

Evaluating Emerging Evidence in PAH

Implications for Practicing Physicians

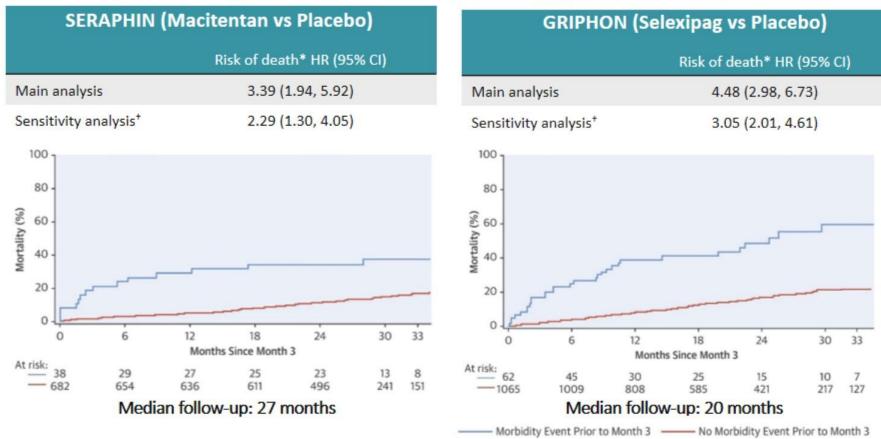
Moderator

Ioana R. Preston, MD
Associate Professor
Tufts University School of Medicine
Director, Pulmonary Hypertension
Center
Tufts Medical Center
Boston, Massachusetts

Panelist

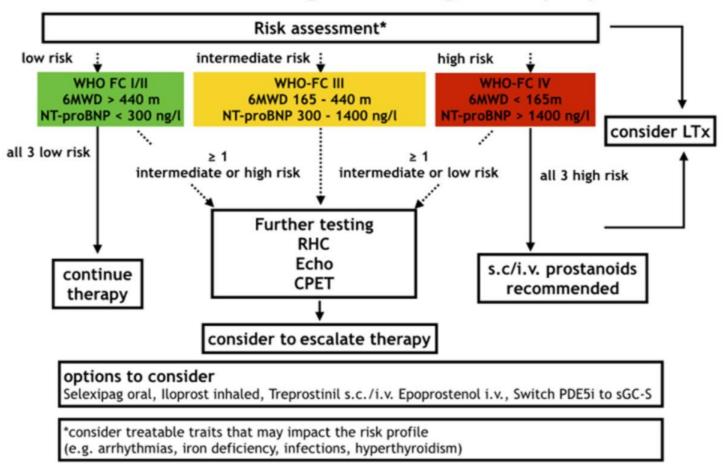
Oksana A. Shlobin, MD
Associate Professor of Clinical Medicine
Georgetown University School
of Medicine
Director, Inova Pulmonary Vascular
Disease Program
Washington, DC

Introduction


- Risk assessment for PAH
- Treating patients with PAH to achieve low-risk status
- Prognostic factors and data available on hospitalizations
- Recommendations and consensus statements
- Team approach to caring for patients with PAH

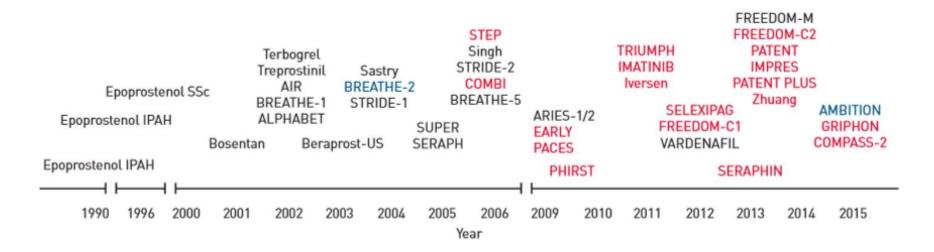
Recent Events and Publications in PAH

PAH-Related Events Associated With Clinical Outcomes and Mortality Landmark Analysis


 Morbidity event within 3 to 12 months of initial PAH-related event is prognostic for mortality and subsequent clinical worsening events (eg, hospitalization)

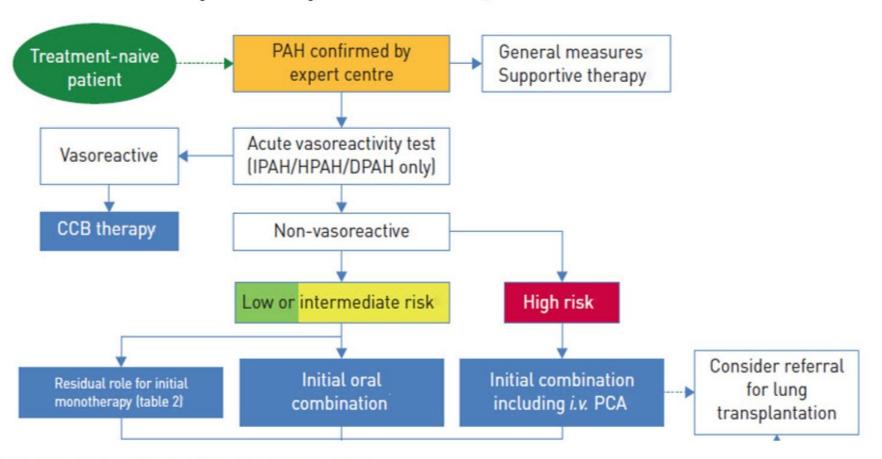
^{*}Morbidity event vs no prior morbidity event. †Adjusted for baseline WHO FC and 6MWD. McLaughlin VV, et al. J Am Coll Cardiol. 2018;71:752-763.

Recommendations From the Cologne Consensus Conference 2018


Evidence-based risk assessment algorithm during follow-up of patients with PAH

Reprinted from *International Journal of Cardiology*, Vol 272/ Leuchte Hanno H, et al., Risk stratification strategy and assessment of disease progression in patients with pulmonary arterial hypertension: Updated Recommendations from the Cologne Consensus Conference 2018. /20-29, Copyright 2018, with permission from Elsevier.

Treatment Strategy and Evolution of Combination Therapy


Time-course of completed RCTs (n = 41) according to treatment strategy

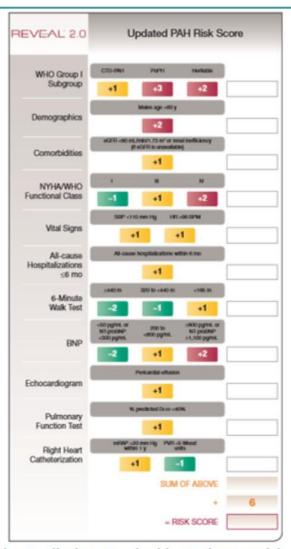
- Monotherapy vs placebo or vs monotherapy (n = 21)
- Monotherapy and/or sequential combination vs placebo (n = 18)
- Initial combination vs monotherapy (n = 2)

Treatment Algorithm for PAH Treatment-Naive

6th World Symposium Proceedings Expands Upon 2015 ESC/ERS Guidelines*

^{*}Treatment algorithm for PAH, IPAH, HPAH, DPAH. Creative Commons Attribution License 4.0 Galiè N, et al. *Eur Respir J*. 2019;53:1801889.

Treatment Algorithm for PAH Patient Already on Treatment


6th World Symposium Proceedings Expands Upon 2015 ESC/ERS Guidelines*

^{*}Treatment algorithm for PAH, IPAH, HPAH, DPAH. Creative Commons Attribution License 4.0 Galiè N, et al. *Eur Respir J*. 2019;53:1801889.

REVEAL Risk Score Calculator 2.0

- Refinement of the original REVEAL calculator
- Classifies patients into low-, intermediate-, and high-risk
- Greater discrimination (c-statistic = .76) than other assessment strategies
 - COMPERA (c-statistic = .62)
 and French Registry
 (c-statistic = .64)
- Includes all-cause hospitalizations within previous 6 months and renal insufficiency

Reprinted from *Chest* Journal, Vol 156, Issue 2/Benza, Raymond L., et al., Predicting Survival in Patients With Pulmonary Arterial Hypertension / 323-337, Copyright 2019, with permission from Elsevier.

REVEAL Risk Score Calculator 2.0 What Has Changed?

Existing variables with unchanged risk points/cut points

- PAH associated with connective tissue disease
- Heritable PAH
- Renal insufficiency
- Males age > 60 years
- SBP < 110 mm Hg
- Pericardial effusion
- mRAP ≥ 20 mm Hg within 1 year

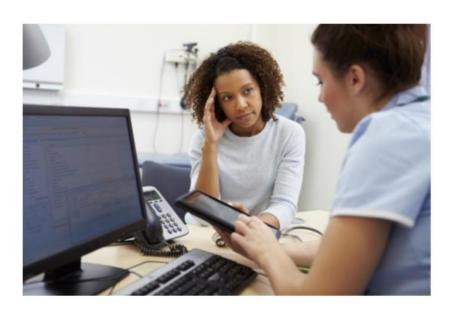
Existing variables with revised risk points/cut points

- BNP/NT-proBNP
- Heart rate
- 6MWD
- Pulmonary vascular resistance
- PAH associated with portopulmonary hypertension
- Percent predicted DLC0
- NYHA/WHO FC

New/revised variables

- Hospitalizations within the last 6 months
- eGFR < 60 mL/min/1.73m² or renal insufficiency if missing eGFR

Benza RL, et al. Chest. 2019;156:323-337.


Achieving Low-Risk Status

- Important to achieve, regardless of score or method used
 - Need to be confident that you are bringing the patient's PAH under control
 - Upfront combination therapy considerations
 - Maximize triple therapy if necessary
 - Refer for lung transplantation consideration, if necessary

What if the patient doesn't fit into one of the status/risk categories?

Patient Case: Idiopathic PAH

- 29-year-old woman
- Placed on a dual oral combination therapy at time of diagnosis
- Did not tolerate ERA → switched to combination selexipag plus PDE5i
- Did well for 2 years, but then markers got worse
 - BNP went up
 - RV on echo became more enlarged
- Symptoms and 6MWD test were the same
 - All other noninvasive assessments were stable

Is this patient getting worse?
Or is this just variability during the disease course and the disease is still under control?

How Do We Detect Deterioration?

- Patients with idiopathic PAH can show unexpected clinical deterioration due to progressive RV failure
- Retrospective analysis of 22 patients with idiopathic PAH who were clinically stable for 5 years
- Total follow-up period of 10 years
 - 12 remained clinically stable; 10 showed late clinical disease progression
 - Baseline hemodynamics were comparable in both groups and remained unchanged
 - Late-progressive patients had:
 - Higher baseline RVESV and lower RVEF
 - Gradually increased RV end-diastolic volume and RVESV
 - Decline in RVEF
 - Long-term-stable patients did not show any RV changes

Monitoring RV volumes can anticipate clinical worsening, even at a time of apparent clinical stability

How Important Is Cardiopulmonary Exercise Testing?

- Assessed added value of CPET during follow-up in patients with stable PAH
 - Investigated the prognostic relevance of CPET variables added to clinical and hemodynamic assessment
 - Patients without clinical worsening for 1 year after diagnosis and treatment initiation were prospectively followed
 - Derivation (n = 80) and validation (n = 80) cohorts enrolled at an interval of 6 years and followed for 3 years
 - Results
 - With addition of CPET variables, VO₂ peak and changes in cardiac index independently improved the power of the prognostic model

CPET can be an important addition to right heart catheterization when assessing clinically improved, stabilized patients

Implementation Strategies

- Routinely perform risk assessment and repeat at follow-up
- Exercise assessment with CPET
 - 6MWD may not always be predictive or discriminatory in detecting slight or preclinical worsening of disease
- Use and record risk scores and follow-up assessments
- Employ multiple parameters to evaluate disease severity

Continual Reassessment of Risk Status

2015 ESC/ERS Guidelines: PAH Baseline and Follow-up Assessments

^{*}Intervals to be adjusted according to patient needs; †Basic lab includes blood count, INR (inpatients receiving vitamin K antagonists), serum creatinine, sodium, potassium, AST/ALT (in patients receiving ERAs), bilirubin and BNP/NT-proBNP; ‡Extended lab includes TSH, troponin, uric acid, iron status (iron, ferritin, soluble transferrin receptor) and other variables according to individual patient needs; From arterial or arterialized capillary blood; may be replaced by peripheral oxygen saturation in stable patients or if BGA is not available; ||Some centers perform RHCs at regular intervals during follow-up; ||Should be considered.

Galiè N et al. Eur Heart J. 2016;37:67-119.

Multidisciplinary Team Approach Is Important

- Cardiology
- Pulmonology
- Rheumatology
 - Particularly for patients with scleroderma
 - Current assessment tools may not be as accurate
 - Functional status can be affected by rheumatologic disease
- Pulmonary rehabilitation
- Dietary management
- Social workers

Summary

- Data support structured follow-up and continued risk assessment approach for PAH
 - Essential to evaluate patients
 - Whose disease will worsen?
 - Adjust therapy accordingly
 - REVEAL Risk Score Calculator 2.0
- Goal of achieving low-risk status
 - User-friendly treatment algorithms for clinical practice to assess risk status
- Important to use a multidisciplinary team approach
 - Integrate different specialties to provide full care
- PAH Expert Center listing available
 - Pulmonary Hypertension Association website
 - https://phassociation.org/phcarecenters/accredited-centers/

Abbreviations

AIR = Aerosolized Iloprost Randomized

ALT = alanine aminotransferase

ALPHABET = Arterial Pulmonary Hypertension and Beraprost European Trial

ARIES = Ambrisentan in Pulmonary Arterial Hypertension, Randomized, Double-Blind,

Placebo-Controlled, Multicenter, Efficacy

AST = aspartate aminotransferase

BGA = blood gas analysis

BNP = B-type natriuretic peptide

BPM = beats per min

BREATHE = Bosentan Randomized trial of Endothelin Antagonist Therapy for PAH

CCB = calcium channel blocker

CI = cardiac index

CI = confidence interval

COMBI = Combination Therapy of Bosentan and Aerosolised Iloprost in Idiopathic

Pulmonary Arterial Hypertension

COMPERA = Comparative, Prospective Registry of Newly Initiated Therapies for

Pulmonary Hypertension

CPET = cardiopulmonary exercise test

CTD-PAH = PAH associated with connective tissue disease

Abbreviations (cont)

DLC0 = diffusing capacity of the lungs for carbon monoxide

DPAH = drug-induced pulmonary arterial hypertension

ECG = electrocardiogram

echo = echocardiogram

eGFR = estimated glomerular filtration rate

ERA = endothelin receptor antagonist

ERS = European Respiratory Society

ESC = European Society of Cardiology

GRIPHON = Prostacyclin (PGI2) Receptor Agonist In Pulmonary Arterial Hypertension

HPAH = heritable pulmonary arterial hypertension

HR = hazard ratio

HR = heart rate

INR = international normalized ratio

IPAH = idiopathic pulmonary arterial hypertension

iv = intravenous

LTx = lung transplantation

mRAP = mean right atrial pressure

MRI = magnetic resonance imaging

NT-proBNP = N-terminal-pro hormone B-type natriuretic peptide

Abbreviations (cont)

NYHA = New York Heart Association

PAH = pulmonary arterial hypertension

PCA = prostacyclin analogue

PDE5i = phosphodiesterase type 5 inhibitor

PoPH = portopulmonary hypertension

PVR = pulmonary vascular resistance

RAP = right atrial pressure

RCT = randomized controlled trial

REVEAL = Registry to Evaluate Early and Long-Term PAH Disease Management

RHC = right heart catheterization

RV = right ventricle

RVEF = right ventricle ejection fraction

RVESV = right ventricle end-systolic volume

SBP = systolic blood pressure

sc = subcutaneous

SERAPHIN = Study with an Endothelin Receptor Antagonist in Pulmonary Arterial

Hypertension to Improve Clinical Outcome

sGC-S = soluble guanylyl cyclase stimulator

6MWD = 6-minute walk distance

Abbreviations (cont)

6MWT = 6-minute walk test SSc = systemic sclerosis STRIDE = Sitaxsentan To Relieve Impaired Exercise TSH = thyroid stimulating hormone VO₂ peak = peak oxygen uptake WHO FC = World Health Organization functional class