Моделирование технологических процессов Лекция 1

Познание и моделирование

«Вся эволюция организмов и история человечества связана с информацией и моделями»

Акад. Н.М. Амосов

Любое знание представляет собой модель реальности, так как любая научная дисциплина всегда имеет дело только с приближенным (т.е. модельным) описанием.

Процесс познания может быть рассмотрен как процесс построения моделей, где построение математической модели означает достижение наивысшей точки индуктивного обобщения экспериментальных данных и теоретических построений

Вопросы к экзамену

- Цель и задачи курса. Роль приборно-технологического моделирования в проектировании интегральных микросхем
- Типы и функциональный состав моделей технологических операций.
- Ионная имплантация, механизмы торможения ионов.
- Ионная имплантация, теория ЛШШ.
- Ионная имплантация, диффузионная модель Бирсака.
- Эффект каналирования.
- Системы координат при моделировании ионной имплантации.

Цель дисциплины

• формирование знаний в области математического моделирования технологических процессов микро- и наноэлектроники, позволяющих глубже понимать сущность процессов, используемых в производстве изделий интегральной электроники, проектировать эти изделия на основе современных методов и с использованием современных компьютерных технологий

Математическое моделирование как часть технологического развития

Задачи дисциплины:

- изучение основных физических явлений, используемых в процессах формирования элементов интегральных схем; математическое описание этих явлений с помощью основных уравнений, характеризующих процессы внедрения и перераспределения примеси в полупроводниковых материалах;
- изучение принципов численного моделирования технологических процессов и математических моделей основных технологических операций;
- формирование знаний в области достижений отечественной и зарубежной науки и техники в области математического моделирования технологических процессов микро- и наноэлектроники;

Задачи дисциплины (продолжение):

- формирование навыков по проведению численного моделирования процессов формирования основных интегральных структур, технологических маршрутов и отдельных технологических операций, анализу, систематизации и обобщению полученных расчетных данных, подготовки материалов для составления отчетов;
- обучение методам исследования объектов интегральной микро- и наноэлектроники на базе программных средств математического моделирования технологических процессов и современных компьютерных технологий.

Intel's 90nm nMOS

Intel's 90nm pMOS transistor

Суб 100 нм МОП транзисторы с механически напряженным кремнием

n – МДП транзистор с механически напряженным покрытием толщиной 75 нм

хх-компонента тензора механических напряжений в р- МДП-транзисторе с SiGe областями исток/стока

Трехмерная модель МДПтранзистора КНИ-типа (32 нм)

Функция распределения порогового напряжения с учетом разброса фокуса и дозы в процессе литографии

Моделирование базового технологического маршрута КМДП ИС

Виртуальный эксперимент: автоматизированное рабочее место Sentaurus Workbench

Project	Schedule	er]										
	Family Tree							Experimental Plan			Variable Values	
				<u> </u>		endGate	doseLdd	diffTime				
	_	Senia	urusP		Mesh	SeniaurusD	Inspect					
		endGate	doseLdd	diffTime				0.555 0.59	1.8e11.2e+1.8e+1	0.5 0.45 0.55	VT2	gm1
1		[n106]: 0.555	[n218]: 0.8e13	[n219]: 0.5	[n220]:	[h221]:	[n222]:				0.47345207	.0001308245
2				[n484]: 0.45	[n485]:	[n486]:	[n487]:				0.472263	.0001308566
3				[n488]: 0.55	[n489]:	[n490]:	[n491]:				0.47492923	1.000130741:
4	[n10]: [n113]: 0.5		h474]: 7.2e+12	[n475]: 0.5	[n476]:	[n477]:	[n478]:				0.47345207	.0001308245
5			h479]: 8.8e+12	[n480]: 0.5	[n481]:	[n482]:	[n483]:				0.47345207	.0001308245
6			[n309]: 0.8e13 0.59	[n310]: 0.5	[n311]:	[n312]:	[n313]:				0.58626446	1.000137027!
7				[n502]: 0.45	[n503]:	[n504]:	[n505]:				0.58284789	.0001388507
8		[n113]: 0.59		[n506]: 0.55	[n507]:	[n508]:	[n509]:				0.58969789	.0001352215
9			h492]: 7.2e+12	[n493]: 0.5	[n494]:	[n495]:	[n496]:				0.58626446	1.000137027!
10			h497]: 8.8e+12	[n498]: 0.5	[n499]:	[n500]:	[n501]:				0.58626446	0.000137027!
					- C							

Варьируются длина канала n-МДП транзистора, определяемая параметром endGate, доза ионной имплантации при создании n⁻ областей истока/стока (doseLDD) и длительность отжига исток/стоков (diffTime)

- Технология, конструкции и методы моделирования кремниевых интегральных микросхем. М.А. Королев, Т.Ю. Крупкина. М.А. Ревелева. Под ред. чл.-корр. РАН Ю.А. Чаплыгина. Ч.1 М., БИНОМ. Лаборатория знаний, 2007 (электронное издание 2014 г.)
- Технология, конструкции и методы моделирования кремниевых интегральных микросхем. М.А. Королев, Т.Ю. Крупкина, М.Г. Путря, В.И. Шевяков. Ч.2
 Элементы и маршруты изготовления кремниевых ИС и методы их математического моделирования. Под ред. чл.-корр. РАН Ю.А. Чаплыгина. М., БИНОМ. Лаборатория знаний, 2009 (электронное издание 2012 г.)
- Е.А. Артамонова, А.Г. Балашов, А.С. Ключников, А.Ю. Красюков, С.А. Поломошнов. Лабораторный практикум по курсу «Моделирование в среде TCAD».
 Ч.1. Введение в приборно-технологическое моделирование. Методические указания. Под ред. Крупкиной Т.Ю.
- Г.Я. Красников. Конструктивно-технологические особенности субмикронных МОП-транзисторов. М., Техносфера, 2011.
- МОП СБИС. Моделирование элементов и технологических процессов. Под ред. П. Антонетти и др. М. Радио и связь. 1988.

Классификация моделей технологических операций

- по виду производственной операции
 - ионная имплантация;
 - окисление,
 - силицидизация;
 - эпитаксия;
 - отжиг;
 - травление / осаждение;
 - фотолитография
- по типу модели
 - физические модели
 - геометрические модели

Примеры различных типов моделей.

Тип модел и	Объект моделирован ия	Операционные параметры (режим работы установки)	Входные параметры модели.
Физич еская	Операция ионного легирования	Энергия легирования, доза легирования, тип примеси.	Энергия легирования, доза легирования, тип примеси. Описание структуры, подвергаемой обработке.
Геоме тричес кая	Операция реактивного ионно- плазменного травления	Мощность, рабочее давление, расход кислорода, время травления.	Для каждого материала: - скорость травления плоской горизонтальной поверхности; - безразмерная плотность потока химически активных частиц; - безразмерный коэффициент ионной активации. Описание структуры, подвергаемой обработке. Время травления. 18

Функциональный состав моделей технологических операций

Моделируем ый эффект Операция	Внедрение примеси	Перераспред еление примеси	Появление нового слоя	Удаление слоя	Изменение толщины слоев
Ионное легирование	+				
Окисление, силицидизац ия		+	+		+
Отжиг		+			
Эпитаксия		+	+		+
Травление				+	+
Осаждение			+		+
Фотолитогра фия			÷		10

Теоретические основы процесса ионной имплантации

В основе теории ионной имплантации лежит исследование и расчет потерь энергии ионом при столкновении с атомами и электронами твердого тела на всем пути движения иона в кристалле.

Это необходимо для определения глубины внедрения ионов и расчета функции их распределения по глубине, а также для учета тех изменений и разрушений в кристалле, которые сопровождают процесс имплантации.

Механизмы торможения ионов

Торможение является результатом столкновений быстрых заряженных имплантируемых частиц с твердым телом. Одновременно возникают повреждения в мишени.

К механизмам торможения относятся:

1. неупругие столкновения со связанными электронами;

2. упругие столкновения с ядрами атомов, приводящие к частичной передаче кинетической энергии иона атомам;

3. неупругие столкновения с ядрами, вызывающие тормозное излучение, ядерные реакции или возбуждение ядер.

Первые два механизма определяют не менее 90% потерь энергии, т.е. являются основными механизмами торможения.

Энергетическая зависимость электронного и ядерного торможения.

При высоких энергиях ионов преобладает электронное торможение – неупругие столкновения со связанными электронами.

При низких энергиях имеет место электронное торможение и ядерное торможение – упругие столкновения с атомами, приводящие к частичной передаче кинетической энергии атомам.

Характеристические энергии E_1, E_2, E_3 для ионов в кремнии

Ион	В	Р	As
Е ₁ , кэВ	3	17	73
Е ₂ , кэВ	17	140	800
Е ₃ , кэВ	3e03	3e04	2e05

Теория Линдхарда, Шарффа и Шиотта (ЛШШ)

Ядерная тормозная способность рассматривается как результат последовательности независимых упругих двухчастичных столкновений.

Максимальная передаваемая энергия при лобовом столкновении – Т_{тах}.

$$\Gamma_{\rm max} = 4M_1M_2E/(M_1+M_2)^2,$$

где Е – энергия частицы, M₁, M₂ – массы иона и атома мишени, соответственно. **Тормозная способность**, т.е. потеря энергии в твердом теле с единичной плотностью атомов на отрезке [x, x+dx], в этом процессе пропорциональна суммарной потере энергии в единичных столкновениях.

$$Sn(E) = - (1/N)(dE/dx)_n = \int T_n dc$$

где N – атомная плотность, T_n – энергия, передаваемая при столкновении с атомом, $T_n = T_{max} \sin^2(\varphi/2)$,

 $\phi-$ угол рассеяния в системе центра масс, $\sigma-$ дифференциальное сечение столкновения.

Электронная тормозная способность в теории ЛШШ вычисляется в приближении свободного электронного газа. Эффективность торможения пропорциональна скорости ионов и, следовательно, корню квадратному из энергии.

$$S_{e}(E) = -(1/N)(dE/dx)_{e} = kE^{1/2}$$

Константа k зависит от атомных весов и атомных номеров налетающего иона и мишени.

Полная средняя длина пробега иона в мишени:

$$\mathbf{R} = \frac{E_0}{\frac{1}{N}} \int_{0}^{E_0} \frac{dE}{S_n(E) + S_e(E)}$$

где Е₀ – начальная энергия иона, S_n и S_e – ядерная и электронная тормозная способность.

Диффузионная модель Бирсака

В теории Бирсака учитывается изменение направления движения иона после каждого столкновения.

При торможении ионы, в среднем, все больше и больше отклоняются от своего первоначального направления. Направление движения иона можно описывать полярным и азимутальным углами, отмечая их на единичной сфере.

Направление движения после каждого столкновения изменяется случайно, т.обр. стохастическое движение на единичной сфере определяется диффузионным процессом, аналогичным броуновскому движению.

Функция распределения полярного угла ψ или его косинуса η = cos ψ в первый момент представляет собой дельта-функцию. При замедлении иона она уширяется, в конце траектории все направления движения являются равновесными. 25

Теория Бирсака позволяет вычислить длину проективного пробега, не рассчитывая явно функцию распределения для ψ или η. Достаточно вычислить среднее значение направляющего косинуса из диффузионного уравнения для функции распределения полярного угла ψ.

Средняя проекция пробега иона в диффузионной модели Бирсака.

$$Rp = \frac{E_0}{\frac{1}{N}} \int_{0}^{E_0} \overline{\eta} \frac{dE}{S_n(E) + S_e(E)}$$

где η - среднее значение направляющего косинуса ионной траектории, изменяющейся при столкновениях с атомами мишени, E_0 – начальная энергия иона, S_n и S_e – ядерная и электронная тормозная способность;

$$\overline{\eta} = e^{-2\tau}$$

$$\tau = -\frac{M_2}{4M_1} \int_{E_0}^E \frac{S_n(E)}{S_n(E) + S_e(E)} \frac{dE}{E}$$

М₁, М₂ – массы иона и атома мишени, соответственно.

Эффект каналирования

Вследствие кристаллической природы полупроводников ионы могут проникнуть в них значительно глубже, если имплантация производится вдоль главной кристаллической оси или плоскости.

В этом случае ионы редко сближаются с атомами настолько близко, чтобы были существенными ядерные потери при столкновениях.

Вместо комбинации ядерного и электронного торможений имеет место торможение только электронное. Вследствие этого пробег пропорционален скорости иона, т.е. корню квадратному из энергии.

Критический угол каналирования – максимальный угол захвата ионов в канал при имплантации в кристаллическую подложку.

$$\Psi \mathbf{K} \mathbf{P} \mathbf{H} \mathbf{T} = \left(\frac{a}{\sqrt{2}d} \sqrt{\frac{Z_1 Z_2 e^2}{2\pi E \varepsilon_0 d}}\right)^{1/2}$$

а – параметр экранирования порядка радиуса Бора, d – расстояние между атомами вдоль канала, Z₁, Z₂ – атомный номер иона и атома мишени, E – энергия иона.

Схематическое представление эффекта каналирования

Критические углы каналирования в кремнии

Примесь	Е = 20 кэВ	Е = 80 кэВ	Е = 320 кэВ
As	4.82	3.41	2.41
В	3.50	2.48	1.75
Р	4.27	3.02	2.13 ₂₈

Зависимость эффекта каналирования от угла поворота пучка

Системы координат при моделировании ионной имплантации

- Первая система координат это система, привязанная к реальной установке ионной имплантации. В этой системе координат ионный пучок всегда направлен вдоль оси –Z.
- Вторая система координат это система, привязанная к подложке. В этой системе всегда ось Х направлена вдоль базового среза пластины, ось Z перпендикулярно поверхности подложки. Ось Y образует с заданными осями X и Z правую тройку
- Третья система координат это система, построенная непосредственно для проведения вычислений и моделирования либо двумерного сечения в двумерных задачах, либо трехмерного кристалла в трехмерных задачах

Система координат подложки

Tilt = 0 и Rotation = 0

Положение пластины в установке ионной имплантации и связь первой и второй координатных систем определяется параметрами Tilt и Rotation.

Третья система координат определяется через положение секущей в системе координат подложки. Положение секущей задается координатами начала (х0, у0) и конца (х1, у1) вектора секущей на поверхности подложки в операторе Cutline (х0, у0, х1, у1).

Cutline (0, 0, 1, 0)

Стандартное положение подложки Tilt=7°, Rotation= - 90°

Наклон подложки - вращение вокруг направления базового среза задается углом Tilt Поворот описывается, как вращение вокруг оси Z подложки и задается углом Rotation

Определение углов Tilt и Rotation

Угол Tilt может быть определен как угол между осями Z в первой и второй системах координат, т.е. между осями Z имплантера и подложки. Угол Rotation определяется как угол между проекцией оси Z имплантера на плоскость подложки и осью Y подложки. Положительным считается направление против часовой стрелки

Примеры размещения подложки и сечений

Основные формулы

- Ядерная тормозная способность
- Энергия, передаваемая при столкновении иона с атомом мишени
- Энергия передаваемая при лобовом столкновении
- Электронная тормозная способность
- Полная средняя длина пробега иона в мишени
- Средний проективный пробег в модели Бирсака