

МОНИТОРИНГ И МЕТОДЫ КОНТРОЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ Учебное пособие В двух частях

В. Н. Майстренко, Н. А. Клюев

ЭКОЛОГО-АНАЛИТИЧЕСКИЙ МОНИТОРИНГ СТОЙКИХ ОРГАНИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ

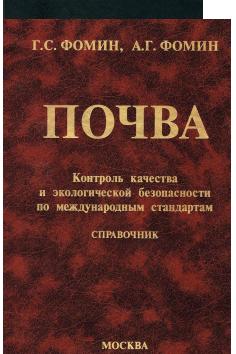
Г.С. ФОМИН, О.Н. ФОМИНА

воздух

Контроль загразнений по международным стандартам

СПРАВОЧНИК

MOCKBA


ЛИТЕРАТУРА



ОСНОВЫ АНАЛИТИЧЕСКОЙ ХИМИИ

Книга 1

Общие вопросы. Методы разделения

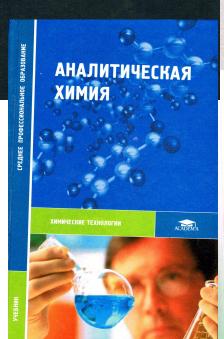
г.с. фомин

ВОДА

Контроль химической, бактериальной и радиационной безопасности по международным стандартам

Энциклопедический справочник

MOCKBA



ЛИТЕРАТУРА

ОСНОВЫ АНАЛИТИЧЕСКОЙ ХИМИИ

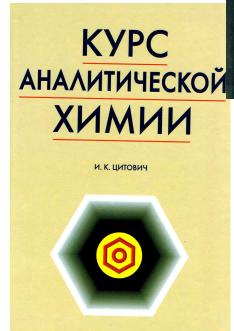
Книга 2

Методы химического анализа

Санкт-Петербург, 2002

в.п. Васильев АНАЛИТИЧЕСКАЯ ХИМИЯ

Высшее образование


КНИГА 2

Физико-химические методы анализа

СРЕДНЕЕ СПЕЦИАЛЬНОЕ

В.Ф. БАРКОВСКИЙ, Т.Б. ГОРОДЕНЦЕВА, Н.Б. ТОПОРОВА

основы ФИЗИКО-ХИМИЧЕСКИХ МЕТОДОВ АНАЛИЗА

ЕДИНАЯ ГОСУДАРСТВЕННАЯ СИСТЕМА ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА (ЕГСЭМ)

САНИТАРНО-ГИГИЕНИЧЕСКИЙ МОНИТОРИНГ Экологический мониторинг (мониторинг окружающей среды) — это комплексная система наблюдений за состоянием окружающей среды, оценки и прогноза изменений состояния окружающей среды под воздействием природных и антропогенных факторов.

Уровни экологического мониторинга:

- •Глобальный
- Государственный
- Региональный
- Локальный

Основные задачи экологического мониторинга:

- наблюдение за источниками антропогенного воздействия;
- наблюдение за факторами антропогенного воздействия;
- наблюдение за состоянием природной среды и происходящими в ней процессами под влиянием факторов антропогенного воздействия;
- оценка фактического состояния природной среды;
- прогноз изменения состояния природной среды под влиянием факторов антропогенного воздействия и оценка прогнозируемого состояния природной среды.

ЭКОЛОГО-АНАЛИТИЧЕСКИЙ МОНИТОРИНГ

ЭКОЛОГО-АНАЛИТИЧЕСКИЙ МОНИТОРИНГ

Это систематическое наблюдение за загрязнением природных объектов и выявление источников загрязнения.

В основе мониторинга, таким образом, лежит система определения концентраций загрязняющих веществ в объектах окружающей среды – система эколого-аналитического контроля.

Экоаналитический контроль – это основа химического мониторинга.

Для его обеспечения необходимы средства контроля окружающей среды (ОС) и технология контроля ОС.

Контролируемые объекты и компоненты

В сферу эколого-аналитического контроля входят следующие контролируемые объекты:

- воды пресные, поверхностные, морские, подземные, атмосферные осадки, талые, сточные;
- воздух атмосферный, природных заповедников (фон), городов и промышленных зон, рабочей зоны;
- почвы (в аспекте загрязнения);
- донные отложения (в аспекте загрязнения);
- растения, пища и корма, животные ткани (в в аспекте загрязнения).

В сферу объектов ЭАК при необходимости могут быть включены и другие объекты, представляющие по той или иной причине опасность для окружающей среды, в частности, полупродукты и готовая продукция нефтехимической, химической, фармацевтической и микробиологической промышленности.

- Список приоритетных загрязнителей, принятый Европейским сообществом (ЕС) в 1982г., насчитывает 129 веществ. Столько же веществ входит в аналогичный перечень, принятый Агентством по охране окружающей среды США. Позднее к списку ЕС были добавлены еще три вещества.
- В обоих "черных списках" можно выделить следующие основные группы веществ:
- неорганические соединения;
- летучие органические соединения;
- органические соединения средней летучести;
- полициклические ароматические углеводороды;
- пестициды, гербициды и бифенилы;
- фенолы;
- анилины и нитроароматические соединения;
- бензидины;
- оловоорганические соединения;
- другие соединения.

Основные технологические процедуры экоаналитического контроля


- Выявление контролируемого объекта (уточнение источника загрязнения).
- Первичное обследование объекта (рекогносцировка) с уточнением показателей загрязнения.
- Формирование информационной модели контролируемого объекта.
- Систематические наблюдения за объектом контроля.
- Прогнозирование изменения состояния объекта контроля.
- Обработка и представление полученной информации в удобной и понятной форме. Доведение информации до потребителя.

ТЕХНОЛОГИЧЕСКИЙ ЦИКЛ

- Поиск источника (выбор места контроля) загрязнения или вредного воздействия.
- Его первичная оценка на месте и/или отбор проб.
- Подготовка проб к их транспортировке и хранению, доставка пробы к месту анализа.
- Подготовка проб к анализу непосредственно в лаборатории.
- Количественный анализ проб в лабораторных условиях.
- Обработка и представление результатов анализа с оценкой показателей правильности и достоверности полученных результатов.
- Планирование следующего цикла контроля.

Этапы аналитического исследования

Оценка степени загрязнения нефтью приповерхностного слоя почвы в

городском сквере

Заказчик

Общая постановка задачи

Постановка конкретной аналитической задачи	Заказчик ↔ аналитик	Насколько обширна об- ласть загрязнения
Выбор методики	Аналитик	Методика экстракции, от- деления и определения нефти
Пробоотбор	Заказчик + аналитик	Отбор проб (~ 100 г), проверка их на представи- тельность
Пробоподготовка	Аналитик	Гомогенизация, сокраще- ние пробы, экстракция CCl ₄
Измерение	Аналитик	Газохроматографический анализ аликвоты экс- тракта
Обработка результатов	Аналитик	Идентификация хрома- тографических пиков, определение содержа- ния компонентов
Выводы	Аналитик	Превышают ли получен- ные значения предельно допустимые?
Отчет	Аналитик ↔ заказчик	Рекомендации дальней- ших действий для решения проблемы

МЕТОДЫ И СРЕДСТВА НАБЛЮДЕНИЯ И КОНТРОЛЯ ЗА СОСТОЯНИЕМ ОКРУЖАЮЩЕЙ СРЕДЫ

- Для получения объективной информации о состоянии и об уровне загрязнения различных объектов окружающей среды необходимо располагать надёжными средствами и методами экологического контроля.
- Повышение эффективности контроля за состоянием природной среды может быть достигнуто повышением производительности, оперативности и регулярности измерений, увеличением масштабности охвата одновременным контролем; автоматизацией и оптимизацией технических средств контроля и самого процесса.
- Средства экологического наблюдения и контроля подразделяются на контактные, неконтактные (дистанционные), биологические, а контролируемые показатели на функциональные (продуктивность, оценка круговорота веществ и др.) и структурные (абсолютные или относительные значения физических, химических или биологических параметров концентрация загрязняющего вещества, коэффициент суммарного загрязнения и др.).

КОНТАКТНЫЕ МЕТОДЫ КОНТРОЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ

- Контактные методы контроля состояния окружающей среды представлены как классическими методами химического анализа, так и современными методами инструментального анализа.
- Классификация контактных методов контроля приведена на рис. 1.8.
- Наиболее применяемые спектральные, электрохимические и хроматографические методы анализа объектов окружающей среды (представлены на рис. 1.9 1.11).

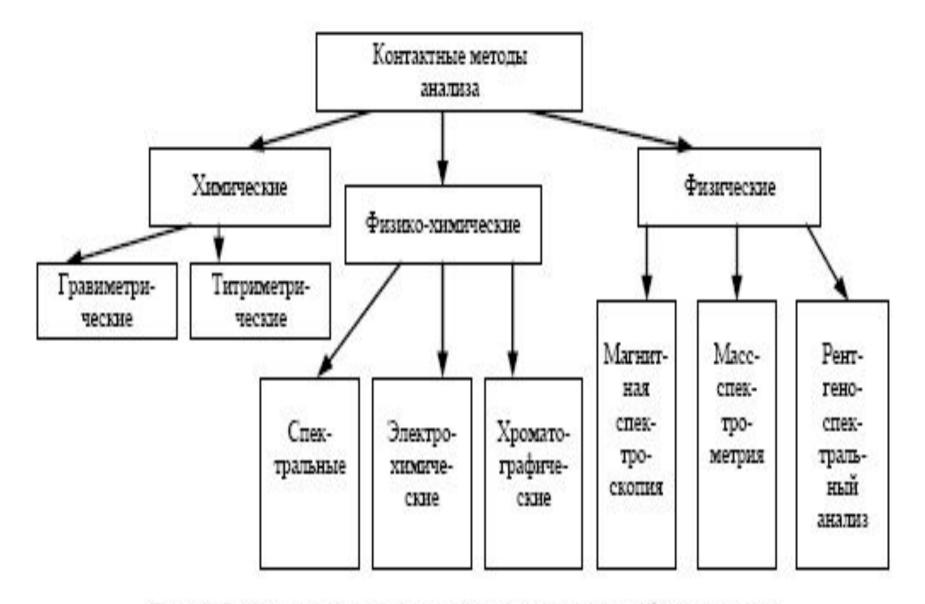


Рис. 1.8. Структура контактных методов наблюдения и контроля за состоянием окружающей среды

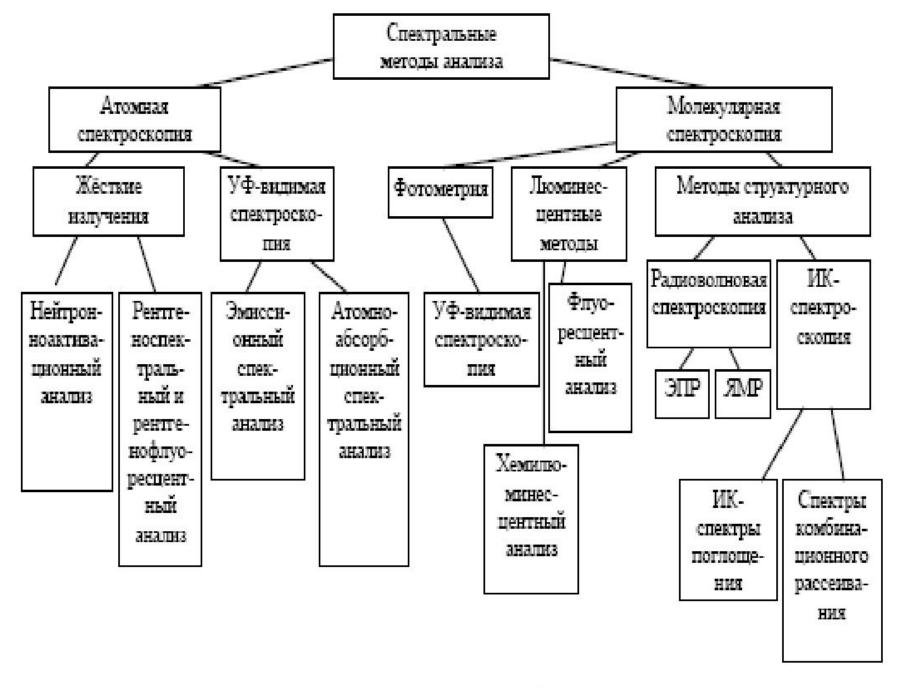


Рис. 1.9. Спектральные методы анализа объектов окружающей среды

СОВРЕМЕННЫЕ СПЕКТРАЛЬНЫЕ

Рис. 1.10. Электрохимические методы анализа объектов окружающей среды

СОВРЕМЕННЫЕ ЭЛЕКТРОХИМИЧЕСКИЕ ПРИБОРЫ

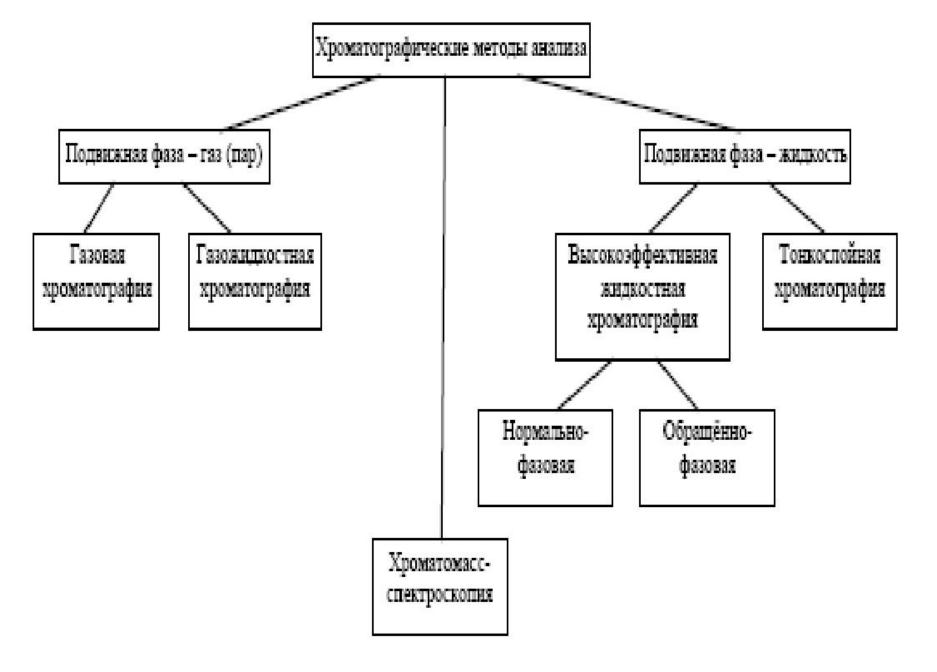


Рис. 1.11. Хроматографические методы анализа загрязняющих веществ

СОВРЕМЕННЫЕ ХРОМАТОГРАФИЧЕСКИЕ ПРИБОРЫ

Хроматографы

Хромато-масс-спектрометр

СОВРЕМЕННЫЕ МЕТОДЫ КОНТРОЛЯ

2.4. Наиболее распространённые инструментальные методы контроля загрязнения атмосферы

Методы определения	Наименование показателей	
Газовая хроматография	Сероуглерод, метиламин, анилин, диметил (диэтил), триметиламин (триэтил), акролеин, метанол, циклогексан (-ол) (-нон), 3,4-бензпирен, клорпрен бензол, толуол, ксилол, этилбензол, клороформ	
Турбидиметрия	Серная кислота, сульфаты	
Фотометрия	Фософрная кислота, метилмеркаптан, фенол, метанол, формальдегид, карбоновые кислоты C4—C9, оксиды азота, аммиак; суммарные ванадий, свинец, селен, хром, мышьяк, цинк, хлориды, цианид водорода, фторид водорода, пиридин, диоксид серы, сероводород	
Атомно-абсорбцион- ная спектрометрия	Железо, кадмий, кобальт, магний, марганец, медь, никель, свинец, хром, цинк, ртуть	
Потенциометрия	Борная кислота, фторид водорода	

3.4. Наиболее распространенные инструментальные методы

Метод определения	Наименование показателей	
Атомно-абсорбционная спектрофотометрия	Cr, Al, Ag, Be, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V, Zn, Se, Hg, As	
Атомно-эмиссионная спектрофотометрия	Zn, Cr, Sr ²⁺ , Se, Pb, Ni, As, Cu, Mn, Cd, Fe, B, Be, Ba, Al, Mo	
Эмиссионная пламенная фотометрия	Sr ²⁺ , Na ⁺ , K ⁺ , Ca ²⁺	
Фотометрия	Si, Al, Ba, Mn, As, Pb, Ni, Fe, Cr (VI), Cd, Mo NH ₄ [†] , Cu, Zn, фосфаты, фе- нолы, формальдегид, нитриты, нит- раты, анионактивные ПАВ? полиак- риламид, цианиды, фториды	
Турбидиметрия	Сульфаты	
Флуориметрия	Al, Be, B, F¯, Se, Pb, NO ₂ , Cu, Zn, формальдегид, бенз(а)пирен, ПАВ	
ИК-спектрофотометрия	Нефтепродукты	
Потенциометрия (ионометрия)	F, pH	
Инверсионная вольтамперометрия	Zn, As, Cu, Pb,Cd	
ГЖ хроматография	Хлороформ, дикотекс и 2, 4-Д, ДДТ, хлорзамещённые углеводороды, нефтепродукты, толуол, ксилол, стирол, бензол	
Ионная хроматография	Нитраты, нитриты, сульфаты, хло- риды, фториды	
Титриметрия	Хлориды, окисляемость перманга-	

Гравиметрия Радиометрия

натная, жёсткость общая

Радионуклиды

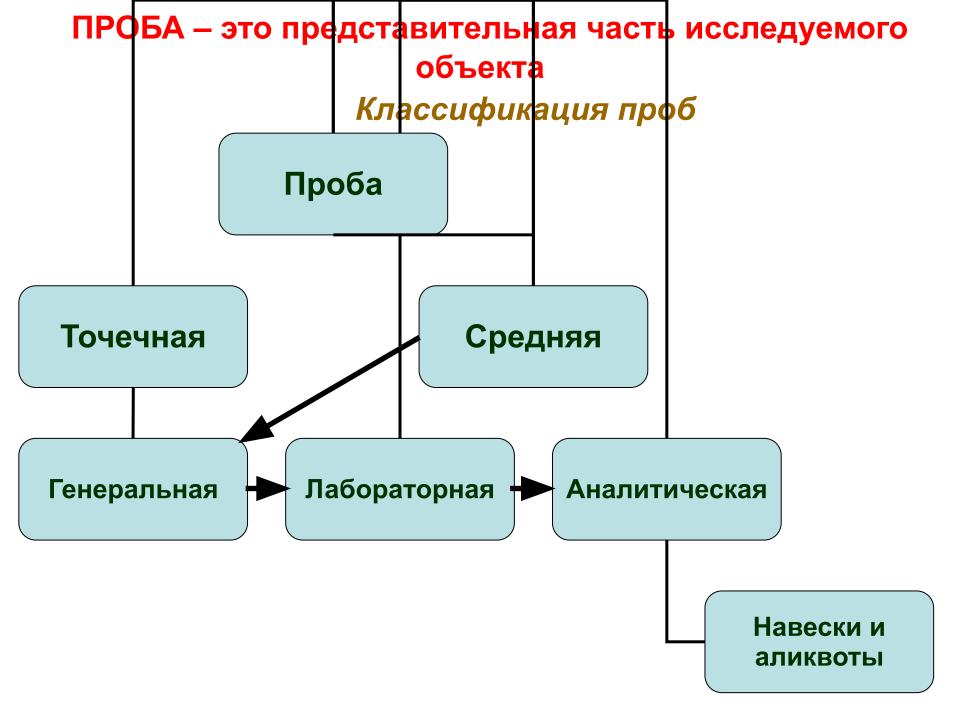
Жиры, сухой остаток, сульфаты

4.6. Наиболее распространенные методы контроля загрязнения почвы

Метод определения	Наименование показателей	
Титриметрия	Хлориды, обменный кальций и магний, сероводород, железо, ацетальдегид	
Гравиметрия	Влажность %, гипс, сухой остаток, сульфаты	
Фотометрия	Удобрения, ПАВ, м-динитробензол, гумус, формальдегид, фосфор, калий, натрий, нитраты, алюминий, азот аммонийный, сера, нитриты, фтор, фториды, никель, ванадий, вольфрам, кобальт, кадмий, марганец, магний, медь, молибден, ртуть, цинк, бор, железо, пестициды	
Турбидиметрия	Сульфаты, сера	
Флуориметрия	Нефтепродукты, бенз(а)пирен	
Атомно-абсорбционная спектрометрия	Подвижные соединения железа, меди, цинка, никеля, кобальта, марганца, хрома, свинца, кадмия, кальция, магния, ртути, свинца, хрома, бора	
Эмиссионная пламен- ная фотометрия	Калий, натрий	
Кондуктометрия	Удельная электрическая проводимость	
Ионометрия	pH водной и солевой вытяжки, хлориды, кислотность, фториды, нитраты, обменный аммоний	
Потенциометрия	Карбонаты, гидрокарбонаты, рН	
Полярография	Железо, кобальт, кадмий, медь, молибден, никель, свинец, хром, цинк	
Хроматография (ГХ, ГЖХ, ТСХ)	Толуол, ксилол, бензол, углеводородное топливо, пестициды, стирол, бензол, изо-пропилбензол, нефтепродукты	
Биотестирование	Токсичность острая	

Общая схема контроля включает этапы:

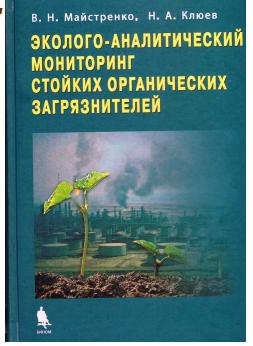
- 1) отбор пробы;
- 2) первичная пробоподготовка обработка пробы с целью консервации измеряемого параметра, её транспортировка и хранение;
- 3) вторичная пробоподготовка подготовка пробы к анализу;
- 4) анализ пробы измерение контролируемого параметра;
- 5) обработка и хранение результатов.

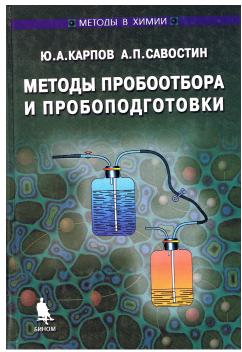

- Пробоотбор зачастую предопределяет результаты анализа, так как возможно загрязнение пробы в процессе её отбора, особенно когда речь идёт об измерении ничтожно малых количеств загрязняющего вещества.
- Здесь важен и выбор места и средства отбора, и чистота пробоотборников и тары для хранения пробы.
- В изолированной от природной среды пробе, начиная с момента её взятия, осуществляются процессы «релаксации» по параметрам экосистемы, значения которых определяются кинетическими факторами.
- Одни из параметров меняются быстро, другие сохраняются достаточно долго. Поэтому необходимо иметь представление о кинетике изменения измеряемого параметра в данной пробе. Очевидно, чем меньше время от момента взятия пробы до её консервации (или анализа), тем лучше.

Главные принципы отбора проб

- Проба природного объекта должна отражать условия и место взятия.
- Отбор пробы, хранение, транспортировка и работа с ней должны проводиться так, чтобы не произошло изменений в содержании определяемых компонентов и в свойствах самого анализируемого объекта.
- Количество (масса, объем) пробы должны быть достаточными для анализа и соответствовать применяемой методике.

ТЕХНИКА ОТБОРА ПРОБ


- Выбор места для отбора проб зависит от целей анализа.
- Виды отбора проб бывают:
- Разовый пробоотбор;
- Серийный пробоотбор: зональный и временной.
- Виды проб бывают:
- Простые;
- Смешанные.


ВИДЫ СРЕДНИХ ПРОБ

Генеральная проба – первичная грубая проба, взятая из природного объекта путем объединения необходимого числа точечных

проб.

Лабораторная проба

Проба для предварительн ых анализов

Проба для арбитражных анализов

Анализируемая (аналитическая) проба

- Лабораторная проба конечная промежуточная проба, полученная при сокращении генеральной пробы и поступившая в лабораторию для анализа (25-1000 г). В лаборатории ее делят на три части: проба для предварительных испытаний; проба для арбитражных анализов; анализируемая проба.
- Анализируемая проба часть лабораторной пробы (1-25 г), применяемая для выполнения аналитических определений всех контролируемых компонентов (согласно заказу). Из нее берутся отдельные навески (10-1000 мг) (для твердых веществ) или аликвоты (для жидкостей и газов).

СТАБИЛИЗАЦИЯ, ТРАНСПОРТИРОВКА И ХРАНЕНИЕ ПРОБ

Первичная пробоподготовка

Способы стабилизации проб

- Применение максимально инертной посуды.
- «Захолаживание» пробы.
- Затемнение пробы.
- Продувка пробы инертными газами.
- «Тренировка» поверхностей.
- Консервация пробы.
- Для отдельных видов проб применяется высушивание.

Правила консервации

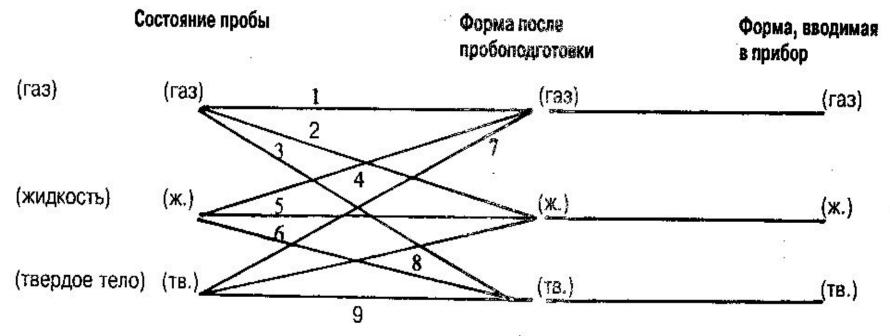
- Используемые для консервации *реагенты-стабилизаторы* должны быть высочайшей чистоты (ОСЧ, ХЧ,ЧДА).
- *Материалы*, из которых изготовлены сосуды, устройства и инструменты для пробоотбора должны быть устойчивы к действию образца и реагента.
- *Посуду* нужно готовить непосредственно перед отбором проб.
- Хорошо знать свойства используемых консервантов.
- *Время хранения* законсервированных проб должно быть минимальным.

Транспортировка проб

Должна быть:

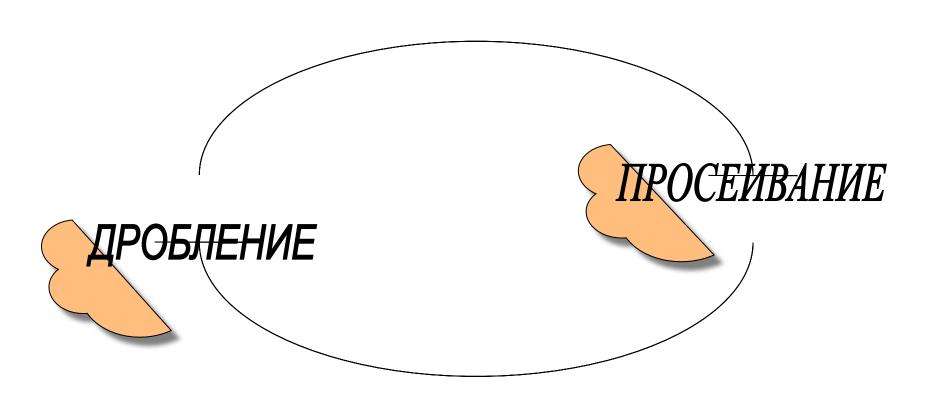
- быстрой;
- в соответствующей таре, гарантирующей сохранность пробы.

Для транспортировки проб часто используются специальные герметичные металлические защитные контейнеры, сконструированные по принципу «матрешки».


ПОДГОТОВКА ПРОБ К АНАЛИЗУ В ЛАБОРАТОРИИ

Вторичная пробоподготовка

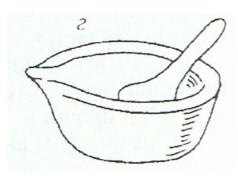
- Подготовка пробы к анализу может включать в себя либо концентрирование измеряемого ингредиента, либо его химическую модификацию с целью проявления аналитически наиболее выгодных свойств.
 Концентрирование достигается двумя путями:
- методом сорбции анализируемого компонента (на твёрдом сорбенте или при экстракции растворителем),
- методами уменьшения объёма пробы, содержащей компонент, например путём вымораживания, соосаждения или выпаривания.


Способы пробоподготовки:

- 1. Непосредственный ввод пробы в прибор.
- 2. Превращение газа в жидкость конденсация или экстракция из газовой фазы.
- 3. Превращение газа в твердое тело конденсация.
- 4. Превращение жидкости в газ испарение.
- 5. Непосредственный ввод пробы в прибор или жидкостная экстракция.
- Превращение жидкости в твердое тело осаждение, выпаривание растворителя, лиофильное высушивание.
- 7. Превращение твердого тела в газ испарение.
- 8. Превращение твердого тела в жидкость растворение, мокрое разложение.
- 9. Непосредственный ввод пробы в прибор.

Задачи вторичной пробоподготовки

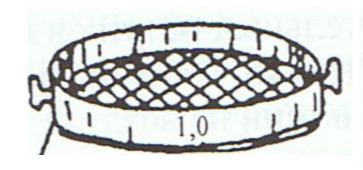
- Гомогенизация (достижение однородности пробы).
- Высушивание пробы (удаление воды).
- Вскрытие (разложение пробы) и перевод ее в раствор.
- Обогащение пробы (ее концентрирование).
- Устранение влияния мешающих примесей (удаление или маскирование примесей).

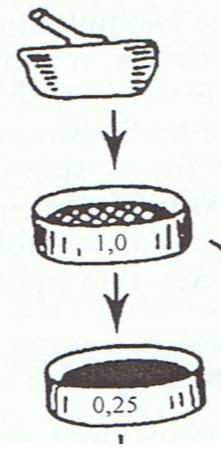

ГОМОГЕНИЗАЦИЯ

Гомогенизация пробы

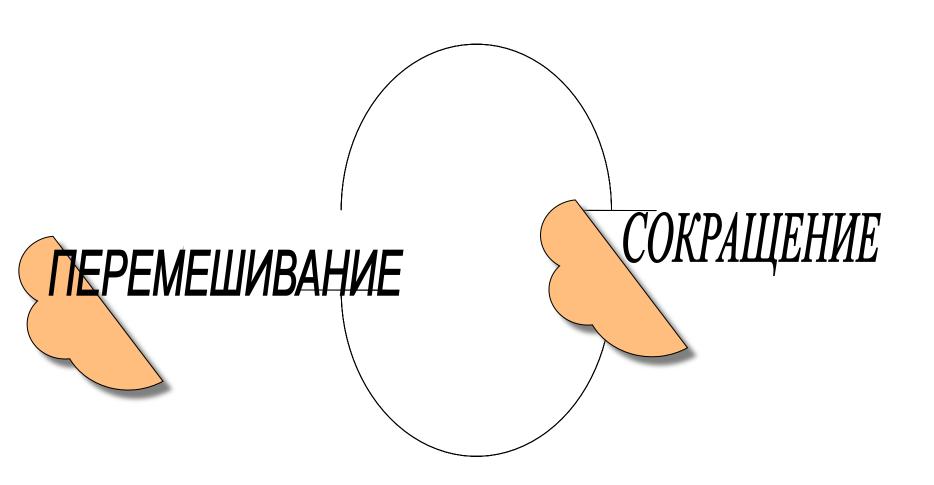
ДРОБЛЕНИЕ

Фарфоровая ступка


Измельчители (мельницы, блендер)


Гомогенизация пробы

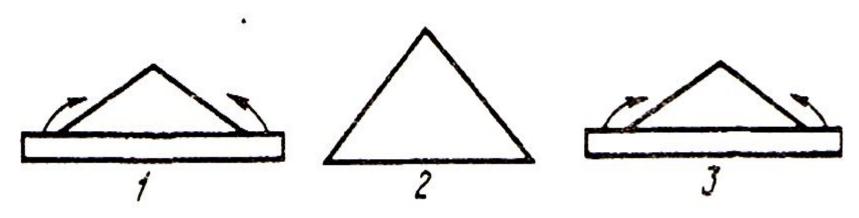
ПРОСЕИВАНИЕ


Cumo

Просеивающая машина

Процесс гомогенизации

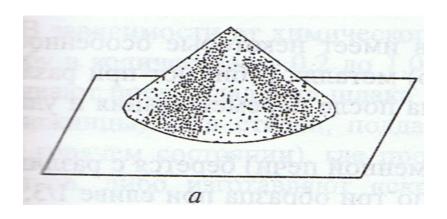
УСРЕДНЕНИЕ

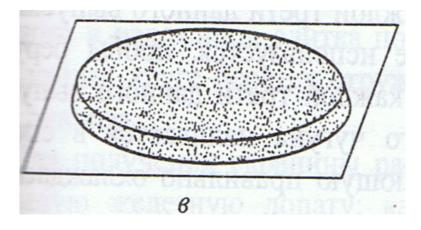

Усреднение пробы

Перемешивание

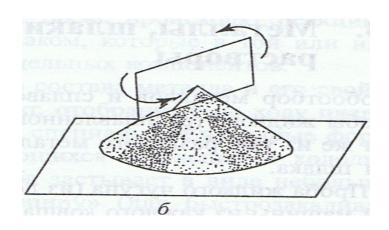
Способы перемешивания:

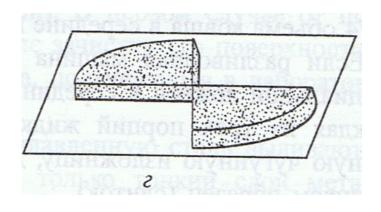
- 1. Механически в емкостях.
- 2. Перекатыванием из угла в угол на различных плоскостях.
- 3. Метод конуса и кольца.
- 4. Перемешивание при растирании в шаровых мельницах (для малых объемов пробы).


Метод конуса и кольца

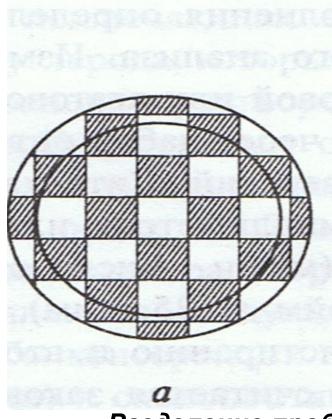

Усреднение пробы Сокращение

Квартование 4-1/2 om 1 Шахматный способ Механический делитель

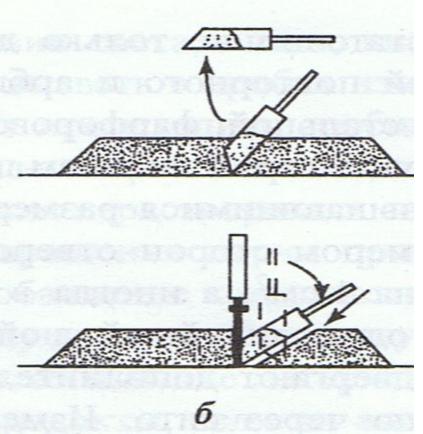

Схема квартования средней пробы


Перемешанная куча

Расплющенная куча

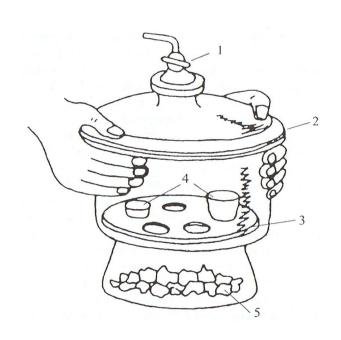


Расплющивание кучи



Куча, разделенная на секторы

Получение лабораторной пробы из генеральной шахматным способом



Разделение пробы на квадраты

Отбор проб из квадратов совком

Высушивание образцов (до воздушносухого состояния)

2 – пришлифованная крышка;

3 – керамический вкладыш;

4 – тигли;

5 – водоотнимающее вещество.

Сушильный шкаф

Разложение образцов

- «Сухие» методы разложения (требуют дальнейшего растворения полученного остатка) это термическое разложение (пиролиз и сухая минерализация), спекание и сплавление.
- «Мокрые» методы разложения (сразу происходит разложение и растворение пробы) это разложение концентрированными кислотами и их смесями, парами азотной кислоты и другими реагентами.

«Сухие» методы. Термическое разложение

Это разложение пробы при нагревании, сопровождающееся образованием одного или нескольких компонентов газообразной фазы:

- Пиролиз термическое разложение в отсутствие веществ, реагирующих с разлагаемым соединением. Проводится в атмосфере инертного газа (азот, гелий) или в вакууме.
- Сухая минерализация (озоление) термическое разложение в присутствии веществ, реагирующих с разлагаемым соединением. Бывает с окислением (сожжение в кислороде или на воздухе) и с восстановлением (сожжение в токе водорода или аммиака).

«Сухие» методы. Сплавление и спекание

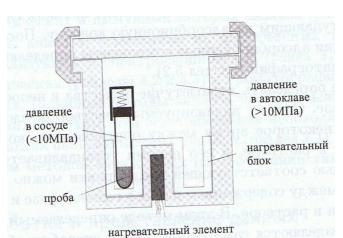
- Сплавление измельченную пробу смешивают с 8 –10-кратным избытком реагента (плавня) и нагревают (300 -1000° С) до получения прозрачного плава.
- Спекание измельченную пробу смешивают с 2 4-кратным избытком подходящего твердого реагента и нагревают (500 800°С). При этом смесь не расплавляется, а только спекается.

Классификация реагентов для сплавления и спекания

- Плавни:
- *Щелочные* (карбонаты, гидроксиды, бораты щелочных металлов и их смеси).
- *Кислые* (пиросульфат и гидросульфат калия, B₂O₃).
- *Окислительные* (щелочные плавни с добавкой окисляющих веществ KNO₃, NaNO₃, KClO₃ и др.).
- Реагенты для спекания:
- Пероксид натрия Na₂O₂.
- Карбонаты щелочных металлов.
- Оксиды металлов (магния, цинка, кальция).
- *Смеси* карбонатов с оксидами магния, цинка, кальция.

Оборудование для «сухих» методов разложения

Муфельная печь


Нагревательная камера

Микроволновая печь

«Мокрые» методы. Разложение кислотами

- Концентрированные минеральные кислоты (HCI, HNO $_3$, H $_2$ SO $_4$, HF, HCIO $_4$, H $_3$ PO $_4$ и др.).
- *Органические кислоты* (уксусная, щавелевая, винная, лимонная, муравьиная и др.).
- Смеси, содержащие кислоты:
- HCI (HNO₃, H_2SO_4) + H_2O_2 ;
- HCI + $H_2SO_4 + HCIO_4$;
- $HNO_3 + \overline{H}_2SO_4$;
- HCI + HNO₃ (3:1) царская водка и др.

Оборудование для «мокрых» методов разложения

Камера фотолизного окислени<mark>я</mark> пробы под действием ^я УФ –излучения

Автоклав для разложения проб кислотами

Микроволновая установка для мокрой минерализации проб

Растворение пробы

Основные растворители:

- Вода.
- Органические растворители.
- Водные смеси (с кислотами; органическими растворителями).
- Водные растворы кислот, щелочей.
- Буферные растворы.
- Концентрированные кислоты и их смеси (см. «мокрые» методы разложения).
- Другие растворители.

Разделение и концентрирование

- Разделение это операция, в результате которой компоненты, составляющие исходную смесь, отделяются один от другого.
- Концентрирование это операция, в результате которой повышается отношение концентрации или количества микрокомпонентов к концентрации или количеству макрокомпонента.

Методы концентрирования ООС

Жидкие пробы:

- Упаривание.
- Вымораживание.
- Экстракционное концентрирование.
- Ионообменное концентрирование.

Твердые пробы:

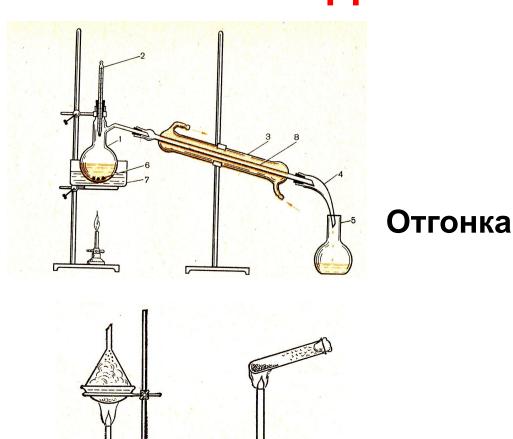
- Сублимация (возгонка).
- Флотация.
- Другие методы.

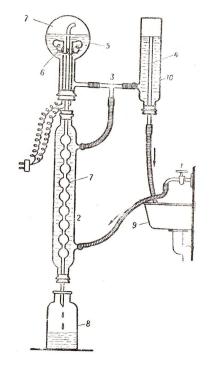
Распространенность методов концентрирования при анализе ООС

Объект	Жидкостная экстракция	Газовая экстракция	Твердофазная экстракция	Сорбция	Упаривание и дистилляция	Криогенное концентрирование	Мембранное разделение	Микроволновая пробоподготовка	Дериватизация	Хроматографические методы	Электрофорез	сФЭ**
Вода	•••	••	••	•••		•	••	•	•	•••	•	
Вода Воздух	•••	••	••	•••	•••	•	••	•	•	••	•	
	•••	••	••	•••		•	••	•	•	•••	•	•••
Воздух	•••	••	••	•••		•	••	•	•	•••	•	•••
Воздух Почва	•••	••	••	•••		•	••	•	•	••	•	•••

^{*} Число точек характеризует распространенность метода.

^{**} Сверхкритическая флюидная экстракция.


Методы испарения


Методы испарения основаны на переводе вещества из жидкого или твердого состояния в газообразное. Они основаны на разной летучести веществ.

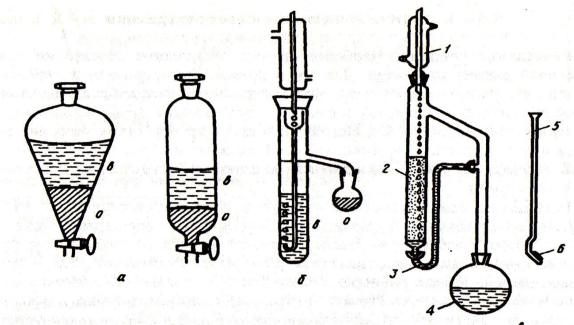
Классификация методов:

- Дистилляция это перевод вещества из жидкого состояния в газообразное, с последующей его конденсацией.
- Отгонка это выпаривание при котором удаляются летучие вещества. Разновидности отгонки лиофильная сушка, сухая и мокрая минерализация.
- Сублимация (возгонка) это перевод вещества из твердого состояния в газообразное и последующее осаждение его в твердой форме (минуя жилкое состояние)

Оборудование, используемое в методах испарения

Сублимация

Дистилляция


Экстракция

Экстракция — это метод выделения, разделения и концентрирования, основанный на распределении растворенного вещества между двумя несмешивающимися жидкими фазами (обычно между водой и органическим растворителем).

При экстракции протекают процессы:

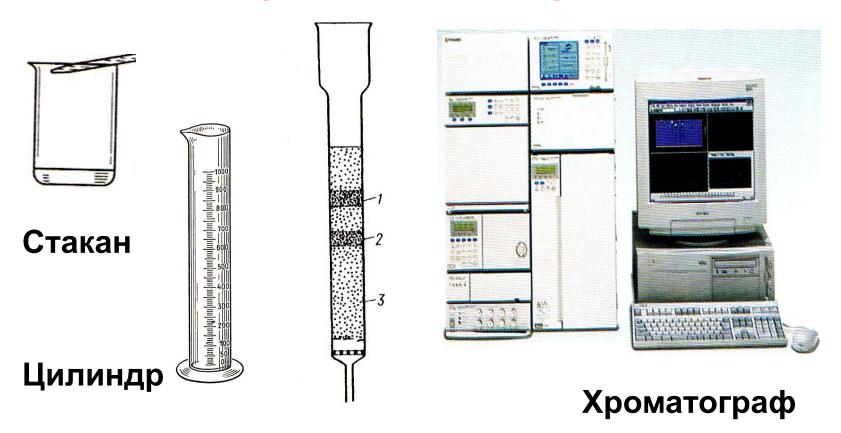
- Образование экстрагируемых соединений;
- Распределение экстрагируемых соединений между двумя фазами;
- Реакции в органической фазе.

Оборудование для проведения экстракции

а – делительные воронки; б, в – приборы для непрерывной экстракции: 1 – холодильник; 2 – экстрагируемая жидкость; 3 – трубка возврата экстрагента; 4 – резервуар для экстрагента; 5 – воронка для диспергирования растворителя; 6 – пористый стеклянный диск

Сорбция

Сорбция – это процесс поглощения газов, паров и растворенных веществ твердыми или жидкими поглотителями (сорбентами).


Виды сорбции:

- Физическая;
- Химическая (хемосорбция);
- Абсорбция;
- ◆ Адсорбция.

Способы сорбции:

- **«** Статический;
- ◆ Динамический;
- Хроматографический.

Оборудование для проведения сорбции

Хроматографическая колонка

Некоторые современные методы разделения и концентрирования

- Флотация метод концентрирования и разделения смеси твердых частиц, основанный на различии в смачиваемости.
- Газовая экстракция разделение летучих соединений пробы продувкой через нее инертного газа.
- Парофазный анализ метод разделения и концентрирования за счет экстракции летучих компонентов смеси газом (воздухом, азотом, гелием) в статических или динамических условиях.
- Разделение с помощью мембран.
- Микроволновое излучение.

Некоторые современные методы разделения и концентрирования

- *Криогенное концентрирование* основано на вымораживании токсичных примесей.
- Твердофазная экстракция разделение веществ в результате сорбционных или ионообменных взаимодействий.
- Сверхкритическая флюидная экстракция выделение токсичных примесей сверхкритическими жидкостями-флюидами.
- Экстракция субкритической водой извлечение примесей горячей водой под высоким давлением.
- *Дериватизация* получение химических производных токсичных примесей.

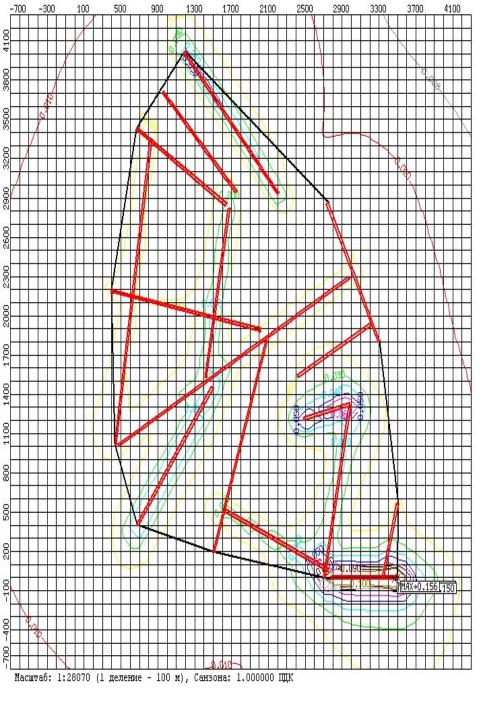
Устранение влияния мешающих примесей

Может быть осуществлено:

- Разделением.
- Селективной экстракцией.
- Маскированием.
- Хроматографией.
- Другими методами.

Маскирование

Это устранение влияния мешающих ионов путем связывания их в устойчивые комплексные соединения.

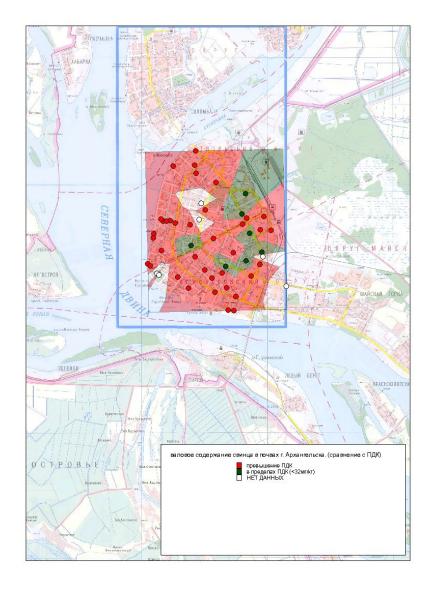

Маскирующие реагенты:

- Неорганические:
 - Полифосфаты;
 - Галагенид-ионы;
 - Цианид-ионы;
 - Тиосульфат-ионы;
 - Аммиак.
- Органические:
 - Оксикислоты (винная, лимонная, салициловая);
 - Комплексоны;
 - Глицерин;
 - Мочевина и тиомочевина.

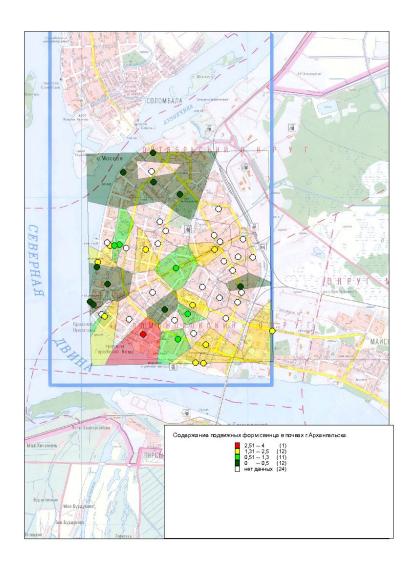
ДИСТАНЦИОННЫЕ МЕТОДЫ КОНТРОЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ

- Контактные методы наблюдений и контроля за состоянием природной среды дополняются неконтактными (дистанционными), основанными на использовании двух свойств зондирующих полей (электромагнитных, акустических, гравитационных): осуществлять взаимодействия с контролируемым объектом и переносить полученную информацию к датчику.
- Неконтактные методы наблюдения и контроля представлены двумя основными группами методов: аэрокосмическими и геофизическими.

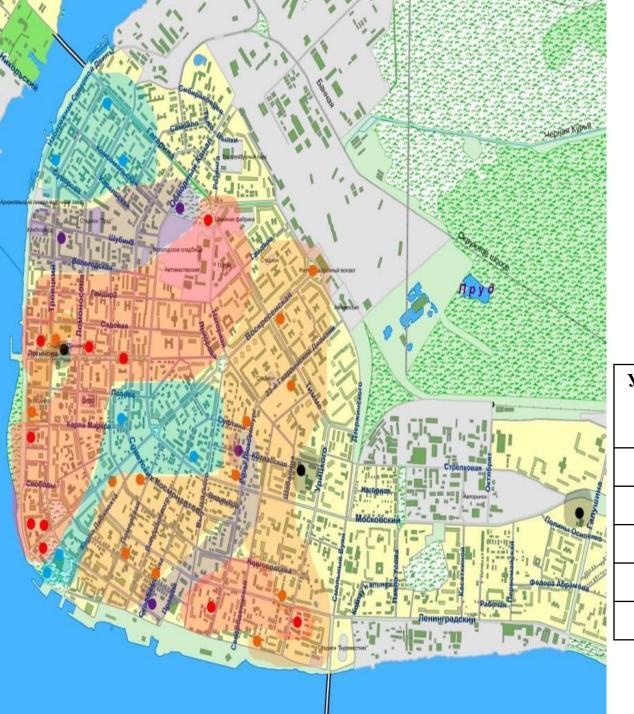
- Основными видами аэрокосмических методов исследования являются оптическая фотосъёмка, телевизионная, инфракрасная, радиотепловая, радиолокационная, радарная и многозональная съёмка.
- Геофизические методы исследований применяются для изучения состава, строения и состояния массивов горных пород, в пределах которых могут развиваться те или иные опасные геологические процессы. К ним относятся: магниторазведка, электроразведка, терморазведка, визуальная съёмка (фото-, теле-), ядерная геофизика, сейсмические и геоакустические и другие методы.


В качестве источников загрязнения (ИЗА) были заданы 16 участков улиц центральной части города.

Расчетный прямоугольник рассеивания концентраций бензина (в перерасчете на углерод), (2704)


Условные обозначения:

/ - ИЗА;


МАХ+1.578Г - точка максимальной приземной концентрации ЗВ

Содержание валовых форм свинца в почвах г. Архангельска в сравнении с ПДК (мг/кг)

Содержание подвижных форм свинца в почвах г. Архангельска (мг/кг)

Загрязненность цинком разнотравья г. Архангельска

Условноеобозна чение	Содержание цинка, мг/кг
	< 70
•	71 – 150
	151 – 250
	251 – 350
	> 350

БИОЛОГИЧЕСКИЕ МЕТОДЫ КОНТРОЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Совершенно очевидно, что оценка экологической обстановки невозможна без использования методов биодиагностики качества окружающей среды.

Оценивать качество окружающей среды, степень её благоприятности для человечества необходимо в целях:

- определения состояния природных ресурсов;
- разработки стратегии рационального использования региона;
- определения предельно допустимых нагрузок для любого региона;
- решение судьбы районов интенсивного промышленного и сельскохозяйственного использования, загрязненных территорий и т.д.;
- решения вопроса о строительстве, пуске или остановке определённого предприятия;
- оценки эффективности природоохранных мероприятий, введения очистных сооружений, модернизации производства и т.д.;
- введения новых химикатов и оборудования;
- создания рекреационных и заповедных территорий.

- Ни один из этих вопросов не может быть объективно решён лишь на уровне рассмотрения формальных показателей, а требует проведения специальной разносторонней оценки качества среды обитания, т.е. необходима интегральная характеристика её состояния, биологическая оценка.
- Прямые (интегральные) методы оценки экологической обстановки в свою очередь тоже можно разделить на две группы биоиндикации и биотестирования (последние называют также токсикологическими методами).
- Объектом исследования первых являются организмы или сообщества организмов-биоиндикаторов, наблюдаемые в естественных условиях обитания.
- Вторая группа методов изучает реакции *тестобъектов организмов*, *помещаемых в исследуемую среду*. Они подразумевают оценку токсических свойств загрязняющих веществ с использованием модельных живых систем (тест-объектов). Оценка токсичности производится, как правило, в лабораторных условиях.

- Биоиндикаторами называются растительные и животные организмы, наличие, количество и состояние которых служат показателями изменения качества среды их обитания. Глубина биоиндикации может быть различной от простой визуальной диагностики растений до изучения иммунных и генетических изменений в организме индикаторов.
- Методы биоиндикации основаны на наблюдениях отдельных организмов, популяции или сообществ организмов в естественной среде обитания с целью определения по их реакциям (изменениям) качества окружающей среды.

- В сельском хозяйстве широко применяется метод биоиндикации для диагностики питания сельскохозяйственных культур. Данный метод визуальной биоиндикации основан на изучении внешних признаков фито- и биоценозов, которые отражают качественные изменения среды обитания.
- В качестве признаков визуальной биоиндикации используется внешний вид растений. Таких признаков, связанных с нарушением питания растений, множество, в частности: замедление роста стеблей; ветвей и корней; пожелтение; бурение; загибание листьев; «краевые ожоги»; образование гнили; одревеснение стеблей и др.

Биоиндикаторы

Ряска

Животные-индикаторы

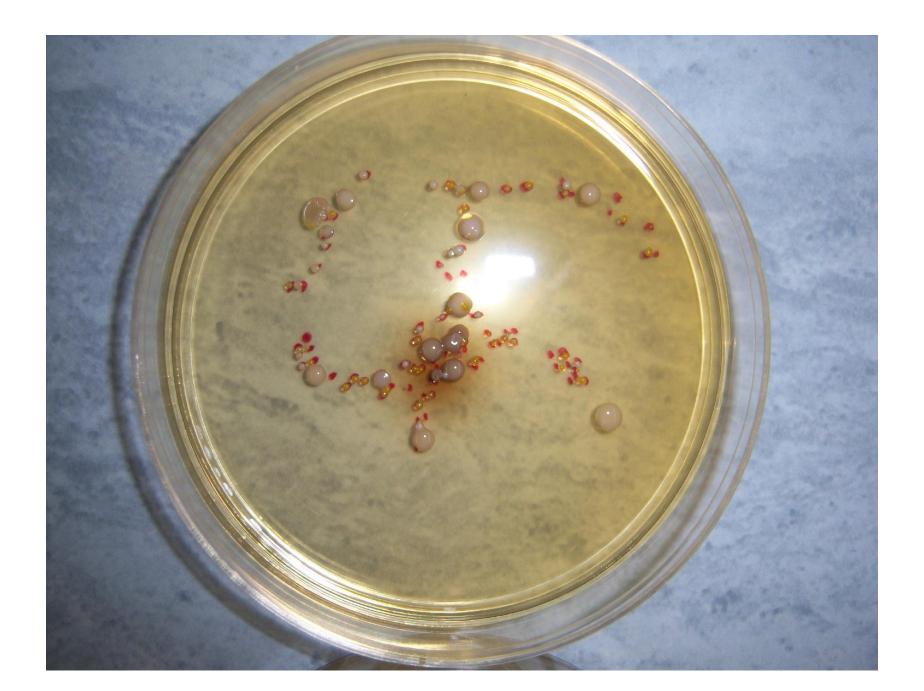
Моллюски

Двухстворчатые моллюски – перловицы, беззубки

Рыбы

Хищные рыбы – щука, окунь. Иногда используют придонных рыб – карп, лещ.

Млекопитающие



Хищные млекопитающие – волк, лисица, песец, соболь. Используют и охотничьи виды – заяц, олень, кабан

- Для целей биоиндикации качества окружающей среды могут применяться популяционные и экосистемные критерии, которые характеризуются показателями: численности и биомассы отдельных видов; соотношением в сообществах различных видов, их распределение по обилию и т.п.
- Методы биотестирования. Биотестирование как способ интегральной оценки токсичности загрязнений уже достаточно давно используется в системе мониторинга качества окружающей среды за рубежом и начинает применяться в нашей стране.
- Аргументами в пользу целесообразности использования подходов биотестирования качества окружающей среды являются их универсальность, экспрессность, простота, доступность и дешевизна.

- В зависимости от поставленных задач предъявляются различные требования к методам и всей системе биотестирования (постановка опытов и оценка результатов).
- В качестве объектов биотестирования применяются разнообразные организмы бактерии, водоросли, высшие растения, пиявки, моллюски, рыбы и др. Каждый из организмов имеет свои преимущества, но ни один организм не может служить универсальным объектом.
- Растения могут оказаться наиболее чувствительными к присутствию в среде гербицидов, дафнии – к присутствию инсектицидов и т.д.

