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STRUCTURE OF THE CLASS
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• Maximize Your Salary 

• Queue of Patients 

• Implementation and Analysis 

• Main Ingredients 



WHAT’S COMING 
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• Solve salary maximization problem 

• Come up with a greedy algorithm yourself 

• Solve optimal queue arrangement problem 

• Generalize solutions using the concepts of greedy choice, 

subproblem and safe choice 
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MAXIMIZE SALARY 
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LARGEST NUMBER 
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Toy problem 

What is the largest number that consists of digits 9, 8, 9, 6, 1? Use all 
the digits. 



LARGEST NUMBER 
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Toy problem 

What is the largest number that consists of digits 9, 8, 9, 6, 1? Use all 
the digits. 

Examples

16899, 69891, 98961, . . . 



LARGEST NUMBER 
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Correct Answer

99861



GREEDY STRATEGY 
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{9, 8, 9, 6, 1}   →  ? ? ? ? ? 



GREEDY STRATEGY 
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{9, 8, 9, 6, 1} 

Find max 

Find max digit 



GREEDY STRATEGY 
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{9, 8, 9, 6, 1} 

Find max 

Find max digit 



GREEDY STRATEGY 
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{9, 8, 9, 6, 1}  →  

Find max 

Find max digit 

Append it to the number

Append



GREEDY STRATEGY 
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{9, 8, 9, 6, 1}  →  
9

Find max 

Find max digit 

Append it to the number

Append



GREEDY STRATEGY 
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{9, 8, 9, 6, 1}  →  
9

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits 

Append

Remove 



GREEDY STRATEGY 

16

{9, 8, 9, 6, 1}  →  
9

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits 

Append

Remove 



GREEDY STRATEGY 
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{8, 9, 6, 1}  →  
9

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{8, 9, 6, 1}  →  
9

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{8, 9, 6, 1}  →  
99

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{8, 9, 6, 1}  →  
99

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{8, 6, 1}  →  
99

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{8, 6, 1}  →  
99

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{8, 6, 1}  →  
998

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{8, 6, 1}  →  
998

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{6, 1}  →  
998

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{6, 1}  →  
998

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{6, 1}  →  
9986

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{6, 1}  →  
9986

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{1}  →  
9986

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{1}  →  
9986

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{1}  →  
99861

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{1}  →  
99861

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{}  →  
99861

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove 



GREEDY STRATEGY 
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{9, 8, 9, 6, 1}  →  99861

Find max 

Find max digit 

Append it to the number

Remove it from the list of digits

Repeat while there are digits in the list

Append

Remove Success!



QUEUE OF PATIENTS 
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QUEUE OF PATIENTS 
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Queue Arrangement 

Input:  n patients have come to the doctor’s office at 9:00AM. They 
can be treated in any order. For i-th patient, the time needed 
for treatment is t

i
. You need to arrange the patients in such a 

queue that the total waiting time is minimized. 

Output: The minimum total waiting time. 



QUEUE OF PATIENTS 
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Optimal Queue Arrangement 

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (1, 2, 3): 

• First patient doesn’t wait 



QUEUE OF PATIENTS 
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Optimal Queue Arrangement 

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (1, 2, 3): 

• First patient doesn’t wait 

• Second patient waits for 15 minutes 
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Optimal Queue Arrangement 

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (1, 2, 3): 

• First patient doesn’t wait 

• Second patient waits for 15 minutes 

• Third patient waits for 15 + 20 = 35 minutes 
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Optimal Queue Arrangement 

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (1, 2, 3): 

• First patient doesn’t wait 

• Second patient waits for 15 minutes 

• Third patient waits for 15 + 20 = 35 minutes 

• Total waiting time 15 + 35 = 50 minutes



QUEUE OF PATIENTS 
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Optimal Queue Arrangement 

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (3, 1, 2): 

• First patient doesn’t wait 



QUEUE OF PATIENTS 

42

Optimal Queue Arrangement 

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (3, 1, 2): 

• First patient doesn’t wait 

• Second patient waits for 10 minutes



QUEUE OF PATIENTS 
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Optimal Queue Arrangement 

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (3, 1, 2): 

• First patient doesn’t wait 

• Second patient waits for 10 minutes 

• Third patient waits for 10 + 15 = 25 minutes 



QUEUE OF PATIENTS 
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Optimal Queue Arrangement 

t
1
 =15, t

2
 =20 and t

3
 =10. Arrangement (3, 1, 2): 

• First patient doesn’t wait 

• Second patient waits for 10 minutes 

• Third patient waits for 10 + 15 = 25 minutes 

• Total waiting time 10 + 25 = 35 minutes



GREEDY STRATEGY 
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• Make some greedy choice 

• Reduce to a smaller problem 

• Iterate 



GREEDY CHOICE 
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• First treat the patient with the maximum treatment time 

• First treat the patient with the minimum treatment time 

• First treat the patient with average treatment time 



GREEDY ALGORITHM 
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• First treat the patient with the minimum treatment time 



GREEDY ALGORITHM 
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• First treat the patient with the minimum treatment time

• Remove this patient from the queue  



GREEDY ALGORITHM 
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• First treat the patient with the minimum treatment time

• Remove this patient from the queue  

• Treat all the remaining patients in such order as to minimize their total 

waiting time 



SUBPROBLEM 
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Definition

Subproblem is a similar problem of smaller size.



SUBPROBLEM 
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Examples 

• MaximumSalary(1, 9, 8, 9, 6) = 



SUBPROBLEM 
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Examples 

• MaximumSalary(1, 9, 8, 9, 6) = 

      ‘‘9’’ + MaximumSalary(1, 8, 9, 6) 



SUBPROBLEM 
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Examples 

• MaximumSalary(1, 9, 8, 9, 6) = 

      ‘‘9’’ + MaximumSalary(1, 8, 9, 6) 

• Minimum total waiting time for n patients = (n − 1) · t
min

+
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Examples 

• MaximumSalary(1, 9, 8, 9, 6) = 

      ‘‘9’’ + MaximumSalary(1, 8, 9, 6) 

• Minimum total waiting time for n patients = (n − 1) · t
min

+ minimum 

total waiting time for n − 1 patients without t
min

 



SAFE CHOICE 
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Definition

A greedy choice is called safe choice if there is an optimal solution 

consistent with this first choice. 



SAFE CHOICE 
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Lemma

To treat the patient with minimum treatment time t
min

 first is a safe 

choice. 



PROOF IDEA
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• Is it possible for an optimal arrangement to have two consecutive patients in 

order with treatment times t
1
 and t

2
 such that t

1
 > t

2
? 
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• Is it possible for an optimal arrangement to have two consecutive patients in 

order with treatment times t
1
 and t

2
 such that t

1
 > t

2
? 

• It is impossible. Assume there is such an optimal arrangement and consider 

what happens if we swap these two patients. 
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• Is it possible for an optimal arrangement to have two consecutive patients in 

order with treatment times t
1
 and t

2
 such that t

1
 > t

2
? 

• It is impossible. Assume there is such an optimal arrangement and consider 

what happens if we swap these two patients. 

• If we swap two consecutive patients with treatment times t1 > t2: Waiting 

time for all the patients before and after these two doesn’t change
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• Is it possible for an optimal arrangement to have two consecutive patients in 

order with treatment times t
1
 and t

2
 such that t

1
 > t

2
? 

• It is impossible. Assume there is such an optimal arrangement and consider 

what happens if we swap these two patients. 

• If we swap two consecutive patients with treatment times t1 > t2: Waiting 

time for all the patients before and after these two doesn’t change

• Waiting time for the patient which was first increases by t
2
, and for the 

second one it decreases by t
1
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• Is it possible for an optimal arrangement to have two consecutive patients in 

order with treatment times t
1
 and t

2
 such that t

1
 > t

2
? 

• It is impossible. Assume there is such an optimal arrangement and consider 

what happens if we swap these two patients. 

• If we swap two consecutive patients with treatment times t1 > t2: Waiting 

time for all the patients before and after these two doesn’t change

• Waiting time for the patient which was first increases by t
2
, and for the 

second one it decreases by t
1
 

• Total waiting time increases by t
2
 − t

1
 < 0, so it actually decreases



PROOF IDEA
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We have just proved: 

Lemma

In any optimal arrangement of the patients, first of any two consecutive 

patients has smaller treatment time. 
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• Assume the patient with treatment time t
min

 is not the first 



SAFE CHOICE PROOF 
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• Assume the patient with treatment time t
min

 is not the first 

• Let i > 1 be the position of the first patient with treatment time t
min

 in the 

optimal arrangement 



SAFE CHOICE PROOF 
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• Assume the patient with treatment time t
min

 is not the first 

• Let i > 1 be the position of the first patient with treatment time t
min

 in the 

optimal arrangement 

• Then the patient at position i − 1 has bigger treatment time — a 

contradiction 
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Now we know that the following greedy algorithm works correctly: 

• First treat the patient with the minimum treatment time 



Conclusion 
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Now we know that the following greedy algorithm works correctly: 

• First treat the patient with the minimum treatment time 

• Remove this patient from the queue 



Conclusion 

68

Now we know that the following greedy algorithm works correctly: 

• First treat the patient with the minimum treatment time 

• Remove this patient from the queue 

• Treat all the remaining patients in such order as to minimize their total 

waiting time 
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MinTotalWaitingTime(t, n) 

waitingTime ← 0
treated ← array of n zeros 
for i from 1 to n: 
  t

min
 ← +∞

  minIndex ← 0
  for j from 1 to n: 
    if treated[j] == 0 and t[j] < t

min
:

      t
min

 ← t[j]
      minIndex ← j 
  waitingTime ← waitingTime + (n − i) · t

min
 

  treated[minIndex] = 1 
return waitingTime 
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Lemma

The running time of MinTotalWaitingTime(t, n) is O(n2). 
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Lemma

The running time of MinTotalWaitingTime(t, n) is O(n2). 

Proof

• i changes from 1 to n
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Lemma

The running time of MinTotalWaitingTime(t, n) is O(n2). 

Proof

• i changes from 1 to n

• For each value of i, j changes from 1 to n
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Lemma

The running time of MinTotalWaitingTime(t, n) is O(n2). 

Proof

• i changes from 1 to n

• For each value of i, j changes from 1 to n

• This results in O(n2) 
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• Actually, this problem can be solved in time O(n log n) 
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• Actually, this problem can be solved in time O(n log n) 

• Instead of choosing the patient with minimum treatment time 

out of remaining ones n times, sort patients by increasing 

treatment time 
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• Actually, this problem can be solved in time O(n log n) 

• Instead of choosing the patient with minimum treatment time 

out of remaining ones n times, sort patients by increasing 

treatment time 

• This sorted arrangement is optimal 
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• Actually, this problem can be solved in time O(n log n) 

• Instead of choosing the patient with minimum treatment time 

out of remaining ones n times, sort patients by increasing 

treatment time 

• This sorted arrangement is optimal 

• It is possible to sort n patients in time O(n log n)
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• Make some first choice

• Then solve a problem of the same kind 

• Smaller: fewer digits, fewer patients 

• This is called a “subproblem” 

REDUCTION TO SUBPROBLEM 
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• A choice is called safe if there is an optimal solution consistent with 

this first choice 

SAFE CHOICE 
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• A choice is called safe if there is an optimal solution consistent with 

this first choice 

• Not all first choices are safe 

SAFE CHOICE 
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• A choice is called safe if there is an optimal solution consistent with 

this first choice 

• Not all first choices are safe 

• Greedy choices are often unsafe 

SAFE CHOICE 
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GENERAL STRATEGY 

Problem 
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GENERAL STRATEGY 

Problem 

greedy choice 

•  Make a greedy choice
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GENERAL STRATEGY 

Problem Safe choice 

greedy choice 

•  Make a greedy choice

•  Prove that it is a safe choice 
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GENERAL STRATEGY 

Problem Safe choice 

greedy choice 

Subproblem 

•  Make a greedy choice

•  Prove that it is a safe choice 

•  Reduce to a subproblem 
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GENERAL STRATEGY 

Problem Safe choice 

greedy choice 

Subproblem 

•  Make a greedy choice

•  Prove that it is a safe choice 

•  Reduce to a subproblem 

•  Solve the subproblem 


