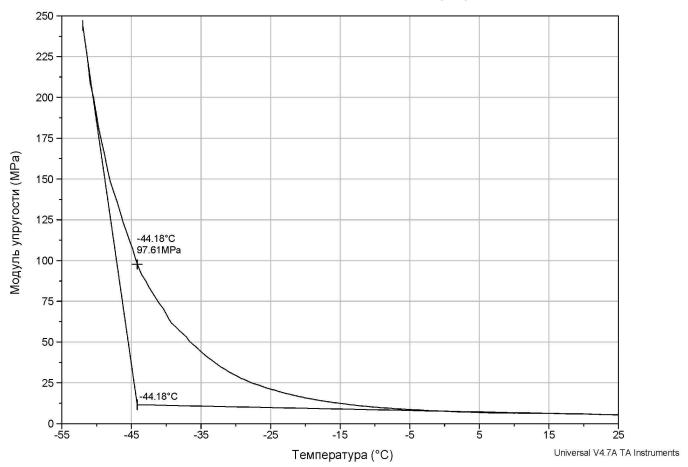


Рис. 11. Определение критической температуры ($T_{\text{крит.}}$) на примере образца №14.

Таблица результатов измерений.

№ образца	E ₊₂₅ , MPa	E ₋₄₀ , MPa	E ₋₄₀ /E ₊₂₅	Т _{крит.} , °С	E _{-65.} , MPa	Е _{Ткрит.} , Мра	Е _{Ткрит} /Е ₊₂₅
1	14,47	51,50	3,56	_	83,89	_	_
2	5,86	152,4	26,01	-39,42	_	140,2	23,92
3	12,26	68,83	5,61	_	114,5	_	_
4	5,36	375,5	70,06	-32,39	_	104,4	19,48
5	7,74	370,5	47,86	-23,47	_	67,94	8,78
6	7,91	219,1	27,70	-31,78	_	67,18	8,49
7	12,08	111,9	9,26	-31,95	_	55,98	4,63
8	68,37	309,5	4,52	-43,56	_	388,5	5,68
9	47,51	116,8	2,46	-53,31	_	185,0	3,89
10	13,46	35,29	2,62	-51,96	_	59,66	4,43
11	23,09	36,95	1,60	-56,35	_	62,37	2,70
12	54,05	117,8	2,18	-45,63	_	137,4	2,54
13	12,21	138,1	11,31	-39,18	_	127,9	10,48
14	5,65	67,10	11,88	-44,18	_	97,61	17,28
15	10,11	128,6	12,72	-52,42	_	461,0	45,60
16	7,57	107,9	14,25	-32,56	_	41,58	5,49
17	5,76	65,04	11,29	-39,63	_	62,85	10,91

Заключение.

Анализируя полученные данные, можно сделать вывод, что наиболее устойчивыми к воздействию отрицательных температур электроизоляционными материалами являются образцы под номерами 11, 12, 9, 10 и 1, которые в дальнейшем могут быть использованы при производстве кабельных изделий, предназначенных для эксплуатации в районах с холодным климатом.

Спасибо за внимание!