

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Правила

дифференцирования:

$$(ku)^{/} = ku^{/}$$

$$(u+v)^{/} = u^{/} + v^{/}$$

$$(uv)^{/} = u^{/}v + uv^{/}$$

$$(\frac{u}{v}) = \frac{u^{'}v - uv^{'}}{v^{2}}$$

Таблица производных:

f(x)	с, где c=con st	X	X ⁿ	$\frac{1}{x}$	\sqrt{x}	sinx	cosx	tgx	ctgx	a ^x	e ^x	lnx	dependent in the contraction of
f/ (x)	0	1	nx ⁿ⁻¹	$-\frac{1}{x^2}$	$\frac{1}{2\sqrt{x}}$	cosx	-sinx	$\frac{1}{\cos^2 x}$	$-\frac{1}{\sin^2 x}$	a ^x lna	e ^x	1 x	1 xlna

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Решение.

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{2}\right)' = -\frac{1}{2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; (\frac{1}{-})' = -\frac{1}{-2}.$

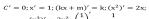
Решение.

Формулами дифференцирования объячно называют формулы для отыскания производных конкретных функций, например: $C'=0; x'=1; (kx+m)'=k; (x^2)'=2x; \\ (x^2)'=3x^2; \begin{pmatrix} 1\\ -1\\ -x \end{pmatrix} = -\frac{1}{x}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$



$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$G' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; (\frac{1}{x})' = -\frac{1}{x^2}.$

$$\begin{split} C' &= 0; x' = 1; (kx + m)' = k; (x^2)' = 2x; \\ (x^3)' &= 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}. \end{split}$$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

$$(x^3)' = 3x^2; \left(\frac{1}{x}\right) = -\frac{1}{x^2}.$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$ Формулами дифференциров жиля объячи для отыскания производьть конкрестивации диференцирания обычно называю формулы например: для отыскания производных конкретных функций, для отыскания производных конкретных функций,

$$C' = 0$$
 например:
$$C' = (x' = |x| + |x|$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; (\frac{1}{x})' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

мулами дифф $= \frac{(x^3)^2 - 3x^2 \cdot \sqrt{1}^2}{2} = \frac{1}{2}$ енцирования обычно называют формулы отыскания производных конкретных функций, эимер:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; (\frac{1}{x})' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

$$(x^3)' = 2x^2; (\frac{1}{2})' = -\frac{1}{2}$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

$$(x^3)' = 2x^2; (1)' = 1$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

$$(x^3)' = 3x^2 \cdot (\frac{1}{2})' = -\frac{1}{2}$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$\begin{split} C' &= 0; x' = 1; (kx + m)' = k; (x^2)' = 2x; \\ (x^3)' &= 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}. \end{split}$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; (\frac{1}{x})' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; (\frac{1}{x})' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; (\frac{1}{x})' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

 $G' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$

Решение.

например:

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

> $G' = 0; x' = 1; Ckx + m2' = k; Cx^22' = 2x;$ $Cx^32' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций,

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

 $C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$

Решение.

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$G' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x^2}\right)' = -\frac{1}{x^2}.$

Решение.

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; (\frac{1}{x})' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{2}\right)' = -\frac{1}{2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$\begin{aligned} C' &= 0; x' = 1; (kx + m)' = k; (x^2)' = 2x; \\ (x^3)' &= 3x^2; \left(\frac{1}{}\right)' = -\frac{1}{2}. \end{aligned}$$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Решение.

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$\begin{split} C' &= 0; x' = 1; (kx+m)' = k; (x^2)' = 2x; \\ (x^3)' &= 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}. \end{split}$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

> $C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$ $(x^3)' = 3x^2; (\frac{1}{-})' = -\frac{1}{-2}.$

Решение.

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$\begin{split} C' &= 0; x' = 1; (kx+m)' = k; (x^2)' = 2x; \\ (x^3)' &= 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}. \end{split}$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; (\frac{1}{x})' = -\frac{1}{x^2}.$

Наряду с прямой задачей решают обратную. Известна производная, нужно найти саму функцию.

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; (\frac{1}{2})' = -\frac{1}{2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$\begin{split} C' &= 0; x' = 1; (kx + m)' = k; (x^2)' = 2x; \\ (x^3)' &= 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}. \end{split}$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций.

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; (\frac{1}{-})' = -\frac{1}{-3}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы

для отыскания производных конкретных функций,

например:

например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$\begin{split} C' &= 0; x' = 1; (kx + m)' = k; (x^2)' = 2x; \\ (x^3)' &= 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}. \end{split}$$

для отыскания производных конкретных функций,

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

$$(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$$

Формулами дифференцирования обычно называют формулы

например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Решение.

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций,

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

$$(x^3)' = 3x^2 \cdot \left(\frac{1}{2}\right)' = -\frac{1}{2}$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$G' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

Формулами дифференцирования обычно называют формулы для отыскания производных конкретных функций, например:

$$C' = 0; x' = 1; (kx + m)' = k; (x^2)' = 2x;$$

 $(x^3)' = 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}.$

$$\begin{split} C' &= 0; x' = 1; (kx + m)' = k; (x^2)' = 2x; \\ (x^3)' &= 3x^2; \left(\frac{1}{x}\right)' = -\frac{1}{x^2}. \end{split}$$