LECTURE 3

Three-point difference derivative

Mukhametkaliyeva N.E.

Three-point difference derivative

We can derive the three-point difference derivative. Let us construct the scheme with the second order accuracy.

$$y_i' \approx \frac{ay_i + by_{i+1} + cy_{i+2}}{\Delta x} + O(\Delta x^2),$$

 $i = 0, ..., N - 2;$

The coefficients a, b and c

$$y'_{i} \approx \frac{ay_{i} + by_{i+1} + cy_{i+2}}{\Delta x} + O(\Delta x^{2}),$$

 $i = 0, ..., N - 2;$

Three-point difference derivative

the found values of a, b and c are substituted into the first formula

$$y_i' \approx \frac{-3y_i + 4y_{i+1} - y_{i+2}}{2\Delta x} + O(\Delta x^2),$$

 $i = 0, ..., N - 2;$

c. Difference formulas for f'(x):

# of pts	Formula	approx error	c
2-1	$\frac{1}{h}[f(x+h)-f(x)]$	$-\frac{f''(c)}{2!}h$	[x,x+h]
2-2	$\frac{1}{h}[f(x)-f(x-h)]$	$-\frac{f''(c)}{2!}h$	[x-h,x]
3-1	$\frac{1}{h} \left[\frac{1}{2} f(x+h) - \frac{1}{2} f(x-h) \right]$	$-\frac{f'''(c)}{6}h^2$	[x-h,x+h]
3-2	$\frac{1}{h} \left[-\frac{3}{2} f(x) + 2f(x+h) - \frac{1}{2} f(x+2h) \right]$	$\frac{f'''(c)}{3}h^2$	[x,x+2h]
3-3	$\frac{1}{h} \left[\frac{1}{2} f(x - 2h) - 2f(x - h) + \frac{3}{2} f(x) \right]$	$\frac{f'''(c)}{3}h^2$	[x-2h,x]
5-1	$\frac{1}{h} \left[\frac{1}{12} f(x-2h) - \frac{8}{12} f(x-h) + \frac{8}{12} f(x+h) - \frac{1}{12} f(x+2h) \right]$	$\frac{f^{(5)}(c)}{30}h^4$	[x-2h,x+2h]
5-2	$\frac{1}{h} \left[-\frac{25}{12} f(x) + \frac{48}{12} f(x+h) - \frac{36}{12} f(x+2h) + \frac{16}{12} f(x+3h) - \frac{3}{12} f(x+4h) \right]$	$\frac{f^{(5)}(c)}{5}h^4$	[x,x+4h]

Laboratory work 2

- Choose 3 difference formulas from table
- Compare them with the exact solution of the derivative
- Find the mathematical expectation
- Conclusion