
Greedy Algorithms:
Introduction

http://iti.wtf

Algorithms and Data Structures

Artem A. Golubnichiy
artem@golubnichij.ru

Department of Software of Computer Facilities and Automated Systems
Katanov Khakass State University

STRUCTURE OF THE CLASS

2

• Maximize Your Salary

• Queue of Patients

• Implementation and Analysis

• Main Ingredients

WHAT’S COMING

3

• Solve salary maximization problem

• Come up with a greedy algorithm yourself

• Solve optimal queue arrangement problem

• Generalize solutions using the concepts of greedy choice,

subproblem and safe choice

MAXIMIZE SALARY

4

MAXIMIZE SALARY

5

MAXIMIZE SALARY

6

LARGEST NUMBER

7

Toy problem

What is the largest number that consists of digits 9, 8, 9, 6, 1? Use all
the digits.

LARGEST NUMBER

8

Toy problem

What is the largest number that consists of digits 9, 8, 9, 6, 1? Use all
the digits.

Examples

16899, 69891, 98961, . . .

LARGEST NUMBER

9

Correct Answer

99861

GREEDY STRATEGY

10

{9, 8, 9, 6, 1} → ? ? ? ? ?

GREEDY STRATEGY

11

{9, 8, 9, 6, 1}

Find max

Find max digit

GREEDY STRATEGY

12

{9, 8, 9, 6, 1}

Find max

Find max digit

GREEDY STRATEGY

13

{9, 8, 9, 6, 1} →

Find max

Find max digit

Append it to the number

Append

GREEDY STRATEGY

14

{9, 8, 9, 6, 1} →
9

Find max

Find max digit

Append it to the number

Append

GREEDY STRATEGY

15

{9, 8, 9, 6, 1} →
9

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Append

Remove

GREEDY STRATEGY

16

{9, 8, 9, 6, 1} →
9

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Append

Remove

GREEDY STRATEGY

17

{8, 9, 6, 1} →
9

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

18

{8, 9, 6, 1} →
9

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

19

{8, 9, 6, 1} →
99

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

20

{8, 9, 6, 1} →
99

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

21

{8, 6, 1} →
99

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

22

{8, 6, 1} →
99

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

23

{8, 6, 1} →
998

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

24

{8, 6, 1} →
998

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

25

{6, 1} →
998

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

26

{6, 1} →
998

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

27

{6, 1} →
9986

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

28

{6, 1} →
9986

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

29

{1} →
9986

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

30

{1} →
9986

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

31

{1} →
99861

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

32

{1} →
99861

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

33

{} →
99861

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove

GREEDY STRATEGY

34

{9, 8, 9, 6, 1} → 99861

Find max

Find max digit

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove Success!

QUEUE OF PATIENTS

35

QUEUE OF PATIENTS

36

Queue Arrangement

Input: n patients have come to the doctor’s office at 9:00AM. They
can be treated in any order. For i-th patient, the time needed
for treatment is t

i
. You need to arrange the patients in such a

queue that the total waiting time is minimized.

Output: The minimum total waiting time.

QUEUE OF PATIENTS

37

Optimal Queue Arrangement

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (1, 2, 3):

• First patient doesn’t wait

QUEUE OF PATIENTS

38

Optimal Queue Arrangement

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (1, 2, 3):

• First patient doesn’t wait

• Second patient waits for 15 minutes

QUEUE OF PATIENTS

39

Optimal Queue Arrangement

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (1, 2, 3):

• First patient doesn’t wait

• Second patient waits for 15 minutes

• Third patient waits for 15 + 20 = 35 minutes

QUEUE OF PATIENTS

40

Optimal Queue Arrangement

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (1, 2, 3):

• First patient doesn’t wait

• Second patient waits for 15 minutes

• Third patient waits for 15 + 20 = 35 minutes

• Total waiting time 15 + 35 = 50 minutes

QUEUE OF PATIENTS

41

Optimal Queue Arrangement

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (3, 1, 2):

• First patient doesn’t wait

QUEUE OF PATIENTS

42

Optimal Queue Arrangement

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (3, 1, 2):

• First patient doesn’t wait

• Second patient waits for 10 minutes

QUEUE OF PATIENTS

43

Optimal Queue Arrangement

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (3, 1, 2):

• First patient doesn’t wait

• Second patient waits for 10 minutes

• Third patient waits for 10 + 15 = 25 minutes

QUEUE OF PATIENTS

44

Optimal Queue Arrangement

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (3, 1, 2):

• First patient doesn’t wait

• Second patient waits for 10 minutes

• Third patient waits for 10 + 15 = 25 minutes

• Total waiting time 10 + 25 = 35 minutes

GREEDY STRATEGY

45

• Make some greedy choice

• Reduce to a smaller problem

• Iterate

GREEDY CHOICE

46

• First treat the patient with the maximum treatment time

• First treat the patient with the minimum treatment time

• First treat the patient with average treatment time

GREEDY ALGORITHM

47

• First treat the patient with the minimum treatment time

GREEDY ALGORITHM

48

• First treat the patient with the minimum treatment time

• Remove this patient from the queue

GREEDY ALGORITHM

49

• First treat the patient with the minimum treatment time

• Remove this patient from the queue

• Treat all the remaining patients in such order as to minimize their total

waiting time

SUBPROBLEM

50

Definition

Subproblem is a similar problem of smaller size.

SUBPROBLEM

51

Examples

• MaximumSalary(1, 9, 8, 9, 6) =

SUBPROBLEM

52

Examples

• MaximumSalary(1, 9, 8, 9, 6) =

 ‘‘9’’ + MaximumSalary(1, 8, 9, 6)

SUBPROBLEM

53

Examples

• MaximumSalary(1, 9, 8, 9, 6) =

 ‘‘9’’ + MaximumSalary(1, 8, 9, 6)

• Minimum total waiting time for n patients = (n − 1) · t
min

+

SUBPROBLEM

54

Examples

• MaximumSalary(1, 9, 8, 9, 6) =

 ‘‘9’’ + MaximumSalary(1, 8, 9, 6)

• Minimum total waiting time for n patients = (n − 1) · t
min

+ minimum

total waiting time for n − 1 patients without t
min

SAFE CHOICE

55

Definition

A greedy choice is called safe choice if there is an optimal solution

consistent with this first choice.

SAFE CHOICE

56

Lemma

To treat the patient with minimum treatment time t
min

 first is a safe

choice.

PROOF IDEA

57

• Is it possible for an optimal arrangement to have two consecutive patients in

order with treatment times t
1
 and t

2
 such that t

1
 > t

2
?

PROOF IDEA

58

• Is it possible for an optimal arrangement to have two consecutive patients in

order with treatment times t
1
 and t

2
 such that t

1
 > t

2
?

• It is impossible. Assume there is such an optimal arrangement and consider

what happens if we swap these two patients.

PROOF IDEA

59

• Is it possible for an optimal arrangement to have two consecutive patients in

order with treatment times t
1
 and t

2
 such that t

1
 > t

2
?

• It is impossible. Assume there is such an optimal arrangement and consider

what happens if we swap these two patients.

• If we swap two consecutive patients with treatment times t1 > t2: Waiting

time for all the patients before and after these two doesn’t change

PROOF IDEA

60

• Is it possible for an optimal arrangement to have two consecutive patients in

order with treatment times t
1
 and t

2
 such that t

1
 > t

2
?

• It is impossible. Assume there is such an optimal arrangement and consider

what happens if we swap these two patients.

• If we swap two consecutive patients with treatment times t1 > t2: Waiting

time for all the patients before and after these two doesn’t change

• Waiting time for the patient which was first increases by t
2
, and for the

second one it decreases by t
1

PROOF IDEA

61

• Is it possible for an optimal arrangement to have two consecutive patients in

order with treatment times t
1
 and t

2
 such that t

1
 > t

2
?

• It is impossible. Assume there is such an optimal arrangement and consider

what happens if we swap these two patients.

• If we swap two consecutive patients with treatment times t1 > t2: Waiting

time for all the patients before and after these two doesn’t change

• Waiting time for the patient which was first increases by t
2
, and for the

second one it decreases by t
1

• Total waiting time increases by t
2
 − t

1
 < 0, so it actually decreases

PROOF IDEA

62

We have just proved:

Lemma

In any optimal arrangement of the patients, first of any two consecutive

patients has smaller treatment time.

SAFE CHOICE PROOF

63

• Assume the patient with treatment time t
min

 is not the first

SAFE CHOICE PROOF

64

• Assume the patient with treatment time t
min

 is not the first

• Let i > 1 be the position of the first patient with treatment time t
min

 in the

optimal arrangement

SAFE CHOICE PROOF

65

• Assume the patient with treatment time t
min

 is not the first

• Let i > 1 be the position of the first patient with treatment time t
min

 in the

optimal arrangement

• Then the patient at position i − 1 has bigger treatment time — a

contradiction

Conclusion

66

Now we know that the following greedy algorithm works correctly:

• First treat the patient with the minimum treatment time

Conclusion

67

Now we know that the following greedy algorithm works correctly:

• First treat the patient with the minimum treatment time

• Remove this patient from the queue

Conclusion

68

Now we know that the following greedy algorithm works correctly:

• First treat the patient with the minimum treatment time

• Remove this patient from the queue

• Treat all the remaining patients in such order as to minimize their total

waiting time

69

MinTotalWaitingTime(t, n)

waitingTime ← 0
treated ← array of n zeros
for i from 1 to n:
 t

min
 ← +∞

 minIndex ← 0
 for j from 1 to n:
 if treated[j] == 0 and t[j] < t

min
:

 t
min

 ← t[j]
 minIndex ← j
 waitingTime ← waitingTime + (n − i) · t

min

 treated[minIndex] = 1
return waitingTime

70

MinTotalWaitingTime(t, n)

waitingTime ← 0
treated ← array of n zeros
for i from 1 to n:
 t

min
 ← +∞

 minIndex ← 0
 for j from 1 to n:
 if treated[j] == 0 and t[j] < t

min
:

 t
min

 ← t[j]
 minIndex ← j
 waitingTime ← waitingTime + (n − i) · t

min

 treated[minIndex] = 1
return waitingTime

71

MinTotalWaitingTime(t, n)

waitingTime ← 0
treated ← array of n zeros
for i from 1 to n:
 t

min
 ← +∞

 minIndex ← 0
 for j from 1 to n:
 if treated[j] == 0 and t[j] < t

min
:

 t
min

 ← t[j]
 minIndex ← j
 waitingTime ← waitingTime + (n − i) · t

min

 treated[minIndex] = 1
return waitingTime

72

MinTotalWaitingTime(t, n)

waitingTime ← 0
treated ← array of n zeros
for i from 1 to n:
 t

min
 ← +∞

 minIndex ← 0
 for j from 1 to n:
 if treated[j] == 0 and t[j] < t

min
:

 t
min

 ← t[j]
 minIndex ← j
 waitingTime ← waitingTime + (n − i) · t

min

 treated[minIndex] = 1
return waitingTime

73

MinTotalWaitingTime(t, n)

waitingTime ← 0
treated ← array of n zeros
for i from 1 to n:
 t

min
 ← +∞

 minIndex ← 0
 for j from 1 to n:
 if treated[j] == 0 and t[j] < t

min
:

 t
min

 ← t[j]
 minIndex ← j
 waitingTime ← waitingTime + (n − i) · t

min

 treated[minIndex] = 1
return waitingTime

74

MinTotalWaitingTime(t, n)

waitingTime ← 0
treated ← array of n zeros
for i from 1 to n:
 t

min
 ← +∞

 minIndex ← 0
 for j from 1 to n:
 if treated[j] == 0 and t[j] < t

min
:

 t
min

 ← t[j]
 minIndex ← j
 waitingTime ← waitingTime + (n − i) · t

min

 treated[minIndex] = 1
return waitingTime

75

MinTotalWaitingTime(t, n)

waitingTime ← 0
treated ← array of n zeros
for i from 1 to n:
 t

min
 ← +∞

 minIndex ← 0
 for j from 1 to n:
 if treated[j] == 0 and t[j] < t

min
:

 t
min

 ← t[j]
 minIndex ← j
 waitingTime ← waitingTime + (n − i) · t

min

 treated[minIndex] = 1
return waitingTime

76

MinTotalWaitingTime(t, n)

waitingTime ← 0
treated ← array of n zeros
for i from 1 to n:
 t

min
 ← +∞

 minIndex ← 0
 for j from 1 to n:
 if treated[j] == 0 and t[j] < t

min
:

 t
min

 ← t[j]
 minIndex ← j
 waitingTime ← waitingTime + (n − i) · t

min

 treated[minIndex] = 1
return waitingTime

77

MinTotalWaitingTime(t, n)

waitingTime ← 0
treated ← array of n zeros
for i from 1 to n:
 t

min
 ← +∞

 minIndex ← 0
 for j from 1 to n:
 if treated[j] == 0 and t[j] < t

min
:

 t
min

 ← t[j]
 minIndex ← j
 waitingTime ← waitingTime + (n − i) · t

min

 treated[minIndex] = 1
return waitingTime

78

MinTotalWaitingTime(t, n)

waitingTime ← 0
treated ← array of n zeros
for i from 1 to n:
 t

min
 ← +∞

 minIndex ← 0
 for j from 1 to n:
 if treated[j] == 0 and t[j] < t

min
:

 t
min

 ← t[j]
 minIndex ← j
 waitingTime ← waitingTime + (n − i) · t

min

 treated[minIndex] = 1
return waitingTime

79

MinTotalWaitingTime(t, n)

waitingTime ← 0
treated ← array of n zeros
for i from 1 to n:
 t

min
 ← +∞

 minIndex ← 0
 for j from 1 to n:
 if treated[j] == 0 and t[j] < t

min
:

 t
min

 ← t[j]
 minIndex ← j
 waitingTime ← waitingTime + (n − i) · t

min

 treated[minIndex] = 1
return waitingTime

80

MinTotalWaitingTime(t, n)

waitingTime ← 0
treated ← array of n zeros
for i from 1 to n:
 t

min
 ← +∞

 minIndex ← 0
 for j from 1 to n:
 if treated[j] == 0 and t[j] < t

min
:

 t
min

 ← t[j]
 minIndex ← j
 waitingTime ← waitingTime + (n − i) · t

min

 treated[minIndex] = 1
return waitingTime

81

Lemma

The running time of MinTotalWaitingTime(t, n) is O(n2).

82

Lemma

The running time of MinTotalWaitingTime(t, n) is O(n2).

Proof

• i changes from 1 to n

83

Lemma

The running time of MinTotalWaitingTime(t, n) is O(n2).

Proof

• i changes from 1 to n

• For each value of i, j changes from 1 to n

84

Lemma

The running time of MinTotalWaitingTime(t, n) is O(n2).

Proof

• i changes from 1 to n

• For each value of i, j changes from 1 to n

• This results in O(n2)

85

• Actually, this problem can be solved in time O(n log n)

86

• Actually, this problem can be solved in time O(n log n)

• Instead of choosing the patient with minimum treatment time

out of remaining ones n times, sort patients by increasing

treatment time

87

• Actually, this problem can be solved in time O(n log n)

• Instead of choosing the patient with minimum treatment time

out of remaining ones n times, sort patients by increasing

treatment time

• This sorted arrangement is optimal

88

• Actually, this problem can be solved in time O(n log n)

• Instead of choosing the patient with minimum treatment time

out of remaining ones n times, sort patients by increasing

treatment time

• This sorted arrangement is optimal

• It is possible to sort n patients in time O(n log n)

89

• Make some first choice

• Then solve a problem of the same kind

• Smaller: fewer digits, fewer patients

• This is called a “subproblem”

REDUCTION TO SUBPROBLEM

90

• A choice is called safe if there is an optimal solution consistent with

this first choice

SAFE CHOICE

91

• A choice is called safe if there is an optimal solution consistent with

this first choice

• Not all first choices are safe

SAFE CHOICE

92

• A choice is called safe if there is an optimal solution consistent with

this first choice

• Not all first choices are safe

• Greedy choices are often unsafe

SAFE CHOICE

93

GENERAL STRATEGY

Problem

94

GENERAL STRATEGY

Problem

greedy choice

• Make a greedy choice

95

GENERAL STRATEGY

Problem Safe choice

greedy choice

• Make a greedy choice

• Prove that it is a safe choice

96

GENERAL STRATEGY

Problem Safe choice

greedy choice

Subproblem

• Make a greedy choice

• Prove that it is a safe choice

• Reduce to a subproblem

97

GENERAL STRATEGY

Problem Safe choice

greedy choice

Subproblem

• Make a greedy choice

• Prove that it is a safe choice

• Reduce to a subproblem

• Solve the subproblem

