Противовоспалительные лекарственные средства

«У человека три главных врага лихорадка, голод и война»

Ослер

Классификация противовоспалительных ЛС

- НПВС
- Стероидные противовоспалительные ЛС-глюкокортикостероиды
- Базисные, медленно действующие противовоспалительные ЛС

Историческая справка

- Многим народам издавна были известны лечебные свойства ивовой коры
- В середине XVIII века преп. Эдмунд Стоун представил президенту Лондонского королевского общества отчёт «об исцелении горячки ивовой корой», действующим веществом которой оказался гликозид салицин (Salix-ива), обладающий жаропонижающим действием
- В 1875 г. для лечения ревматизма был применен салицилат натрия, вскоре обнаружили его урикозурическое действие и препарат стали применять при подагре.
- 1853г. Гоффман, работавший в компании «Байер», синтезировал ацетилсалициловую кислоту
- 1899г. Дрезер ввел её в употребление под названием аспирин
- Природные салицилаты вскоре были вытеснены с рынка более дешёвыми синтетическими

Механизм действия аспирина

в модификации по J. Vane, 1994 год

TXA,

↓ Гемостаз

осложнения

PGI,

↓ Почечный кровоток

PGE₂/PGI₂ PGE₂/PGI₂

↓ Желудочная

цитопротекция

Места воспаления
РСЕ2
Медиаторы
воспаления

Воспаление

Фармакологические эффекты НПВС

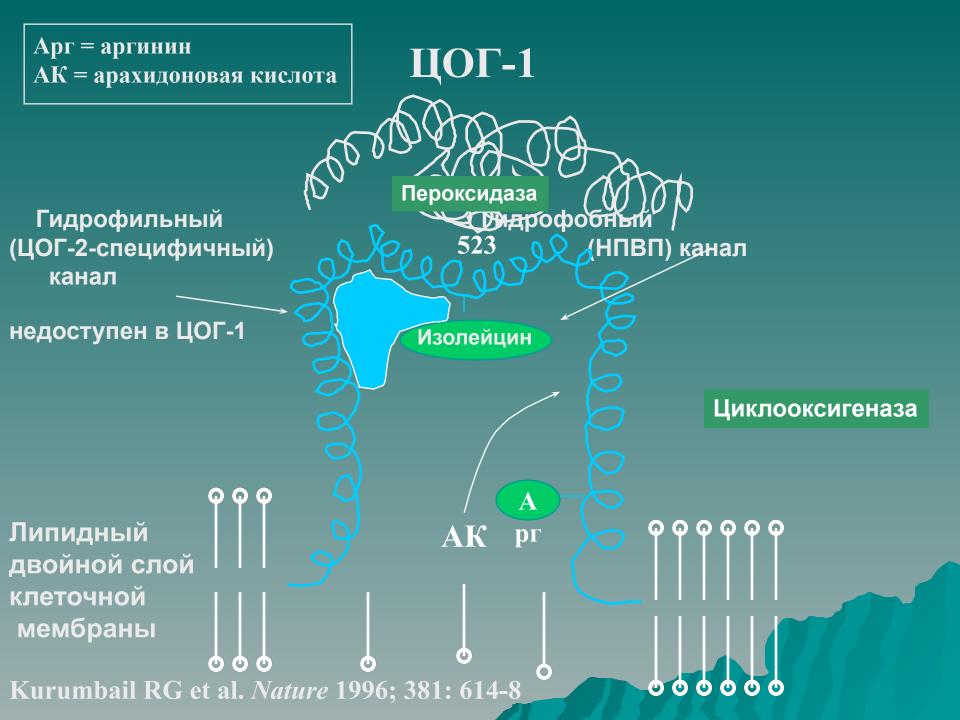
- АНальгезирующий (снижение болевой чувствительности нейронов, нарушение проведения импульсов на уровне спинного мозга, активация опиоидных рецепторов)
- Жаропонижающий (уменьшение синтеза простагландина Е2 в области преоптических ядер гипоталамуса → ↓цАМФ в ядрах → снижение температуры тела до нормы, вследствие ↓ теплопродукции и ↑ теплоотдачи)
- Противовоспалительный (уменьшение синтеза простагландинов → стабилизация мембран лизосом, торможение активации нейтрофилов, нарушение высвобождения из них медиаторов воспаления. Влияют на фазы экссудации и пролиферации и оказывают симптоматическое действие)
- АНТИЗГРЕГЗЦИОННЫЙ (↓синтеза проагрегационного агента тромбоксана А2 → ↓агрегации тромбоцитов)

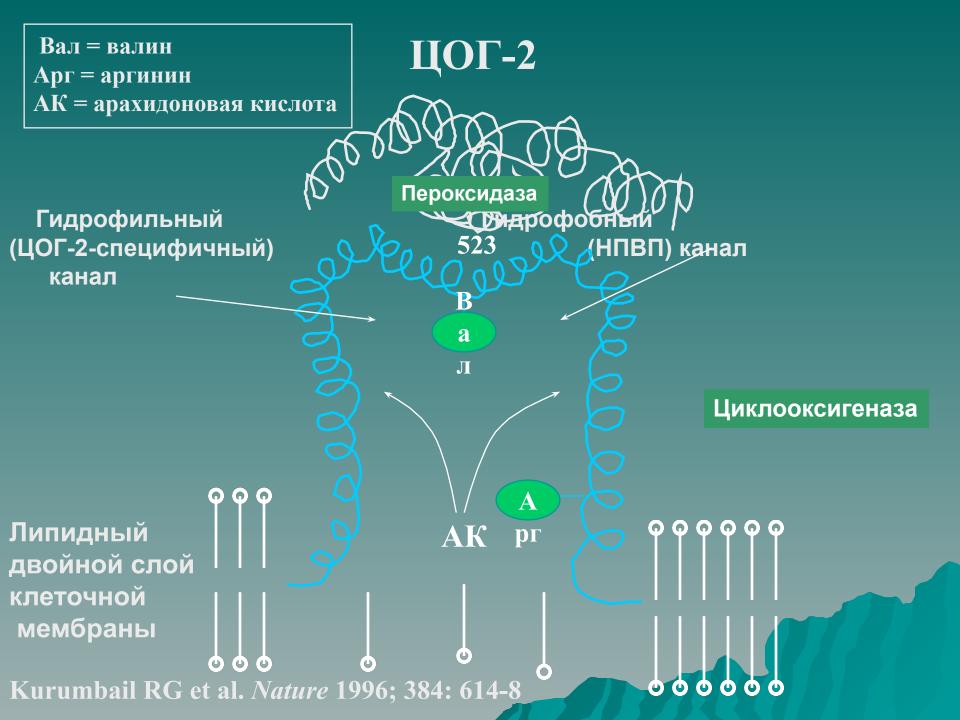
КЛАССИФИКАЦИЯ НПВС ПО ХИМИЧЕСКОЙ СТРУКТУРЕ

- 1. <u>Производные салициловой к-ты</u>
 - Ацетилсалициловая кислота
- 2. <u>Производные пиразолона</u>
 - Метамизол (анальгин)
 - Клофезон
 - Фенилбутазон
- 3. <u>Производные уксусной кислоты</u>
 - Диклофенак
 - Ацеклофенак
 - Индометацин
 - Сулиндак
 - Кеторолак
 - Этодолак
- 4. <u>Производные пропионовой к-ты</u>
 - Ибупрофен
 - Напроксен
 - Кетопрофен
 - Флубрипрофен

- 5. <u>Производные никотиновой к-ты</u>
 - Нифлумовая кислота
- 6. Производные оксикамов
 - Пироксикам
 - Лорноксикам
 - Мелоксикам
- 7. Производные антраниловой к-ты
 - Флуфенамовая кислота
 - Мефенамовая кислота
- 8.*Коксибы*
 - Целекоксиб
 - Вальдококсиб
 - Эторикоксиб
 - Лумиракоксиб
- 9. <u>Производные других химических</u>
- <u>соединений</u>
 - Нимесулид
 - Набуметон

Концепция двух изоформ ЦОГ (Vane и соавт.1994)





Лихорадка Отек Покраснение Нарушение функции

«Новая» классификация НПВС с учетом селективности в отношении ингибиции изоформ ЦОГ

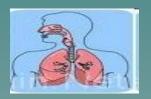
- СЕЛЕКТИВНЫЕ ИНГИБИТОРЫ ЦОГ-1 (аспирин в низких дозах)
- **СЕЛЕКТИВНЫЕ ИНГИБИТОРЫ ЦОГ-3** (парацетамол).
- **НЕСЕЛЕКТИВНЫЕ ИНГИБИТОРЫ ЦОГ** (большинство НПВС)
- **СЕЛЕКТИВНЫЕ ИНГИБИТОРЫ ЦОГ-2** (мелоксикам, набуметон, этодолак, нимесулид)
- ВЫСОКОСЕЛЕКТИВНЫЕ ИНГИБИТОРЫ ЦОГ-2 (целекоксиб, рофекоксиб)

КЛАССИФИКАЦИЯ НПВС ПО СИЛЕ ПРО-ТИВОВОСПАЛИТЕЛЬНОГО ЭФФЕКТА

Действие	Препараты
Максимальное	Нимесулид
	Целекоксиб
	Мелоксикам
	Ацеклофенак
	Диклофенак
	Индометацин
Умеренное	Пироксикам
	Напроксен
	Бутадион
Минимальное	Ибупрофен
	Анальгин
	Амидопирин

ЭФФЕКТЫ НЕНАРКОТИЧЕСКИХ АНАЛЬГЕТИКОВ

вещества			
	анальге- тический	жаропони- жающий	противовос- палительный
Кислота			
ацетилсалициловая	+ +	+ + +	+ +
Амидопирин	+ + +	+ + +	+ +
Анальгин	+ + +	+ + +	+ +
Бутадион	+	+	+ + +
Парацетамол	+ +	+ +	


НЛР НПВС, связанные с их фармакодинамическими

Желудочно-кишечные расстройства (прямое раздражающее действие и уменьшение синтеза цитопротекторных простагландинов)

- ⇒ Диспепсия, боли, тошнота (34-46%)
- ⇒ эндоскопические эрозии и язвы (80%)
- → Язвы кровотечения/перфорации (15-17%)
- 2. Геморрагический синдром → Кровотечение

 - 3. Бронхоспазм (аспириновая триада (↑ лейкотриенов): полипоз носа , астма, непереносимость аспирина, тартразина)
 - 4. Токолитический эффект (перенашивание или невынашивание беременности, преждевременное закрытие артериального протока)
 - 5. Некроспермия

НЛР НПВС, связанные с их токсическими эффектами

- 1. Нефротоксичность (анальгетическая нефропатия + ↓ синтеза простагландинов → ухудшение почечного кровотока → отёки, ↑Na, K, креатинина, AД)
- 2. Гепатотоксичность (↑ трансаминаз, желтуха, лекарственный гепатит-диклофенак)
- 3. Гематотоксичность (апластическая анемия, агранулоцитоз пиразолоны)
- **4. Нейротоксичность** (головная боль, головокружение индометацин)
- **5. Тератогенность** (расщепление верхнего нёба у плода аспирин)

Риск возникновения НПВСгастропатий

- Кеторолак
- Индометацин
- Напроксен
- Ибупрофен
- Нимесулид, мелоксикам, коксибы

Снижение

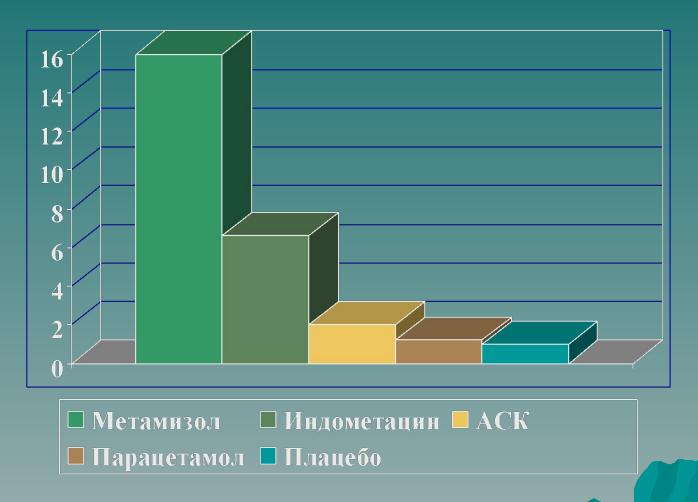
Рекомендации по профилактике НПВСиндуцированных язв желудка и 12-перстной кишки

«У пациентов, имеющих высокий риск кровотечения или перфорации, вследствие НПВС-индуцированных язв, следует рассмотреть вопрос о назначении ингибиторов протоновой помпы. Антагонисты Н2-гистаминовых рецепторов, как было показано, предотвращают только язву 12-перстной кишки, и поэтому не могут быть рекомендованы в профилактических целях».

Исследование **OMNIUM** показало высокую эффективность омепразола 20-40 мг/сут при НПВС-индуцированных гастропатиях

Другие способы преодоления гастротоксичности НПВС

© ГАСТРОЦИТОПРОТЕКЦИЯ


Заместительная терапия синтетическими аналогами простагландина Е. Мизопростол (800 мкг/сут в 4 приёма) показал высокую эффективность в лечении НПВС-индуцированных гастропатий (исследование MUCOSA). Артротек=мизопростол+диклофенак. Недостатки: неудобная схема, системные НЛР, высокая стоимость

- МОНОТЕРАПИЯ НЕВСАСЫВАЮЩИМИСЯ
 АНТАЦИДАМИ (маалокс) И СУКРАЛЬФАТОМ
 Эффект незначительный и только симптоматический.
- **В ИЗМЕНЕНИЕ ТАКТИКИ ПРИЕМА НПВС**

(снижение дозы, изменение пути введения, кишечнорастворимых лек. формы)

ПРИМЕНЕНИЕ ЦОГ-2 СЕЛЕКТИВНЫХ ЛС

Относительный риск агранулоцитоза при применении ненаркотических анальгетиков (Martinez и соавт. 1995)

Побочные эффекты НПВС

НЛР	Неселективные ингибиторы ЦОГ	Ингибиторы ЦОГ-2
Поражение слизистой ЖКТ	+	
Нарушение агрегации тромбоцитов	+	_
Нарушение родовой деятельности	+	+
Нарушение функции почек	+	+-
Аллергические реакции	+	Не известно

Селективные ингибиторы ЦОГ-2-решение проблемы безопасности НПВС?

- Длительное применение селективных ингибитров ЦОГ-2 может приводить к значительному риску сердечно-сосудистых осложнений (ХСН, ОИМ рофекоксиб), вероятно обусловленному дисбалансом между простациклином и тромбоксаном в сторону увеличения синтеза последнего и повышения агрегации.
- Эти ЛС не рекомендуют пациентам с высоким риском сердечно-сосудистых осложнений, возможна их комбинация с низкими дозами аспирина.
- Из 919 больных длительно принимавших Целекоксиб у 9 развилась ОПН (WHO, 2000)
- Селективные ингибиторы ЦОГ-2 задерживают заживление язв желудка (Scrip, 2001)
- Распространенность обратимого бесплодия среди женщин, принимающих селективные ингибиторы ЦОГ-2 в 2 раза выше, чем в общей популяции (Scrip, 2001)

Специфические ингибиторы ЦОГ-2 лишены нежелательных эффектов в отношении функции почек и взаимодействия с гипотензивными препаратами, характерных для неселективных НПВП

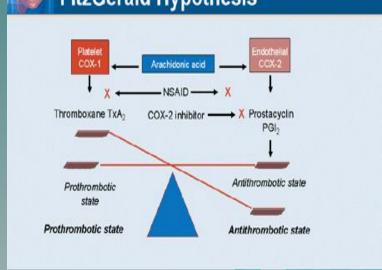
J.Frolich, D.Stichtenoth

Синдром Рея

- Синдром Рея представляет собой острое заболевание, характеризующиеся тяжелой энцефалопатией в сочетании с жировой дегенерацией печени и почек.
- Развитие синдрома Рея связано с применением ацетилсалициловой кислоты, как правило, после перенесенных вирусных инфекций (гриппа, ветряной оспы и т.д.).
- Чаще всего синдром Рея развивается у детей с возрастным пиком в 6 лет.
- При синдроме Рея отмечается высокая летальность, которая может достигать 50%.

Протокол №2 Президиума Фармкомитета РФ (26 октября 2000 года)

«В инструкции к метамизолсодержащим лекарственным препаратам ввести следующие ограничения:


- Длительность применение
 метамизола без контроля врача
 не должна превышать 3 дней
- У детей до 12 лет метамизол
 может использоваться только по назначению врача»

Высокоселективные НПВС ЦОГ-2 (коксибы) Несколько высокоселективных НПВС были

Несколько высокоселения НПВС были выведены с рынка из-за неблагоприятных реакций со стороны сердечно-сосудистой системы:

- •рофекоксиб (Vioxx, Merck & Co) в 2004 г.
- •вальдекоксиб (Bextra, Sear FitzGerald Hypothesis

Было выявлено, что эти препараты вызывали увеличение риска сердечно-сосудистых событий

Выбор препарата для купирования болевого синдрома

- Для эффективного купирования болевого синдрома препарат должен обладать следующими качествами:
 - Обратимо ингибировать циклооксигеназу
 - Оказывать быстрое анальгетическое действие
 - Иметь невысокий риск возникновения нежелательных реакций и осложнений в месте введения
 - Иметь различные формы выпуска и дозировки, обеспечивая удобство применения и гибкость дозирования

Данным критериями полностью отвечает препарат лорноксикам (Ксефокам)

Ксефокам - описание

- Международное непатентованное название лорноксикам
- *Фармакотерапевтическая группа н*естероидный противовоспалительный препарат
- Класс оксикамы
- Формы выпуска:
 - лиофилизат для приготовления раствора для внутривенного и внутримышечного введения 8 мг №5
 - таблетки покрытые оболочкой 4 мг № 10
 - таблетки покрытые оболочкой 8 мг № 10
 - Ксефокам рапид таблетки покрытые оболочкой 8 мг № 12

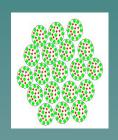
Обзор фармакокинетики различных форм препарата Ксефокам

Время достижения максимальной концентрации в плазме	Ксефокам таблетки	90 минут
	Ксефокам для инъекций	20 минут
	Ксефокам Рапид	30 минут
Биодоступность		99-100%
	С приемом пищи	≥70%
Связывание протеинами плазмы		99%
Период полувыведения из плазмы		3-4 часа
Выведение	С мочой	33%
	С калом	66%
Метаболизм	Печенью 100%	CYP4502C9

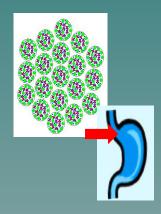
Ксефокам - показания к применению

- Кратковременное лечение болевого синдрома различного происхождения, в том числе:
 - При травмах
 - После оперативных вмешательств
 - При альгодисменорее
 - При люмбоишиалгии
- Симптоматическая терапия ревматических заболеваний:
 - Ревматоидный артрит
 - Остеоартроз
 - Анкилозирующий спондилит
 - Суставной синдром при обострении подагры

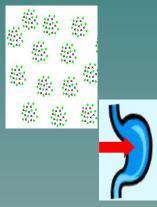
Ксефокам (лорноксикам) - характеристики

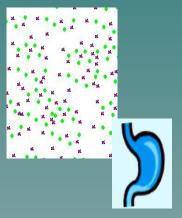

- Мощный, сбалансированный ингибитор ЦОГ-1/ЦОГ-2
- Все формы препарата Ксефокам быстро абсорбируются и имеют равную биодоступность, таким образом, нет необходимости в корректировке дозы при переключении с инъекционной терапии на пероральную форму
- Имеет короткий период полувыведения исключает накопление в плазме, снижая риск дозозависимых побочных реакций

Ксефокам (лорноксикам) - характеристики

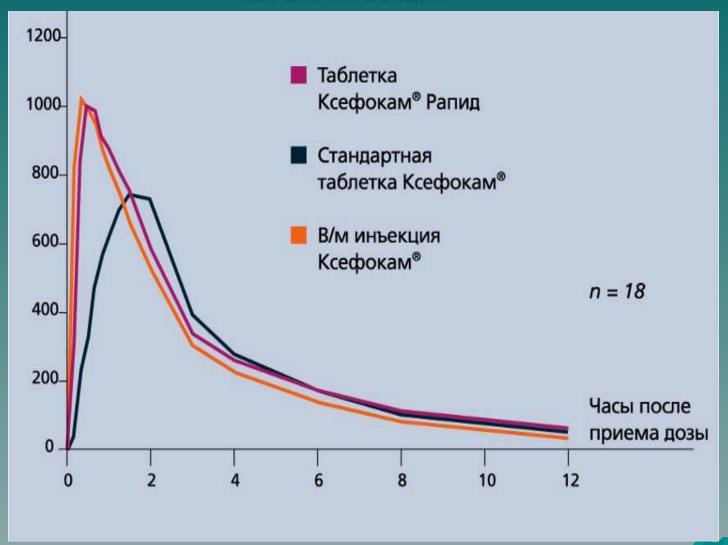

- Удобен в применении у лиц пожилого возраста с сохраненной функцией почек и печени, т.к. при этом не требуется проводить корректировку дозы
- Имеет выраженное анальгетическое и противовоспалительное действие
- Ксефокам Рапид более быстро всасывается по сравнению со стандартными таблетками – возможность быстрого купирования боли при необходимости

Ксефокам Рапид – быстродействующая форма Ксефокама


В быстровысвобождаемой форме Ксефокам Рапид лорноксикам заключен в гранулы, содержащие бикарбонат натрия, которые создают слабощелочное микроокружение в желудке и способствуют скорейшему растворению


В таблетках Ксефокам Рапид лорноксикам содержится внутри гранул, в состав которых также входит бикарбонат натрия

В желудке гранулы смачиваются жидкостью, что приводит к созданию слабощелочной микросреды внутри гранул



Во время пассажа через желудок лорноксикам растворяется в щелочной микросреде, создающейся внутри гранул

Гранулы распадаются, и лорноксикам растворяется полностью без образования осадка, становясь биодоступным для быстрого всасывания и проникновения в кровоток

Ксефокам рапид действует также быстро, как в/м инъекция

*Radhofer–Welte S., Dittrich P., Simin M., Branebjerg P. Comparative bioavailability of lornoxicam as single doses of quick–release tablet, standard tablet and intramuscular injection: a randomized, open–label, crossover phase I study in healthy volunteers. Clin Drug Investig. 2008;28(6):345–351.

Различная чувствительность (возможно генетически детерминированная) к действию НПВП

• Полиморфизм Р450 на фармакокинетику

- Диклофенак натрия -24%
- Метамизол 2 4 %
- Лорноксикам 1 2 % т.е. лишь 1 2% пациентов могут быть не чувствительны к действию препарата (Unseld, Radhofer-Welte et al. 1994).

Нейробион – комплексный препарат витаминов группы В

- Содержит три нейротропных витамина группы В (В1, В6, В12) и в ампулах, и в таблетках возможность ступенчатой терапии
- Оптимальные дозировки витаминов группы В, обеспечивающие выраженное анальгетическое действие
- Ампулы не содержат лидокаин можно применять у пациентов с сердечно-сосудистой недостаточностью, у пациентов пожилого возраста
- Нейробион препарат, производим известным производителем немец Мерк, был первым комбинированны витаминов группы В (продается с 1 в 67 странах мира длительный оп является гарантией высокой эффектив благоприятного профиля безопасности

Сочетание Ксефокама и Нейробиона при боли в спине

- Усиление анальгетического эффекта по сравнению с монотерапией
- Более быстрое наступление эффекта по сравнению с монотерапией

ЦИТИКОЛИН ЦЕРАКСОН®

Ключевые клеточные процессы в борьбе с ишемией и гибелью кпеток

Нейропротекция

Комплекс внутриклеточных реакций и механизмов, направленных на предупреждение нейронального повреждения и гибели клеток. Включает себя активацию антиоксидантных ферментов, деактивацию каспаз,

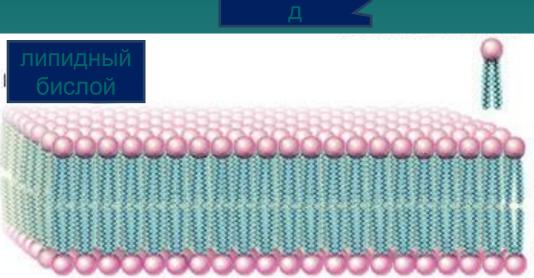
поризания

Нейрорегенераци

• Комплекс внутриклеточных реакций и механизмов, направленных на восстановление уже поврежденных клеток или структур. Включает в себя механизмы нейропластичности, нейрои ангиогенеза

Строение и функции клеточной мембраны

Клеточная мембрана представляет собой двойной (бислой) слой молеку класса липидог большинство которы И3 представляет собой та называемые сложны липиды — фосфолипиды


В зависимости от входящего их состав многоатомного спирта принято делить фосфолипиды на три группы:

глицерофосфолипиды содержат остаток глицерина

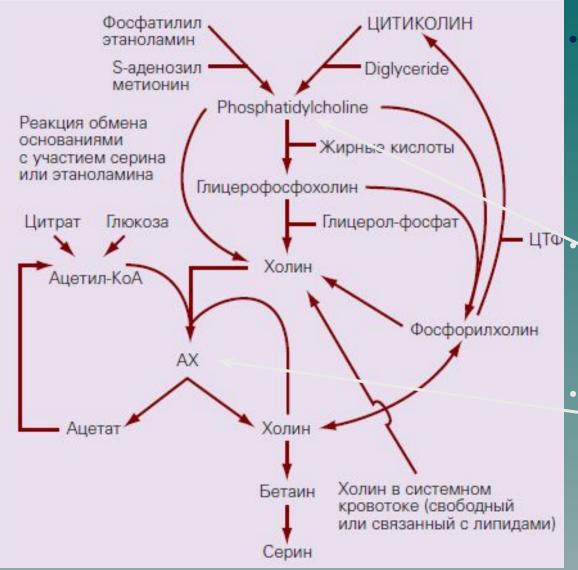
фосфатидилхолины (лецитины)

фосфосфинголипиды содержат остаток сфингозина

сфингомиелины

Функции клеточной мембраны:

гидрофобны


- поддержание гомеостаза и разделение клетки на отделы
- ферментная активность, связанная мембранными системами
 - рецепторного адекватная работа аппарата
- проведение

нервного

импульса

гидрофильные

Связь между цитиколином, метаболизмом холина, фосфолипидами головного мозга и ацетилхолином

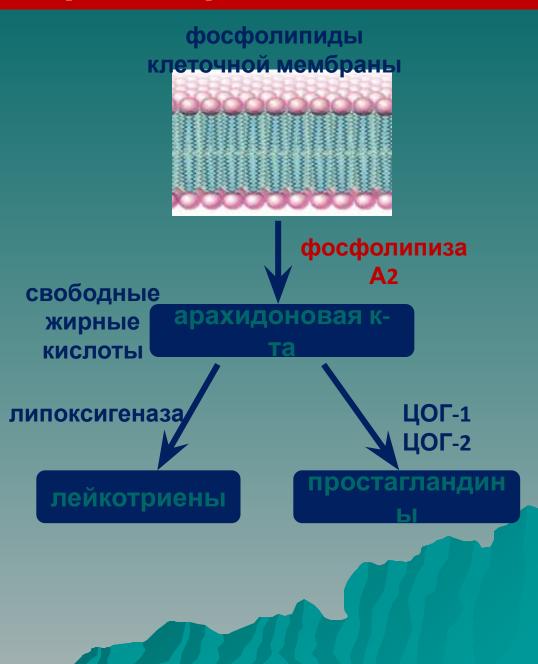
- (цитидин Цитиколин дифосфохолин ЦДФили холин) мононуклеотид, содержащий своей химической структуре рибозу, цитозин, пирофосфат и холин **_**цитиколин – необходимое промежуточное вещество в синтезе структурных фосфолипидов клеточных
- цитиколин также служит в качестве экзогенного источника холина для синтеза ацетилхолина

мембран

Цитиколин влияет на содержание фосфолипидов мембран нейронов в головном мозге

В исследованиях in vitro с использованием тканей нервной системы было показано, что гипоксия индуцирует уменьшение синтеза структурных фосфолипидов мембран

*- p < 0,05 в сравнении с


*ПЛАЦЕБО, 1 в сравнении с плацебо

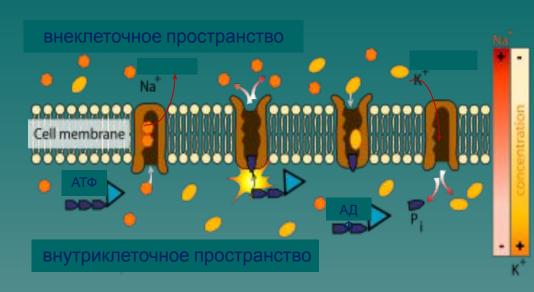
Цитиколин в дозе 500 мг/кг/сут при длительном применении достоверно увеличивал уровни фосфатидилхолина (ФДХ) и фосфатидилэтаноламина (ФДэтаноламина) в головном мозге крыс

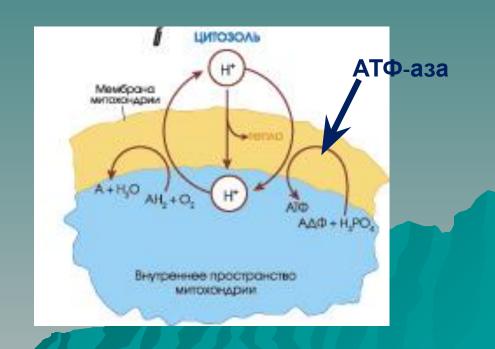
Lopez Gonzalez-Coviella I, Agut J, Ortiz JA, Wurtman RJ. Effects of orally administered cytidine 5'-diphosphate choline on brain phospholipid content. J Nutr Biochem 1992; 3: 313-5.

Фосфолипаза А2 и роль при гипоксии

Фосфолипаза А2 - фермент семейства фосфолипаз, который фосфолипиды расщепляет мембран и делает мембраны проницаемыми для ионов. Этот фермент активируется ионами кальция. Активация ЭТОГО фермента в условиях гипоксии приводит к разрушению фосфолипидов мембран митохондрий, в результате они не способны синтезировать АТФ. Клетка, содержащая такие митохондрии, уже не жизнеспособна. Гидролиз фосфолипазой липидов мембран сопровождается накоплением свободных жирных кислот, дальнейшем которые В вовлекаются процессы В перекисного окисления липидов образования медиаторов воспаления

образование свободных жирных кислот в условиях

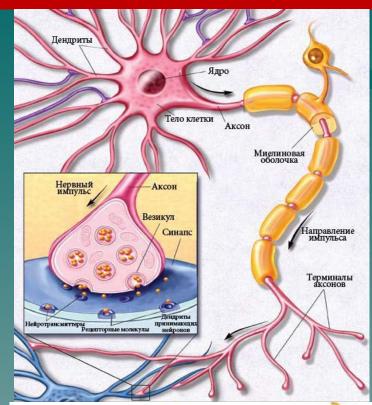


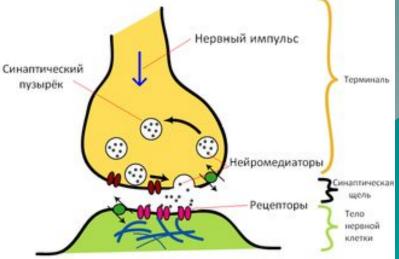

- *- p < 0,05 в сравнении с **- р < 0,001 в сравнении с ишемией
- шемкёпериментах было показано, что цитиколин снижает активность фосфолипазы A2 и уменьшает высвобождение свободных жирных кислот в условиях гипоксии
- На основании этих характеристик цитиколин считается неспецифическим ингибитором фосфолипазы A2 на внутриклеточном уровне

Kitazaki T, Ohta Y, Tsuda M. Inhibition of membraneassociated phospholipase A2 by CDP-choline. Jpn Pharmacol Ther 1985: 13: 159-64.

Роль Na/к АТФ-азы и митохондриальной АТФ-азы

- **Na/K ATФ-аза** фермент семейства транспортных АТФаз, находится в клеточной мембране. Основное назначение поддерживать клеточный потенциал и регулировать клеточный объём. Она изнутри клетки «забирает» ионы Na+, затем расщепляет молекулу АТФ и присоединяет к себе фосфат. Далее «выбрасывает» ионы Na+ из клетки и забирает ионы K+ из внешней среды внутрь клетки
- Митохондриальная АТФ-аза фермент, осуществляющий превращение АДФ в АТФ в митохондриях
- При гипоксии происходит угнетение работы этих ферментов, что ведет к нарушению реализации многочисленных клеточных функций и процессов нормального функционирования клеток




Цитиколин восстанавливает работу АТФ-аз

• В экспериментах было показано, что цитиколин восстанавливает активность митохондриальной АТФ-азы и мембранной Na+/K+ АТФ-азы, что приводит к подавлению активации фосфолипазы A2 в условиях гипоксии

Функции и работа нейротрансмиттеров

- Нейротрансмиттеры биологически актив-ные химические вещества, посредством которых осуществляется передача электри-ческого импульса от нервной клетки через синаптическое пространство между нейро-нами через специфические рецепторы
- Основные нейромедиаторы:
- ГАМК, глицин вызывают «тормозящее» воздействие на нейроны, уменьшают выделение из нейронов «возбуждающих» аминокислот
- Глутамат один из важных представителей класса «возбуждающих аминокислот». Играют важную роль в процессах эксайтотоксичности и гибели нейронов при гипоксии, а также участвуют в процессах памяти и обучения
- ✓ Дофамин стимулирующий нейромедиатор, участвует в когнитивных процессах (внимание), движении и эмоциях

Цитиколин снижает высвобождение глутамата в условиях ишемии

В эксперименте было показано, что цитиколин, введенный за 1 час перед ишемией, значительно снижает уровень внеклеточного глутамата в головном мозге в течение 6 часов после ишемии

Цитиколин увеличивает плотность связывания рецепторов глутамата через 28 дней после ишемии

Эксайтотоксичная постишемическая фаза, характеризующаяся избыточной активацией рецепторов к глутамату, очень короткая (в течение первого часа после эксайтотоксичного стимула) и затем приводит к развитию выраженного и длительного их дефицита. Следовательно, стимуляция NMDA-рецепторов через 24 и 48 часов после повреждения приводит к значительному улучшению функциональных исходов физиологический Цитиколин

Связывание глутаматных рецепторов (АМРА и NMDA) на максимальной площади очага инфаркта после лечения цитиколином по сравнению с контрольной группой. На шкале справа показана относительная плотность связывания— от низкой (фиолетовый) до высокой (красный), p<0,05 в сравнении

с контролем

Физиологический Цитиколин рас

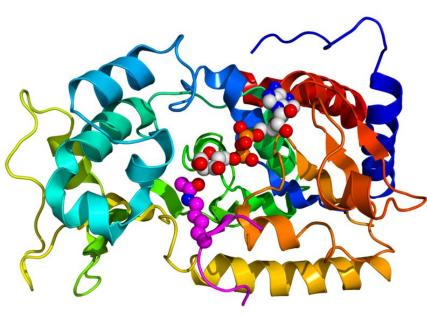
- Цитиколин повышает плотность связывания рецепторов NMDA и АМРА вокруг зоны поражения через 28 дней после фототромботического инсульта у крыс и улучшает неврологический исход
- Таким образом, цитиколни модулирует работу глутаматных рецепторов К et al. Citicoline Enhances Neuroregenerative Processes After Experimental Stroke in Rats. Stroke 2012;43(7):1931-1940

Цитиколин влияет на другие нейромедиаторы и синаптическую передачу

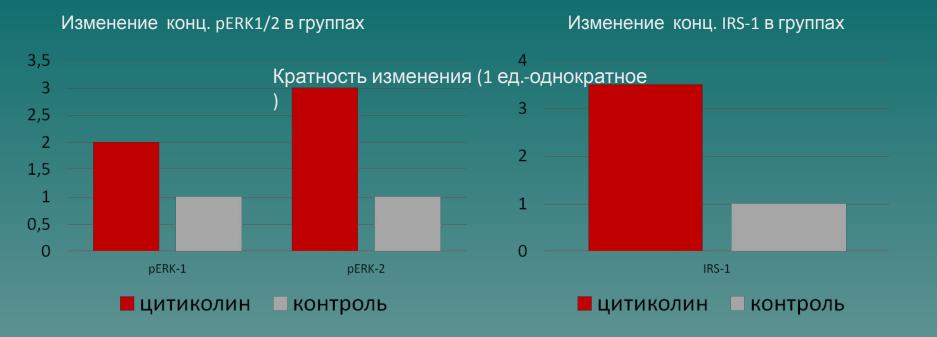
- Цитиколин увеличивает уровень дофамина, выступая в роли агониста дофаминовых рецепторов
- Цитиколин также увеличивает уровень норадреналина и серотонина в коре, полосатом теле и гиппокампе
- Цитиколин оказывает центральную холинергическую активацию, которая лежит в основе его сердечно-сосудистых и метаболических эффектов
- Также показано влияние цитиколина на опиоидные и ГАМК-рецепторы

Сердечно-сосудистые эффекты цитиколина

Цитиколин вызывает центральную холинергическую активацию, выражающуюся в стимуляции м₂- и н-холинорецепторов, оказывающих влияние на сердечно-сосудистую систему


Орган	Стимуляция н- холинорецепторов	Стимуляция м ₂ - холинорецепторов
Сердце	-	Брадикардия Снижение сократимости Снижение АВ проводимости вплоть до блокады
Сосудистый тонус, АД	обусловленное усиленным выделением адреналина надпочечниками, возбуждением симпатических ганглиев, а также прессорным рефлексом с каротидных клубочков	
Другие органы и системы	Стимуляция дыхания, высшей нервной деятельности, при больших дозах - тремор, судороги	Эффекты, характерные для активации парасимпатической нервной системы
Противопоказани я к назначению препаратов, стимулирующих	АГ, состояния при которых нежелательно повышение АД	Бронхиальная астма, тяжелые органические заболевания сердца (с нарушением проводимости), стенокардия, кровотечения из

Сердечно-сосудистые эффекты цитиколина


- В экспериментах было показано, что:
- Цитиколин <u>снижает ЧСС</u>, что может быть обусловлено усилением м-холинергической передачи в проводящей системе сердца
- Цитиколин <u>повышает АД</u> вследствие активации нхолинорецепторов симпато-адреналовой системы с повышением концентрации в плазме катехоламинов (норадреналин) и вазопрессина, а также вследствие стимуляции α-адренорецепторов
 - Таким образом, сердечно-сосудистые эффекты цитиколина обусловлены влиянием как на периферическую холинергическую, так и адренергическую передачу

Белок Сиртуин 1 и его биологическая роль

- Сиртуин1 (sirtuin, silent information regulator, SIRT1) сигнальный белок, участвующий в координации различных гормональных сетей, регуляторных белков и других генов, помогающих поддерживать нормальное состояние клетки
- Было показано, что сиртуины (SIRT2) регулируют процессы старения, транскрипции, апоптоза и сопротивляемость стрессу. Регуляция метаболизма и клеточные защитные механизмы, в которых участвуют сиртуины, могут быть использованы для увеличения продолжительности жизни
- SIRT1 вариант SIRT2, содержащийся в клетках млекопитающих, участвует в управлении множеством физиологических процессов, в том числе метаболизмом глюкозы, восстановлением повреждений ДНК и клеточной гибелью. Активация SIRT1 может быть полезной для предотвращения нейродегенерации при бни Альцгеймера, Паркинсона и др.

Цитиколин увеличивает уровни SIRT1 в нейронах и мононуклеарных клетках у крыс при модели ишемии

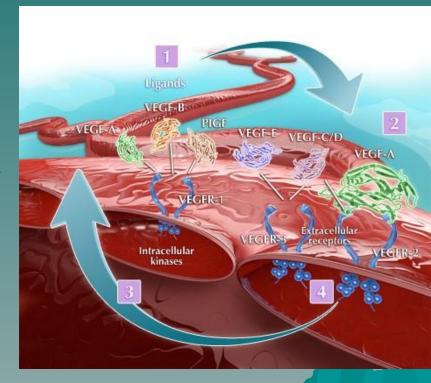
- Цитиколин увеличивает уровень SIRT1 не только в нейронах, но и в периферических клетках крови, таких как мононуклеары (моноциты, лимфоциты, плазматические клетки)
- Таким образом, цитиколин является первым препаратом, в отношении которого показан позитивный эффект на продукцию SIRT1, во многом объясняющий его нейропротективные свой GITBa eases Sirtuin1 expression concomitant to neuroprotection in experimental stroke.


Нейропротективные эффекты Цераксона

Показывает дозозависимое уменьшение зоны церебрального инфаркта¹

- Защищает нейроны от глутаматопосредованного апоптоза²
- Восстанавливает целостность нейрональных мембран, активность Na+/K+–ATФазы³
- **■Снижает активность фосфолипазы А2**3

Увеличивает в нейронах мозга и циркулирующих клетках крови экспрессию белка сиртуина1 – важного фактора эндогенной нейропротекции⁴

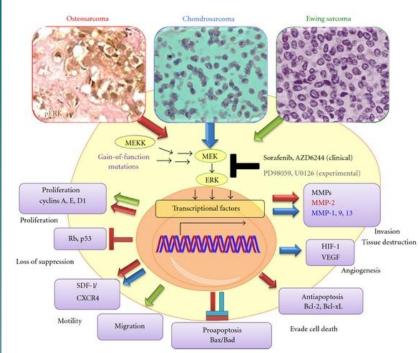

Фактор роста эндотелия сосудов и его роль

Фактор роста эндотелия сосудов (vascular endothelial growth factor, VEGF) – сигнальный белок, вырабатываемый клетками для стимулирования васкулогенеза (образование эмбриональной сосудистой системы) и ангиогенеза (рост новых сосудов в уже

существующей сосудистой системе) VEGF служит частью системы, отвечающей за восстановление подачи кислорода к тканям в ситуации, когда циркуляция крови недостаточна. Концентрация VEGF в крови повышена при бронхиальной астме и понижена при сахарном диабете.

• Основные функции VEGF — создание новых кровеносных сосудов в эмбриональном развитии или после травмы, усиление роста мышц после физических упражнений, обеспечение коллатерального кровообращения (создание новых сосудов при блокировании уже имеющихся)

• VEGF также усиленно продуцируется клетками некоторых опухолей человека, способствуя неоваскуляризации опухоли


Цитиколин повышает экспресссию VEGF при экспериментальном инфаркте мозга

- На 14-й день после экспериментального инсульта лечение цитиколином приводит к увеличению экспрессии VEGF в периинфарктной зоне по сравнению с контролем
- Таким образом, цитиколин усиливает ангиогенез, параллельно уменьшая объем инфаркта и улучшая функциональный исход после инсульта

Другие факторы стимуляции ангиогенеза

• Внеклеточная регуляторная фосфатзависимая киназа
(phospho-extracellular-signal regulated kinase,
pERK1/2) — ключевой сигнальный белок,
который вовлекается в процесса
ангиогенеза (регулирует процессы
клеточного деления и дифференцировки)
и, главным образом, стимулируется
факторами роста

• Субстрат инсулинового рецептора -1 (insulin-receptor substrate – IRS-1) является модулятором про-ангиогенных сигнальных каскадов в сосудистых эндотелиальных клетках

Цитиколин повышает экспрессию pERK1/2 и увеличивает активность IRS-1 при экспериментальном инфаркте мозга

- После 10 мин терапии цитиколином отмечалось 2-х и 3-х кратное увеличение экспрессии pERK 1 и 2 соответственно в сравнении с контролем
- Цитиколин также увеличивает фосфорилирование IRS-1 параллельно с активацией эндотелиальных клеток и увеличением васкуляризации при модели ишемии в сравнении с контролем

Krupinsky J et al. Citicoline induces angiogenesis improving survival of vascular/human brain microvessel endothelial cells through pathways involving ERK1/2 and insulin receptor substrate-1. Vascular Cell 2012;4:2-11

Нейрорегенераторные эффекты Цераксона

•Усиливает постишемический нейрогенез ¹
•Увеличивает многокомпонентность дендритов, плотность шипиков нейронов ²

•Усиливает ангиогенез (стимулирует выработку VEGF и эндотелиальных клеток предшественников) в периинфарктной зоне ^{3,4}

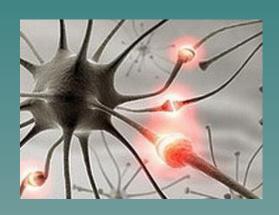
•Задействует новые нейрорегенераторные механизмы: увеличивает экспрессию рЕКК1/2 и IRS-1 − ключевых сигнальных белков, играющих важную роль в ангиогенезе и выживаемости эндотелиальных клеток⁵

Цераксон обладает комплексным эффектом

Нейропротективн

- Острый период инсульта
- Острый период ЧМТ
- Когнитивные нарушения

Нейрорегенераторн


ЫЙ

- Восстановительный период инсульта
- Восстановительный период ЧМТ
- Когнитивные нарушения

ЦИТИКОЛИН

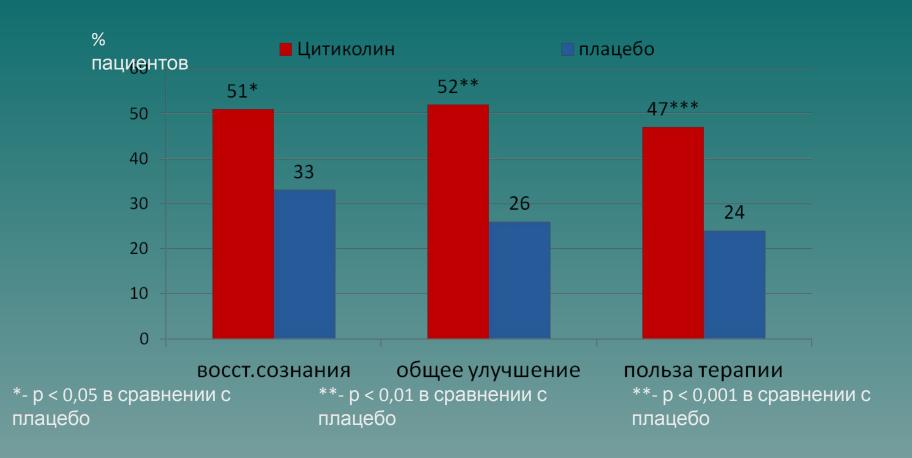
Клинические данные

КЛИНИЧЕСКИЕ ДАННЫЕ

Ишемический и геморрагический инсульт

Когнитивные нарушения

ЧМТ


Другие заболевания

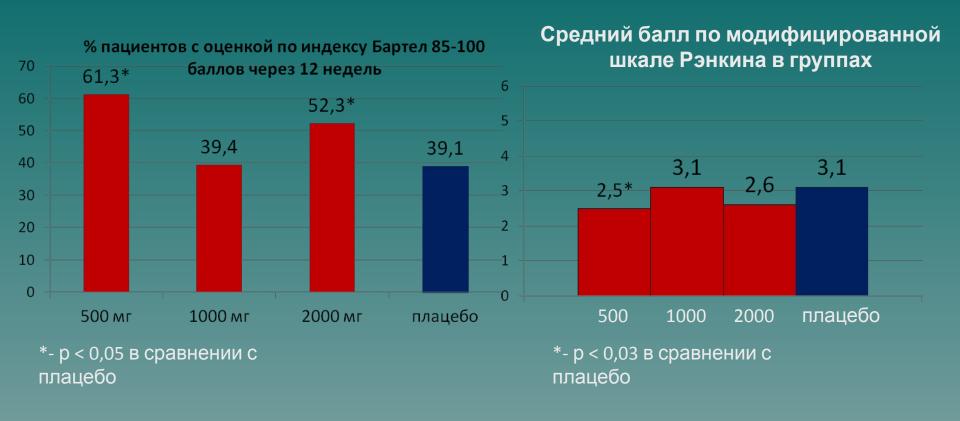
Обзор исследований эффективности и безопасности при лечении ишемического инсульта

Эффективность цитиколина в лечении острого инфаркта головного мозга (Tazaki Y et al. 1988) Дизайн

- Первое крупное двойное слепое плацебо-контролируемое исследование по цитиколину
- 272 пациента из 64 центров Японии с острым ишемическим инсультом
- Схема терапии: Цераксон в/в или плацебо 1г/сут в течение 14 дней
- Критерии эффективности:
- восстановление сознания, общее улучшение состояния, общая польза терапии

Результаты

Цитиколин оказался эффективным препаратом в лечении пациентов с острым инсультом. Кроме того, в группе пациентов, получавших цитиколин, число осложнений было меньше (1%), чем в группе плацебо (8,1%)

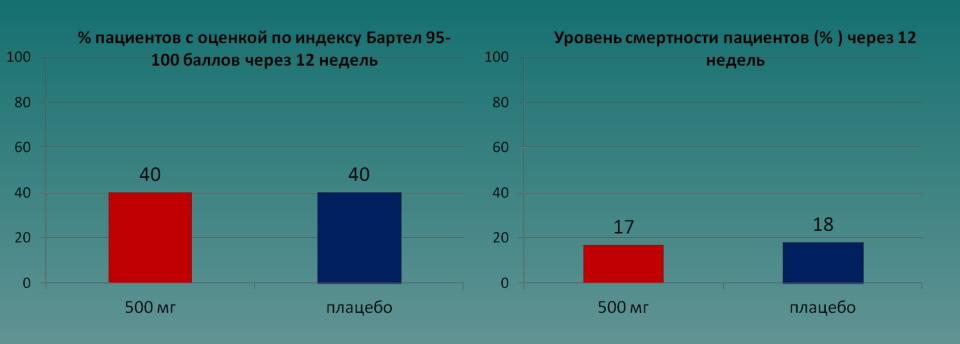

инсульта с оценкой эффективности различных

riopopasibilibili dirivikosivili bisio iolivili oo ipolo

ДОЗ (Clark WM et al. 1997)

- Сравнительное двойное слепое плацебо-контролируемое исследование
- 259 пациентов из США с острым ишемическим инсультом в течение первых 24 ч от начала развития заболевания были разделены на 4 группы
- Схема терапии: Цераксон per os 500, 1000 и 2000 мг/сут или плацебо в течение 6 недель с последующим наблюдением еще в течение 6 недель
- Критерии эффективности (исходно, через 6 недель, через 12 недель):
- Первичные точки: Индекс Бартел через 12 недель
- Вторичные точки: шкала NIH, шкала Рэнкина, MMSE,длительность пребывания в стационаре, смертность

Результаты

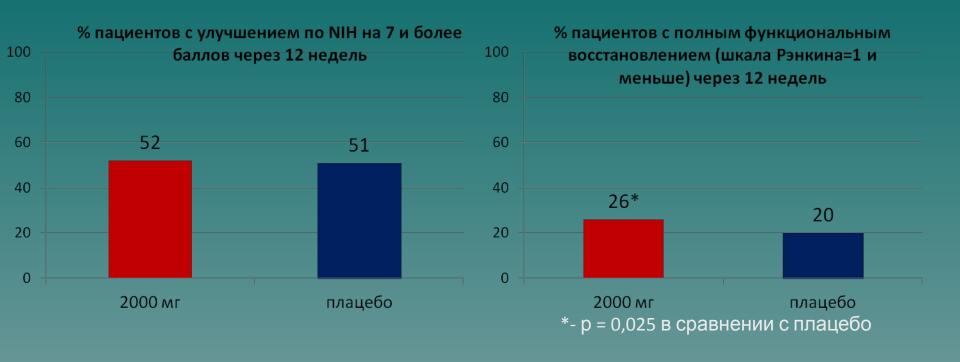


Пероральный прием цитиколина позволил достичь лучших функциональных исходов, и доза 500 мг являлась наиболее эффективной дозой цитиколина. Серьезных нежелательных явлений или смертей, связанных с приемом цитиколина, не отмечалось

пациентов с острым ишемическим инсультом (Clark WM et al. 1999) Дизаин

- Мультицентрвое двойное слепое плацебо-контролируемое исследование
- 394 пациента (ср. возраст 71 год) из 31 центра США с острым ишемическим инсультом в течение первых 24 ч от начала развития заболевания были разделены на 2 группы: группа цитиколин (n=127), и плацебо (n=267)
- Схема терапии: Цераксон per os 500 мг/сут или плацебо в течение 6 недель с последующим наблюдением еще в течение 6 недель
- Критерии эффективности (исходно, через 6 недель, через 12 недель):
- Первичные точки: Индекс Бартел через 12 недель
- вторичные точки: шкала NIH, шкала Рэнкина, смертность

Результаты

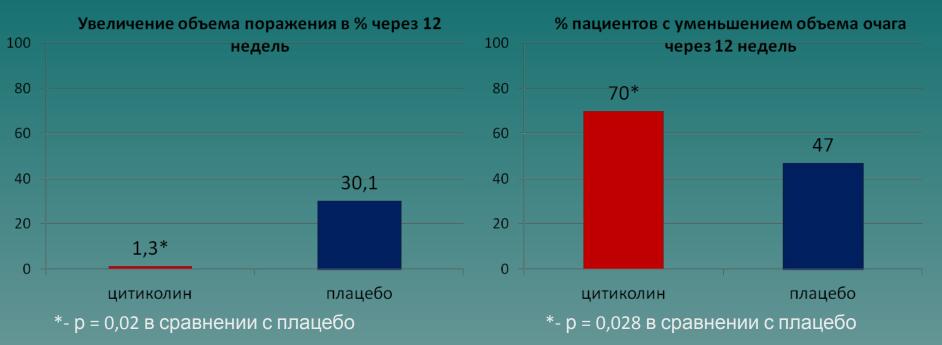


- •Значимых различий не было установлено ни по одному из показателей
- •Однако при ретроспективном анализе в подгруппах было показано, что у пациентов с умеренным или тяжелым инсультом (исходный балл NIH 8 или выше), лечение цитиколином увеличило вероятность полного восстановления, (индекс Бартел 95) через 12 недель (21% плацебо, 33% цитиколин; p=0,05)
- У пациентов с легким инсультом (т.е. с исходным индексом по шкале

Эффективность Цитиколина при ишемическом инсульте. Исследование ECCO (Clark WM et al. 2001) Дизайн

- Мультицентровое двойное слепое плацебо-контролируемое исследование III фазы
- 899 пациентов (ср. возраст 71 год) из 118 центров США с острым ишемическим инсультом умеренной или тяжелой степени в течение первых 24 ч от начала развития заболевания были разделены на 2 группы: группа цитиколин (n=453), и плацебо (n=446)
- Схема терапии: Цераксон per os 2000 мг/сут или плацебо в течение 6 недель с последующим наблюдением еще в течение 6 недель
- Критерии эффективности (исходно, через 6 недель, через 12 недель):
- Первичные точки: пропорция пациентов с улучшением по шкале NIH на 7 или более баллов через 12 недель
- Вторичные точки: показатели неврологических функций и объема очага поражения в группах к концу исследования

Результаты



- •В группе цитиколина отмечалась тенденция к достижению полного неврологического восстановления (балл по шкале инсульта NIH≤ 1) 40% в группе цитиколина и 35% в группе плацебо(p=0,056),
- •а также полного функционального восстановления, определяемого как индекс Бартеля 95 или выше (40% в группе цитиколина и 35% в группе плацебо; p=0,108)

Исследование эффекта влияния цитиколина на объем мозгового инфаркта (Warach S et al. 1996, 2000) Дизайн

- По результатам каждого из проведенных исследований была проведена оценка объема очага поражения в динамике методом дифузионно-взвешенной МРТ в группах в зависимости от исходной тяжести состояния пациентов по шкале NIH
- Высчитывался процент пациентов с уменьшением объема поражения, а также определялся процент увеличения объема поражения через 12 недель

Результаты

- •У пациентов с кортикальным поражением объемом от 1 до 120 см³, которые были проанализированы на исходном этапе, у пациентов, получавших плацебо (n=47), объем поражения увеличился на 40,5 ±28,7% с медианой 4,5%, тогда как у пациентов, получавших цитиколин (n=43), объем поражения увеличился на 7,3±19,9% с медианой -23,9% (p=0,006)
- •Уменьшение объема также достоверно коррелировало с клиническим улучшением у пациентов

Резюме результатов проведенных исследований

- Оценивалась эффективность цитиколина per os у пациентов с ишемическим инсультом
- Общее количество пациентов 1652
- Дозировки цитиколина: 500 2000 мг
- Длительность терапии: 6 недель
- Оценка результатов: через 12 недель
- Эффективность цитиколина: неоднозначные результаты в отношении эффективности препарата в улучшении исходов у пациентов. Отмечена тенденция к улучшению прогноза, а также положительная динамика при анализе подгрупп
- Безопасность цитиколина: удовлетворительная, сопоставима с плацебо

Вывод

 Цераксон – безопасный и эффективный препарат для лечения пациентов первичным внутримозговым кровоизлиянием, с чем в связи целесообразно назначать пациентам клиническими признаками, указывающими на инсульт, еще проведения методов нейровизуализации, т.е. на самом раннем госпитальном или даже догоспитальном этапе

Общий вывод по применению Цераксона при инсульте

- Результаты мета-анализов свидетельствуют о благоприятном и выраженном влиянии препарата, с абсолютным снижением отдаленной инвалидизации и смертности на 10-12% абсолютное снижение отдаленной инвалидизации и смертности 57% на цитиколине и 67,5% на плацебо (p<0,00001)
- Цитиколин показывает достоверное уменьшение размера инфаркта мозга через 3 мес, причем наиболее выраженный эффект был отмечен для дозировки 2000 мг
- Цитиколин улучшает неврологический, функциональный и глобальный исходы у пациентов с острым ишемическим инсультом и не вызывает серьезных проблем с безопасностью и переносимостью