
 Idea to Live. Product Development Approach.

IoT made simple

December, 2018

Prepared for

Why are we doing this?

There is no definition of backlog artefacts, no hierarchy
PO does not understand the sizes of backlog elements - US – tasks
No one knows team’s velocity
There is no consistency in building the product – all US look a bit standalone
There is no Definition of Ready and Definition of Done
There is no product roadmap, no PSIs identified
“It’s an internal approach” type of comments confuse the client

Our main challenges:
Transparency
The IT approach to building a product

Product Development Approach

How do you build a product

Sprint cadence, Program Increment

SPRINT 1 SPRINT 2 SPRINT 3 SPRINT 4 SPRINT 5

A Program Increment (PI) is a timebox during which an Agile team delivers incremental value in the form of
working and tested software.

10 weeks

Ceremonies, Potentially Shippable Product Increment

Activity Typical Sprint
Wed Thu Fri Mon Tue Wed Thu Fri Mon Tue

Daily Stand Up
The team can complete the final
burndown chart and individually assess
what was completed and what wasn’t.

Individual wrap-up
The team can complete the final burndown
chart and individually assess what was
completed and what wasn’t.

Sprint Review
The whole team and the product owner
together to review everything that’s
been accomplished.

Sprint Retrospective
Discuss any learnings and how the
team could have performed better.

Sprint Planning
While the retrospective and review is
fresh in everybody’s head.

Backlog Refinement
Business Analyst and Product Owner
prepares US for discussion. Team
evaluate them, ask questions.

Development

The Scrum model expects the team to bring the product or system to a potentially shippable state at
the end of each Scrum sprint.

Review and planning day

Activity Wednesday (Day 1 of a sprint)
8am - 9am 9am – 10am 10am - 11am 11am – 12pm 12pm – 1pm

Individual wrap-up
The team can complete the final burndown chart and
individually assess what was completed and what wasn’t.

Sprint Review
The whole team and the product owner together to
review everything that’s been accomplished.

Sprint Retrospective
Discuss any learnings and how the team could have
performed better.

Break

Sprint Planning
While the retrospective and review is fresh in
everybody’s head.

Team

Team

Product Owner

Team

Product Owner

Team

Product Owner

Backlog Management

...

Feature 1 - 3500pt

Feature 2 - 3000pt

Feature 3 - 4000pt

Epic 1 - 100pt

Epic 2 - 100pt

Epic 3 - 80pt

Epic 4 - 80pt

Epic 5 - 120pt

Epic 6 - 180pt

User story 1 - 8pt

User story 2 - 13pt

User story 3 - 8pt

User story 4 - 5pt

User story 5 - 13pt

User story 6 - 1pt

User story 7 - 3pt

User story 8 - 8pt

Initiative

Program backlog Team backlog

Backlog Structure

Team backlog - holds and prioritises User Stories and Enabler Stories

Who prioritises: Product Owner, Primary Stakeholders

Who defines and estimates: Product Owner, Primary Stakeholders, Business Analysts, Developers!

...

User story 1 - 8pt

User story 2 - 13pt

Refactor - 8pt

Maintenance - 5pt

User story 5 - 13pt

User story 6 - 1pt

Team backlog

Tech debt - 3pt

Spike 1 - 3pt

Epic 1 - 100pt

Epic 2 - 100pt

Epic 3 - 80pt

Epic 4 - 80pt

Epic 5 - 120pt

Epic 5 - 180pt

1. Program backlog

2. Team context

Refactor

Maintenance

Tech debt

3. Other stakeholders

iReplen

Vision

Other

4. Tech backlog

Enabler 1

Enabler 2

Spike 1

User story 1 - 8pt

User story 2 - 13pt

Refactor - 8pt

Maintenance - 5pt

User story 5 - 13pt

User story 6 - 1pt

Tech debt - 3pt

Spike 1 - 3pt

Execute 3 sprints (6 weeks)

Epic 1 - 100pt

Team context

Team context

Team context

Other
stakeholders

Other
stakeholders

1

Epic 1 - 100pt

...

User story 1 - 8pt

User story 2 - 13pt

Refactor - 8pt

Maintenance - 5pt

User story 5 - 13pt

User story 6 - 1pt

Backlog

Tech debt - 3pt

Spike 1 - 3pt

Completed

Happy path

Completed

Un-happy path

Completed

Completed

Completed

Tech backlog Completed

Sprints Value

2

3

User Stories. The ‘3 Cs’ concept.

They typically follow a simple template:

As a <type of user>, I want <some goal> so that <some reason>.

User stories are often written on index cards or sticky notes, stored in a shoe box, and arranged on walls or tables to facilitate planning and discussion.
As such, they strongly shift the focus from writing about features to discussing them.

In fact, these discussions are more important than whatever text is written.

Card
(User Story)

USER STORY
A short description of functionality told from the perspective of a user that are valuable to either a user of the software or the customer of the software.

Confirmation
(Agreed)

Conversation
(Discussed)

Anyone can write a US.
PO is responsible overall.

It’s a joint effort to achieve everyone’s
understanding and agreement on the

scope.

Everyone understands WHAT needs
to be done.

As a power user, I can specify files
or folders to backup based on file
size, date created and date modified

As a user, I can indicate folders not to
backup So that my backup drive isn't
filled up with things I don't need saved

Hey… how about some examples?

As a daughter whose mother has dementia, I
want to know if she sleeps at night AND
receive alerts when she doesn’t

Why User Stories?

Something significant (if not magical) happens when requirements are put in the first person. Obviously by saying "As a such-and-such, I want ..."
you can see how the person's mind goes instantly to imagining he or she is a such-and-such. 1

Having a structure to the stories actually helps the product owner prioritize. If the product backlog is a jumble of things like:

 Fix exception handing | Let users make reservations | Users want to see photos | Show room size options

... and so on, the product owner has to work harder to understand what the feature is, who benefits from it, and what the value of it is.

2

I've heard an argument that writing stories with this template actually suppresses the information content of the story because there is so much
boilerplate in the text.
“I apologize for such a long letter - I didn't have time to write a short one.”
― Mark Twain

3

Here are few reasons to use story points:
•Dates don’t account for the non-project related work that inevitably creeps into our days: emails,
meetings, and interviews that a team member may be involved in.

•Dates have an emotional attachment to them. Relative estimation removes the emotional attachment.
•Each team will estimate work on a slightly different scale, which means their velocity (measured in points)
will naturally be different. This, in turn, makes it impossible to play politics using velocity as a weapon.

•Once you agree on the relative effort of each story point value, you can assign points quickly without
much debate.

•Story points reward team members for solving problems based on difficulty, not time spent. This keeps
team members focused on shipping value, not spending time.

DOR & DOD

Definition Of Ready Definition Of Done

• User Story has the following :
• Name
• Description
• ACs should be written in BDD syntax
• Story meets INVEST criteria
• Attached (wireframe, UI) where applicable

• The User Story has been presented to the Team. Any
questions they have regarding the story have been
resolved. The story and feature file has been updated to
reflect any new understanding.

• For any front end facing stories the UI design is
sufficiently detailed and has been agreed within the team,
PO is signed off the design.

• The story must be a child of Epic and fit within the
requirements of that Epic

• All inter-team dependencies (where known) have been
considered.

• The team have sized the story.

• All acceptance criteria are tested on UAT

• All acceptance criteria, design met, tested and approved
by the Product Owner on UAT environment

• Delivery team have conducted exploratory testing on all
agreed browsers and devices for any customer facing
front end stories.

Browsers are:
• Chrome (latest version)
• Firefox (latest version)
• Internet Explorer 11
• Default Android Browser (latest version)
• Safari
• If additional browser was not specified on story

refinement session.

• Jira is updated with the relevant status

You can think of the Definition of Done as an extra set of acceptance
criteria that are rubber stamped onto each and every user story.

Functional and Non-Functional requirements

Weighted Shortest Job First concept

WSJF = Cost of Delay / Job Size

CoD = User-Business Value + Time Criticality + Risk
Reduction-Opportunity Enablement Value

Feature User-Business
Value

Time
Criticality

RR-OE
Value

Job Size WSJF

Feature
1

13 13 8 20 1.7

Feature
2

3 8 13 5 13.6

Feature
3

8 5 5 8 2.25
The job with the highest WSJF is the next most important item to do.

