ГУ «Крымский государственный медицинский университет имени С.И. Георгиевского»

Патологическая анатомия Вводная лекция

План лекции

1. Введение в дисциплину.

- 1. Патанатомия и патологоанатом
- 2. История развития
- 3. Задачи патологической анатомии
- 4. Биопсия, операционный материал, аутопсия

2. Повреждение. Определение, факторы, лимиты адаптации.

- 1. Морфология повреждения
- 2. Определение, классификация, механизмы дистрофий
- 3. Паренхиматозные дистрофии
- 4. Стромально-сосудистые дистрофии.
- 5. Нарушения обмена гемоглобиногенных пигментов (порфирии, желтухи, гемосидероз)
- 6. Меланин
- 7. Кальцинозы

3. Заключение

Патологическая анатомия — это наука, изучающая структурные основы болезни на различных уровнях морфологической организации

Патологоанатом – это врач, который занимается выявлением патологии исходя из нормального строения анатомии тела человека

История развития патологической анатомии:

- 1)В 1761 г. итальянский автор Дж. Морганьи написал первый труд по патологической анатомии «О местонахождении и причинах болезней, открываемых посредством рассечения».
- 2) Карл Рокитанский, член Венской и Парижской академий наук. Создал первую в Европе кафедру патологической анатомии (1844). Основной причиной болезненных изменений Рокитанский считал нарушение состава жидкостей (соков) организма.

История развития патологической анатомии:

- 3)Основателем современной патологической анатомии считается Рудольф Вирхов (R. Virchow, 1821—1902) немецкий исследователь, создавший учение о целлюлярной (клеточной) патологии.
- 4)В России впервые вскрытия начали производить с 1706 г., когда по приказу Петра I были организованы медицинские госпитальные школы. Духовенство препятствовало проведению вскрытий. Лишь после открытия в 1755 г. медицинского факультета в Московском университете вскрытия стали проводиться регулярно. В 1849 г. была открыта первая в России кафедра патологической анатомии.

И.В.Давыдовский

Основные работы посвящены патологической анатомии и патогенезу инфекционных болезней, патологии боевой травмы, организации прозекторского дела, вопросам общей патологии, философскими проблемам медицины. Создал крупную школу патологов. Вице-президент АМН СССР (1946-50 и 1957-60). Почётный председатель Всесоюзного общества патологоанатомов (с 1965). Ленинская премия (1964). Награжден 2 орденами Ленина и орденом Трудового Красного Знамени.

С 1930 заведовал кафедрой патологической анатомии 2 Московского медицинского института.

В 1925 перестроил преподавание частной патанатомии - её стали излагать по нозологическому, а не органопатическому признаку;

по его инициативе с 1924 г. в СССР осуществляют сличение клинических и патологоанатомических диагнозов, а с 1930 проводят клинико-анатомические конференции.

Теоретические задачи патологической анатомии:

- 1) изучение этиологии, патогенеза, морфологии и морфогенеза заболеваний;
- 2) изучение патоморфоза заболеваний (медикаментозный, естественный);
- 3) изучение осложнений и исходов заболеваний;
- 4) изучение механизма смерти (танатогенеза);
- 5) оценка функционирования и состояния поврежденных органов.

Практические задачи патологоанатомической службы:

- 1) контроль правильности и своевременности установления клинического диагноза;
- 2) повышение квалификации лечащего врача;
- 3) установление прижизненного клинического диагноза;
- 4) контроль эффективности лечения пациента (повторная биопсия);
- 5) статистический учет.

Методы исследования патологической анатомии:

- 1) Посмертное исследование (аутопсия);
- 2) Прижизненное исследование (биопсия, операционный материал); 3) Эксперимент.

Методы изучения в патанатомии

- •Макроскопический
- •Светооптический
- •Электронно-микроскопический
- •Цитохимический
- •Гистохимический
- •Иммуногистохимический

патологоанатомическое вскрытие (аутопсия) — вид патологоанатомического исследования, направленный на исследование тела покойного с целью установления причин смерти и контроля качества лечебного процесса;

биопсийное исследование — вид патологоанатомического исследования, направленный на прижизненную диагностику заболеваний и определение эффективности проводимого лечения путём использования морфологических методов изучения органов и тканей;

исследование операционного материала — вид патологоанатомического исследования, направленный на исследование всего удалённого во время оперативного вмешательства материала с целью диагностики заболеваний, контроля качества и объёма хирургической операции;

Цели и значение аутопсии

Патологоанатом изучает медицинскую документацию (историю болезни, поликлиническую карту умершего)

Обнаруживает (отражает в протоколе) все отклонения от нормальной анатомии

Сопоставляет эти отклонения с клинической картиной, описанной в медицинской документации

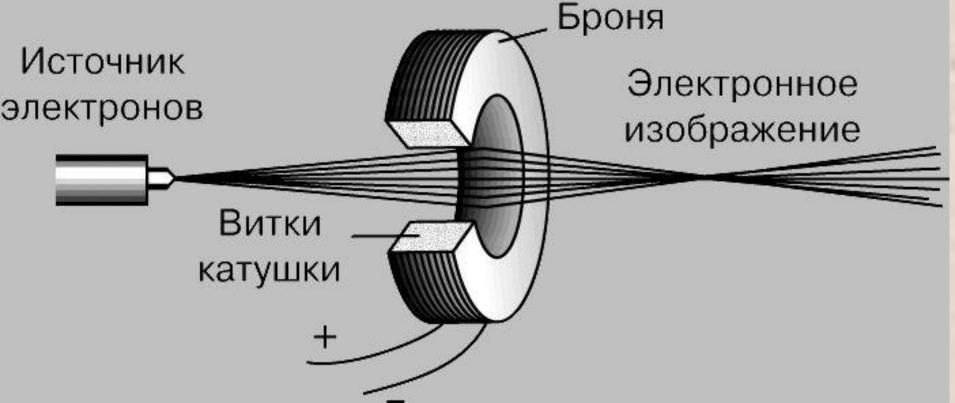

На основании морфологических изменений (в том числе гистологических), объясняет клинические проявления диагностированной патологии

Устанавливает причину смерти, составляет патологоанатомический диагноз, подтверждает или опровергает прижизненный диагноз

Дает оценку качеству и своевременности диагностической и лечебной работы

Иммуногистохимический метод

Метод исследования тканей, обеспечивающий выявление в них антигенов, маркированных специфическими антителами



иммуногистохимические свойства используют для диагностики опухолей

Электронно-микроскопический метод

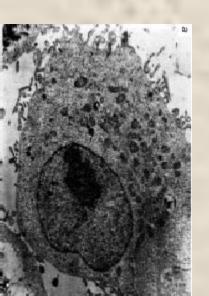
Изображение ЭМ формируется магнитными полями так же, как световое – оптическими линзами.

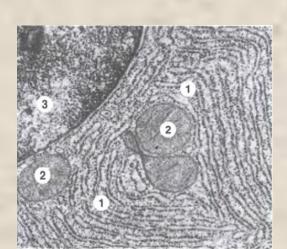
История Крымской школы патологоанатомов http://www.csmu.edu.ua/site/page/show/docid/5480

Общая патология изучает типовые патологические процессы, характерные для той или иной болезни.

- 1. Повреждение клеток и тканей
- Нарушения кровообращения
- 3. Процессы регенерации и компенсации
- 4. Воспаление
- 5. Опухоли

Частная патологическая анатомия посвящена изучению причин возникновения болезней (этиология), механизмов их развития (патогенез), морфологических основ этих механизмов (морфогенез), механизмов смерти (танатогенез).


1. Этиология, патогенез, морфология заболеваний


Повреждение

или альтерация (от. лат. alteratio — изменение) - изменения структуры клеток, межклеточного вещества, тканей и органов, которые сопровождаются нарушением их жизнедеятельности.

Лимиты адаптации (обратимость/необратимость) зависят от типа ткани, ее функциональной активности, силы и продолжительности воздействия повреждающего фактора.

Факторы повреждения (физические и химические факторы, ишемия, инфекция, интоксикация, иммунная реакция).

МОРФОЛОГИЯ ПОВРЕЖДЕНИЯ КЛЕТОК

ДИСТРОФИЯ

НАРУШЕНИЕ МЕТАБОЛИЗМА, ВЕДУЩЕЕ К ИЗМЕНЕНИЮ СТРУКТУРЫ

НЕКРО3

АПОПТОЗ

Гибель клеток, тканей, органов или частей тела в живом организме

ДИСТРОФИЯ

греч. dys — нарушение; trophe — питание)

МЕХАНИЗМЫ ДИСТРОФИЙ

- **1. Трансформация** (способность одних веществ превращаться в другие, достаточно близкие по строению и составу. Например, подобной способностью обладают углеводы, трансформируясь в жиры)
- 2. Декомпозиция (распад внутриклеточных структур)
- **3. Извращенный синтез** (образование аномальных веществ амилоид, алкогольный гиалин)
- **4. Инфильтрация** (избыточное проникновение какоголибо вещества в клетку)

Классификация:

I По локализации проявлений

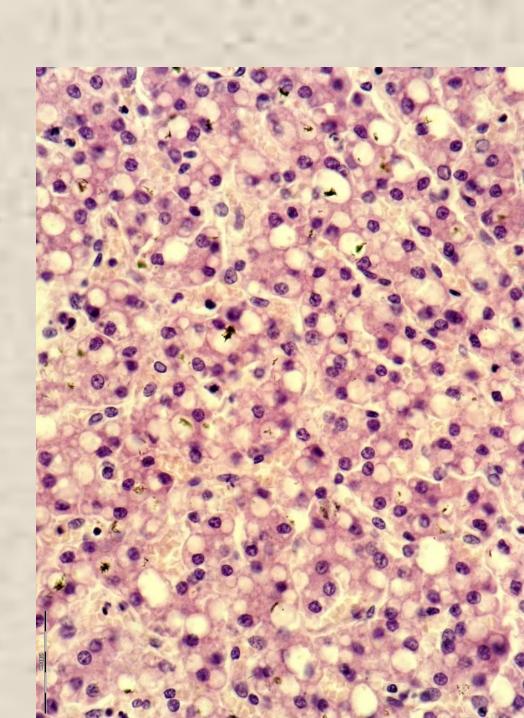
- 1. клеточные (паренхиматозные);
- 2. внеклеточные (стромально-сосудистые, мезенхимальные);
- 3. смешанные

II По распространенности

- 1. Общие.
- 2. Системные.
- 3. Местные.

III. По этиологии

- 1. Приобретенные.
- 2. Наследственные.


IV. По виду нарушения обменных процессов

- 1. белковые;
- 2. жировые;
- 3. углеводные;
- 4. минеральные.

Паренхиматозные жировые дистрофии

ПРИЧИНЫ:

- Гипоксия (болезни сердца, легких, системы крови)
- 2. Инфекции
- З. Хронические интоксикации

Паренхиматозные жировые дистрофии

ПРИЧИНЫ:

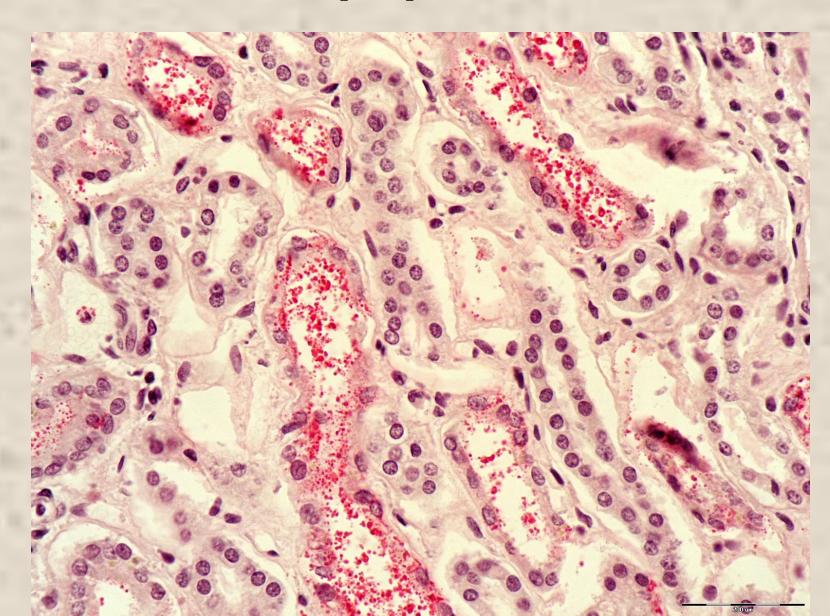
- Гипоксия (болезни сердца, легких, системы крови)
- 2. Инфекции
- З Хронические интоксикации

«Тигровое» сердце

Паренхиматозные углеводные дистрофии

- Нарушение обмена гликогена
- Нарушение обмена гликопротеидов

выявляются PAS-реакцией Гликоген окрашивается кармином Беста в красный цвет. Муцикармин окаршивает слизь в красный цвет


Сахарный диабет

2. ГЛИКОГЕНОЗЫ (Болезнь Гирке – дефицит глюкозо-6-фосфатазы. Болезнь Помпе – дефицит а-D-глюкозидазы, которая обеспечивает деградацию гликогена в лизосомах).

3. Слизистые дистрофии эпителиев

(катаральные воспаления, муковисцидоз)

Паренхиматозные углеводные дистрофии

Слизистая дистрофия

Нарушение продукции слизи эпителиальными клетками Нарушение содержание муцинов и мукоидов соединительной ткани

муцикармин окрашивает слизь в красный цвет ШИК-реакция (йодная кислота) – красный цвет

Кистозный фиброз поджелудочной железы при муковисцидозе

Стромально-сосудистые (мезенхимальные) белковые дистрофии

- Мукоидное набухание
- Фибриноидные изменения
- Гиалиноз
- Амилоидоз

Причины:

- -инфекционные заболевания -аллергические заболевания
- аутоиммунные заболевания

Мукоидное набухание

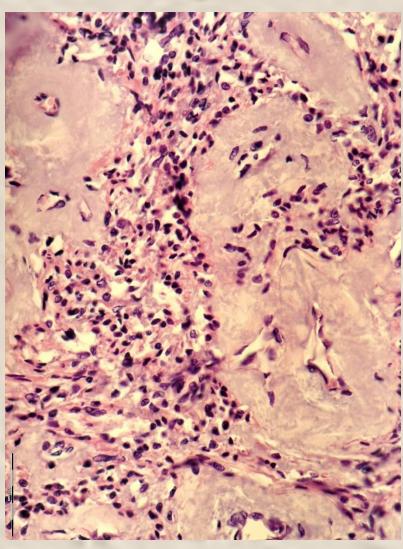
поверхностная и обратимая дезорганизация соединительной ткани. При этом в основном веществе происходят накопление и перераспределение гликозаминогликанов за счет увеличения содержания гиалуроновой кислоты.

Фибриноидные изменения

глубокая и необратимая дезорганизация соединительной ткани, при которой происходит распад коллагена, деструкция ее основного вещества и волокон с повышением сосудистой проницаемости и образованием фибриноида.

Фибриноидные изменения

Фибриноидный некроз стромы миокарда при ревматизме

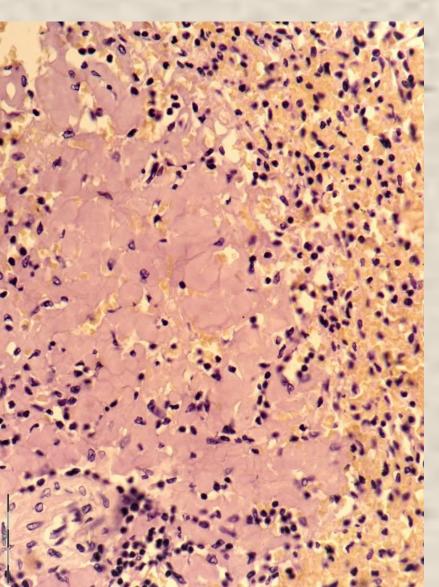

Гиалиноз

Деструкция соединительной ткани сопровождается увеличением проницаемости сосудов, деструкция коллагеновых волокон и преципитация белков плазмы крови.

Гиалин – вещество сложного химического состава, в его состав входят фибрин, иммуноглобулин и белки.

.Простой гиалин, .Сложный гиалин .Липогиалин

Гиалиноз



Гиалиноз сосудов селезенки при гипертонической болезни

Гиалиноз капсулы селезенки (Глазурная селезенка)

Амилоидоз

диспротеиноз, заболевание, при котором происходит извращенный синтез сложного вещества, называемого амилоидом.

Обязательным условием развития вторичной формы амилоидоза является очаг хронического воспаления.

Чаще всего А откладывается в печени, почках, селезенке, надпочечниках (периретикулярный тип отложений)

Или

В мышцах, нервной системе, сердце (периколлагеновый тип отложений при первичном амилоидозе)

Амилоидоз

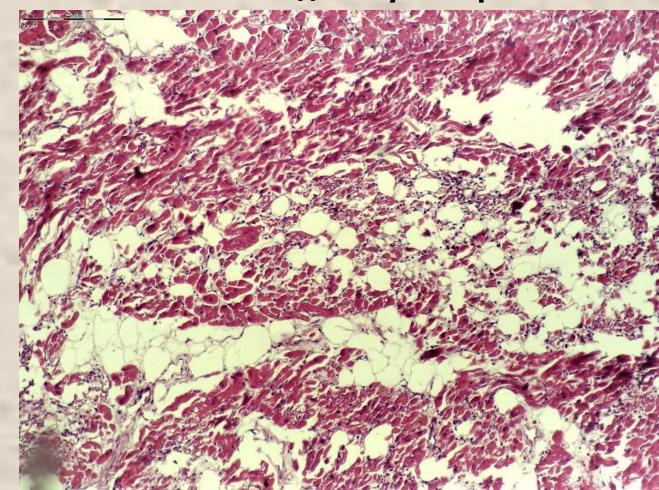
Термин предложен в 1853 году Р. Вирховым

Окраски на амилоид:

•Конго красный (кирпично-красный цвет)

•Йод зеленый Метилвиолет Генциан виолет

(красят амилоид в красный цвет на зеленом или синем фоне)



- 1. Первичный (сердце, нервы, кишечник)
- 2. Вторичный (паренхиматозные органы)
- 3. Идиопатический (почки)
- 4. Локальный опухолевый (кожа, трахея, мочевой пузырь)
- 5. Старческий (сердце)

Стромально-сосудистые жировые дистрофии

Липоматоз + отложение жира под капсулой органов

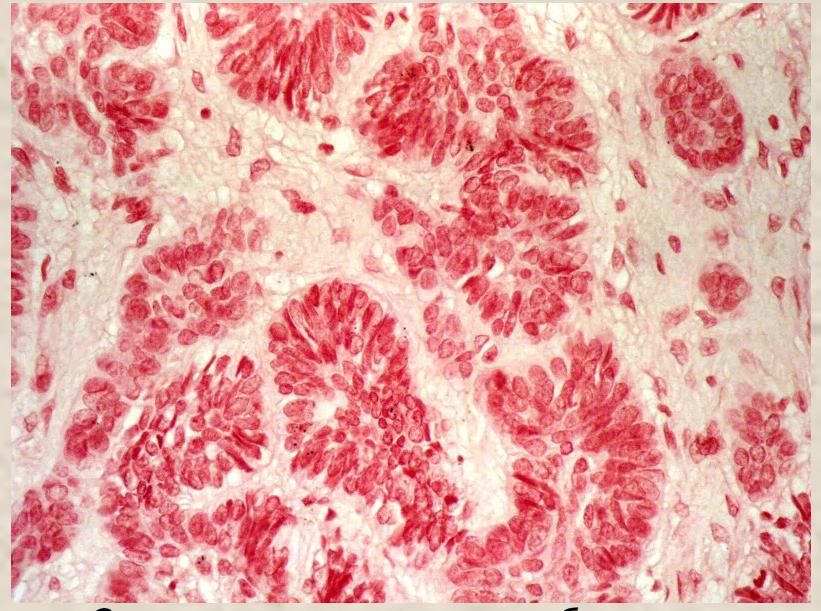
Степени общего ожирения

І степень ожирения — избыточная масса тела составляет до 30%; ІІ степень ожирения — избыточная масса тела составляет до 50%; ІІІ степень ожирения — избыточная масса тела составляет до 99%; ІV степень ожирения — избыточная масса тела составляет от 100% и более.

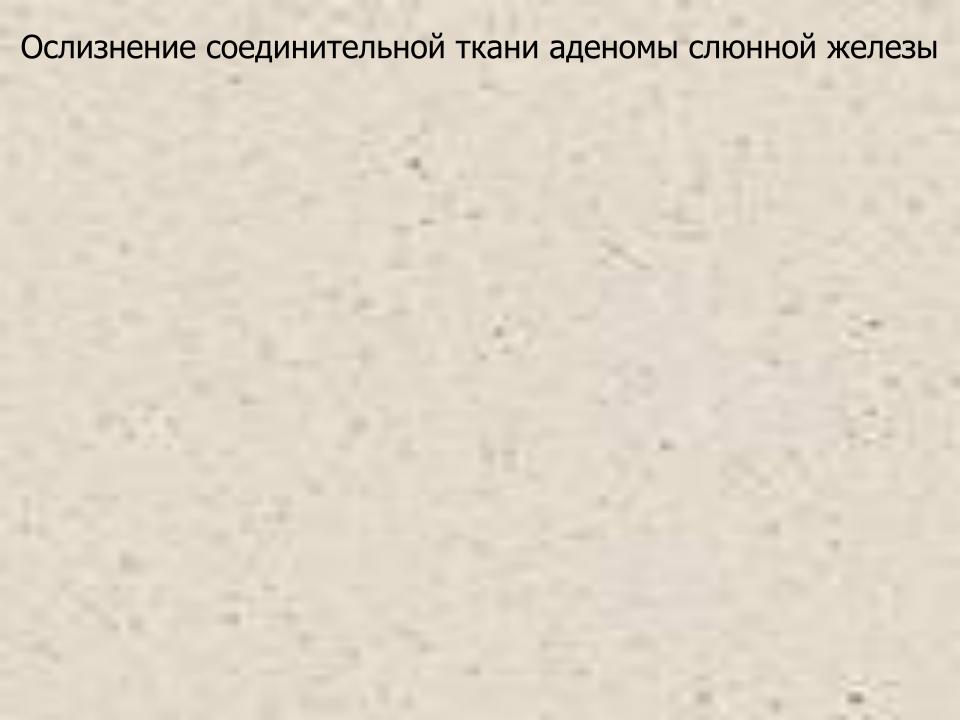
Ожирение

1.Гиперпластическое 2.Гипертрофическое 3.Смешанное

Общее


Симметричное

Несимметричное Верхний тип Средний тип Нижний тип


АТЕРОСКЛЕРОЗ

хроническое заболевание, характеризующееся нарушением жирового и белкового обмена, которое проявляется отложением в стенке сосудов липидных комплексов

Стромально-сосудистые углеводные дистрофии

Ослизнение стромы амелобластомы

Нарушения обмена пигментов

Хромопротеиды - эндогенные пигменты

Гемоглобиногенные

Протеиногенные (тирозиногенные)

Липидогенные

- 1. Ферритин
- 2. Гемосидерин
- 3. Билирубин
- 4. Гематин
- 5. Гематоидин
- 6. Порфирин

- 1. Меланин
- 2. Адренохром
- 3. Пигмент энетрохромафинн ых клеток

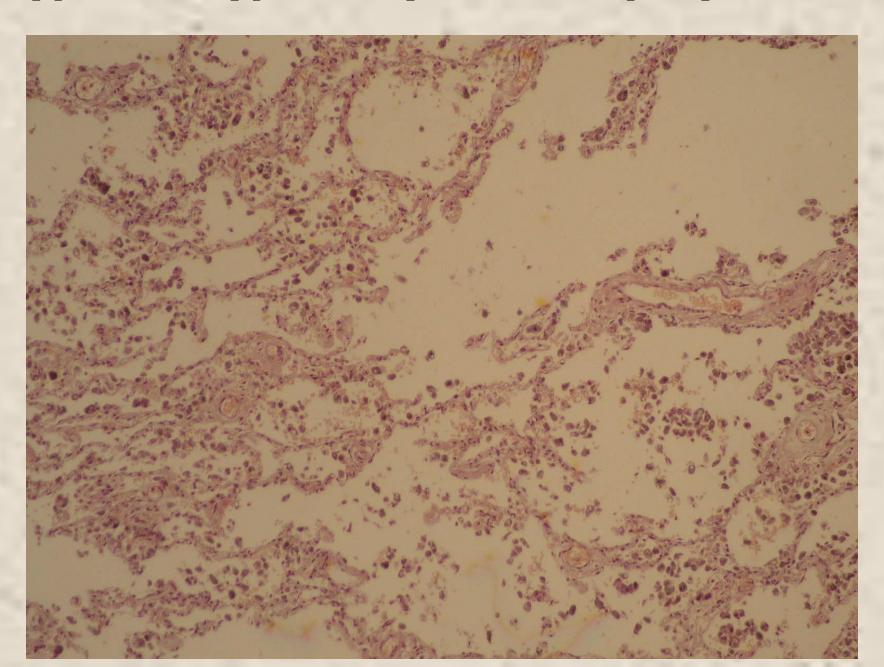
- 1. Липофусцин
- 2. Липохром
- 3. Цероид
- 4. Пигмент недостаточности витамина Е

Нарушения обмена пигментов

Ферритин - SH-ферритин обладает вазопаралитическими и гипотензивными свойствами. Ферритинемией объясняют необратимость шока, когда он выступает в роли антагониста адреналина

Гемоглобиногенные

Гемосидерин - полимер ферритина. Гемосидероз.


Гематоидин — ярко-оранжевый пигмент свободно лежащий в центральных участках кровоизлияния вдали от живых тканей.

Гематины: малярийный (гемомеланин), солянокислый (гемин) и формалиновый.

Порфирины — гемоглобиновое тетрапиррольное кольцо лишенное железа.

- 1. Ферритин
- 2. Гемосидерин
- 3. Билирубин
- 4. Гематин
- 5. Гематоидин
- 6. Порфирин

Бурая индурация (гемосидероз) легких

Желтуха

повышение в крови уровня билирубина, пожелтение слизистых, склер и кожи

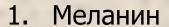
Гемолитическая

Паренхиматозная

Механическая

инфекционные болезни, гемолитические яды, переливание несовместимой крови опухоли системы крови нарушение захвата билирубина гепатоцитами при болезнях печени нарушением проходимости желчных протоков

Порфирии - наследственные нарушения пигментного обмена с повышенным содержанием порфиринов в крови и тканях и усиленным их выделением с мочой и калом


Этой формой генной патологии страдает один человек из 200 тысяч

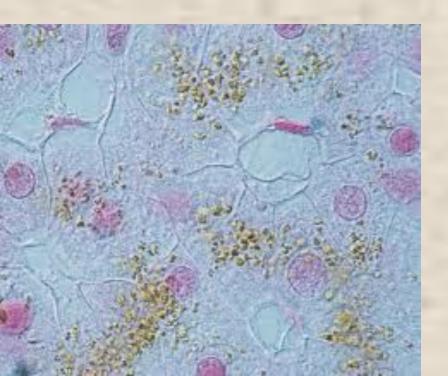
Болезнь характеризуется тем, что организм не может синтезировать эритроциты. В тканях нарушается пигментный обмен, и под воздействием солнечного ультрафиолетового излучения или ультрафиолетовых лучей происходит распад гемоглобина.

Порфирия - генетически обусловленное заболевание, приводящее к поражению нервной системы, кожи, повышению АД, окрашиванию мочи в розовый цвет.

Протеиногенные (тирозиногенные)

- 2. Адренохром
- 3. Пигмент энетрохромафинных клеток

Болезнь Аддисона (хроническая недостаточность надпочечников, связанная с поражением надпочечников, чаще туберкулезной и опухолевой природы)



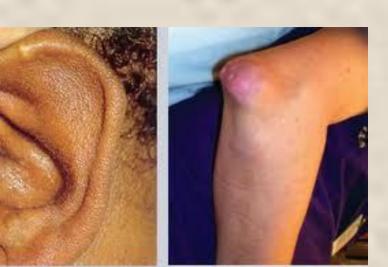
При снижении продукции адреналина происходит усиленное образование тирозиназы, окисляющей тирозин, что ведет к избыточному синтезу как адреналина, так и меланина.

Липидогенные пигменты

(липофусцин, гемофусцин, пигмент недостаточности витамина Е, цероид и липохромы)

Липофусцин - гликолипопротеид, в котором преобладают фосфолипиды. Светооптически - зерна золотистого или коричневого цвета в цитоплазме клеток печени, почек, миокарда, скелетных и гладких мышц, симпатических ганглиев и коры надпочечников

Липофусцин в гепатоцитах


Нарушения обмена нуклеопротеидов

Подагра (от греч. pooos — нога и agra — охота, буквально — «капкан для ног»)

Отложение солей мочевой кислоты в синовии суставов, под кожей, в ушных раковинах. Гиперурикемия, гиперурикурия.

В почках происходит отложение кристаллов в канальцах и собирательных трубочках, обтурация их просветов, развитие вторичных воспалительных и атрофических изменений (подагрические почки).

Нарушения минерального обмена (кальция, калия, меди и железа)

Наследственной болезнью, в основе которой лежит нарушение обмена меди, является гепатоцеребральная дистрофия (гепатолентикулярная дегенерация), или болезнь Вильсона— Коновалова

