

Instrumentation Amplifier Noise Analysis

Three Stage IA

Analyze the Input and Output Separately

Split Input Stage in Half

6

Use Superposition on Output Amp

Gain For Three Amp IA

$$V_{a1} = V_{cm} - \frac{V_{dif}}{2} \cdot \left(1 + 2\frac{R_f}{R_g}\right)$$

[1] Input Stage Top Half

$$V_{a2} = V_{cm} + \frac{V_{dif}}{2} \cdot \left(1 + 2\frac{R_f}{R_g}\right)$$

[2] Input Stage Bottom Half

$$V_{out} = V_{a2} - V_{a1} + V_{ref}$$
 [3] Output Stage

$$V_{out} = \begin{bmatrix} V_{cm} + \frac{V_{dif}}{2} \cdot \left(1 + 2\frac{R_f}{R_g}\right) \end{bmatrix} - \begin{bmatrix} V_{cm} - \frac{V_{dif}}{2} \cdot \left(1 + 2\frac{R_f}{R_g}\right) \end{bmatrix} + V_{ref}$$
 [1] and [2]
into [3]
$$V_{out} = V_{dif} \left(1 + 2\frac{R_f}{R_g}\right) + V_{ref}$$
 [4] Simplify

Complex Noise Model

Two Ways to represent INA Spectral Density

ind the total RMS Noise Voltage at the Output

Look at Noise Sources: Bridge, INA333, Reference Buffer

Noise Equivalent Model for Reference Pin Buffer

Reference buffer

The reference voltage directly adds to the output noise

Noise From Bridge / Current Sources

 $i_{nn} \cdot \frac{R}{2}$ Voltage noise from current noise $e_{n_rb} = \sqrt{4k_n \cdot T_n \cdot \frac{R}{2}}$ Resistor Noise

Use superposition to add the noise from the input resistance and both current noise sources

$$\mathbf{e}_{in_i} = \sqrt{\left(\mathbf{i}_{nn} \cdot \frac{\mathbf{R}}{2}\right)^2 + \left(\mathbf{e}_{n_rb}\right)^2 + \left(\mathbf{i}_{np} \cdot \frac{\mathbf{R}}{2}\right)^2 + \left(\mathbf{e}_{n_rb}\right)^2}$$

Assume $|i_{nn}| = |i_{np}|$ Note that these sources are uncorrelated

$$\mathbf{e}_{in_i} = \sqrt{2\left(\mathbf{i}_{n} \cdot \frac{\mathbf{R}}{2}\right)^{2} + 2\left(\mathbf{e}_{n_rb}\right)}$$

Total Noise from input resistors and current source

For this example (R=5kO, in = 100fA/rtHz)

$$e_{n_rb} = 6.4 \frac{nV}{\sqrt{Hz}}$$
 Resistor noise
 $i_{nn} \cdot \frac{R}{2} = 0.25 \frac{nV}{\sqrt{Hz}}$ Voltage noise from current noise
 $e_{in_i} = \sqrt{2(0.5)^2 + 2(9.1)^2} = 9.1 \frac{nV}{\sqrt{Hz}}$ Total Noise from input resistors and current sources

2

Combine all the noise sources

ŝ.

3V_n

 $\sqrt{(3 \cdot V_n)^2 + V_n^2} = \sqrt{9 \cdot V_n^2 + V_n^2} = 3.16V_n$ Dominant Neglect

When adding two uncorrelated noise terms , the larger term will dominate if it is 3 times larger then the smaller term . You can neglect the smaller term with a relatively small error (i.e. 6%).

For this example compute noise spectral density referred to the input

Noise_Spec_Den_RTI =
$$\sqrt{V_{n_in_stage}^2 + V_{n_bridge}^2 + \left(\frac{V_{n_out_stage}}{G}\right)^2 + \left(\frac{V_{n_ref_buf}}{G}\right)^2}$$

Noise_Spec_Den_RTI = $\sqrt{(50)^2 + (9)^2 + \left(\frac{200}{100}\right)^2 + \left(\frac{62}{100}\right)^2} = 50.847 \frac{nV}{\sqrt{Hz}}$
Dominant Neglect Approximately equal to the dominant term

		v					
			INA333				
	PARAMETER	MIN	TYP	MAX	UNIT		
	FREQUENCY RESPONSE						
	Bandwidth, –3dB						
	G = 1		150		kHz	Bandwidt	Bandwidth
	G = 10		35		kHz		from Doto
	G = 100		3.5		kHz		
	G = 1000		350		Hz		Sneet

Calculate RMS Output Noise for INA333 From Voltage Noise

G = 100

 $V_{in RTI} = 50.85 nV/rtHz$ From "Input referred noise" equation From data sheet table for gain = 100 $f_H = 3.5 kHz$ For first order function $K_n = 1.57$ See Gain vs Frequency in the data sheet Noise Bandwidth $BW_n = f_H K_n = 5.495 kHz$ $e_{n \text{ out}} = G V_{in RTI} \sqrt{BW_n} = 376.9 \mu V rms$ **RMS Output Noise** $e_{n \text{ outPP}} = 6.e_{n \text{ out}} = 2.26 \text{mVpp}$ Peak-to-Peak Output 26

Simulate the Circuit

Using Tina Spice

🗱 Noname - Schemati	c Editor			
File Edit Insert View	Analysis Interactive T&M	Tools Help		
Basic (Switches (Meters	ERC Mode Faults enabled Stress Analysis Enabled Select Optimization Target Select Control Object Set Analysis Parameters	ectronic (Spice h	100% Sc Image: Sc Image: Sc Image: Sc Image	
	DC Analysis AC Analysis Transient Steady State Solver Fourier Analysis	•	Start frequency 1 [Hz] End frequency 1M [Hz] Number of points 100	Cancel
	Digital Step-by-Step Digital Timing Analysis Digital VHDL Simulation Mixed VHDL Simulation		S/N Signal <u>A</u> mplitude 1 Diagrams ✓ Output Noise ✓ Total Noise ✓ Input Noise ✓ Signal to Noise	<u>; 10</u>
	Symbolic Analysis	•		
	Noise Analysis	101011011		
	Optimization	•		
	Options			

Voltage Spectral Density Out vs. Frequency

Total RMS Noise at the Output

$$V_{out} = V_{ref} - R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \dots + \frac{V_N}{R_N} \right)$$
[15]
For an averaging circuit choose
$$R_1 = R_2 = R_3 = \dots R_N = R$$
$$R_f = R / N$$
$$V_{out} = V_{ref} - \frac{\left(V_1 + V_2 + V_3 + \dots + V_N\right)}{N}$$
[16]

$$v_{noise_output} = \sqrt{\left(\frac{v_{noise1}}{N}\right)^2 + \left(\frac{v_{noise2}}{N}\right)^2 + \left(\frac{v_{noise3}}{N}\right)^2 + \dots + \left(\frac{v_{noiseN}}{N}\right)^2}$$

Where v_{noise1} , v_{noise2} , v_{noise3} , ... v_{noiseN} are noise sources

If you assume that v_{noise1} , v_{noise2} , v_{noise3} , ... v_{noiseN} are equal uncorrelated noise sources, then

$$v_{noise_output} = \sqrt{N\left(\frac{v_{noise}}{N}\right)^2} = \sqrt{\frac{v_{noise}^2}{N}} = \frac{v_{noise}}{\sqrt{N}}$$
 [17]

..... Averaging Circuit with INA333

8

Experiment with 20 Parallel INA333

Socketed Gain Set Resistors 20 INA333 amps in parallel (jumper selectable)

Standard Noise Measurement Precautions

Linear Power Source Steel Paint Can for Shielding

Total Output Noise vs Number of Amplifiers Being Averaged

References

1. [1] Hann, Gina. "Selecting the right op amp - Electronic Products." Electronic Products Magazine – Component and Technology News. 21 Nov. 2008. Web. 09 Dec. 2009.

http://www2.electronicproducts.com/Selecting_the_right_op_amp-article-facntexas_nov2008-html.aspx>

2. Henry W. Ott, Noise Reduction Techniques in Electronics Systems, John Wiley and Sons

Acknowledgments:

- 1. R. Burt, Technique for Computing Noise based on Data Sheet Curves, General Noise Information
- 2. T. Green, General Information
- 3. B. Trump, General Information
- 8. Matt Hann, General INA information and review

Noise Article Series (www.en-genius.net)

http://www.en-genius.net/site/zones/audiovideoZONE/technical_notes/avt_022508

Thank You for Your Interest in INA Noise – Calculation and Measurement

