
ТЕОРИЯ ЕДИНОГО ЭЛЕКТРОМАГНИТНОГО ПОЛЯ В УРАВНЕНИЯХ МАКСВЕЛЛА

УРАВНЕНИЯ МАКСВЕЛЛА В ИНТЕГРАЛЬНОЙ ФОРМЕ

1. Теорема о циркуляции вектора $\stackrel{\bowtie}{E} = \stackrel{\bowtie}{E}_{cmau} + \stackrel{\bowtie}{E}_{euxp}$

$$\overset{\scriptscriptstyle{\triangle}}{E} = \overset{\scriptscriptstyle{\triangle}}{E}_{cmau} + \overset{\scriptscriptstyle{\triangle}}{E}_{euxp}$$

$$\oint_{I} \stackrel{\boxtimes}{E} d \stackrel{\boxtimes}{l} = \oint_{I} \stackrel{\boxtimes}{E}_{cmay} d \stackrel{\boxtimes}{l} + \oint_{I} \stackrel{\boxtimes}{E}_{euxp} d \stackrel{\boxtimes}{l}$$
(1)
$$\oint_{I} \stackrel{\boxtimes}{E}_{cmay} d \stackrel{\boxtimes}{l} = 0 \longrightarrow$$
(1)

$$\oint_{L} E_{cmay} d \stackrel{\boxtimes}{l} = 0 \quad \longrightarrow \quad (1)$$

$$\int_{L}^{\mathbb{X}} E_{euxp} \ d \ l = \varepsilon_{i} = -\frac{d\Phi}{dt}$$

$$\Phi = \int_{S}^{\mathbb{N}} B dS$$

$$\oint_{L} \stackrel{\boxtimes}{E} d \stackrel{\boxtimes}{l} = -\int_{S} \frac{\partial \stackrel{\boxtimes}{B}}{\partial t} dS$$

 $\oint_{-\infty}^{\mathbb{N}} dt = -\int_{-\infty}^{\infty} \frac{\partial \overline{B}}{\partial t} dS$ -Это уравнение является обобщением закона Фарадея и показывает, что причиной появления вихревого электрического поля является переменное магнитное электрического поля является переменное магнитное поле..

2. Теорема Гаусса для вектора

$$\oint_{S} \stackrel{\boxtimes}{D} d \stackrel{\boxtimes}{S} = \int_{V} \rho dV$$

 $\oint \stackrel{\mathbb{N}}{D} d\stackrel{\mathbb{N}}{S} = \int \rho dV$ (2) - Причиной появления электрического поля являются также свободные заряды.

3. Теорема Гаусса для вектора

$$\oint_{S} \stackrel{\boxtimes}{B} d \stackrel{\boxtimes}{S} = 0$$

 $\oint \stackrel{\mathbb{N}}{B} \stackrel{\mathbb{N}}{d} \stackrel{\mathbb{N}}{S} = 0$ (3) - В природе не существует магнитных зарядов и силовые линии магнитного поля замкнуты на себя.

4. Теорема о циркуляции для вектфра

$$\oint_L^{\mathbb{N}} H \, d \, \stackrel{\mathbb{N}}{l} = \int_S^{\mathbb{N}} (j_{npos} + \frac{\partial \stackrel{\mathbb{N}}{D}}{\partial t}) \, d \, \stackrel{\mathbb{N}}{S} \quad ^{(3)} \quad \text{- Источниками магнитного поля являются токи проводимости и переменн$$

проводимости и переменное электрическое поле.

$$\oint_{L} \overset{\mathbb{N}}{H} d\overset{\mathbb{N}}{l} = \int_{S} (\overset{\mathbb{N}}{j_{npoe}} + \frac{\partial \overset{\mathbb{N}}{D}}{\partial t}) d\overset{\mathbb{N}}{S} = \int_{S} \overset{\mathbb{N}}{j_{npoe}} d\overset{\mathbb{N}}{S} + \int_{S} \frac{\partial \overset{\mathbb{N}}{D}}{\partial t} d\overset{\mathbb{N}}{S}$$

$$I_{npoe} = \int_{S} \overset{\mathbb{N}}{j_{npoe}} d\overset{\mathbb{N}}{S} \qquad I_{cmew} = \int_{S} \overset{\mathbb{N}}{j_{cmew}} d\overset{\mathbb{N}}{S} = \int_{S} \frac{\partial \overset{\mathbb{N}}{D}}{\partial t} d\overset{\mathbb{N}}{S}$$

Ток смещения или изменяющееся во времени электрическое поле вызывает появление магнитного поля

$$\overset{\mathbb{Z}}{j}_{cmeuy} = \frac{\partial \overset{\mathbb{Z}}{D}}{\partial t}$$

Ток смещения – количественная характеристика способности переменного электрического поля порождать переменное магнитное поле.

Полный
$$I=I_{npos}+I_{cmew}$$
 ток:

$$\oint_{L} H d \stackrel{\boxtimes}{l} = I_{npoe} + I_{cmew}$$

$$L$$

$$\downarrow_{L} I$$

$$\downarrow$$

Итак, уравнений в интегральной форме, описывающих электромагнитное поле, четыре:

$$\oint_{L} \stackrel{\boxtimes}{E} d \stackrel{\boxtimes}{l} = -\int_{S} \frac{\partial \stackrel{\boxtimes}{B}}{\partial t} dS \qquad (1)$$

$$\oint_{L} \stackrel{\boxtimes}{D} d \stackrel{\boxtimes}{S} = \int_{V} \rho dV \qquad (2)$$

Причины появления электрического поля – переменное магнитное поле и свободные заряды.

$$\oint_{L} H d l = \int_{S} (j_{npoe} + \frac{\partial D}{\partial t}) d S \qquad (3)$$

$$\oint_{S} B d S = 0 \qquad (4)$$

Причины появления магнитного поля – переменное электрическое поле и токи проводимости.

$$\int_{L}^{\bigotimes} E \, d \, \vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} dS \qquad \int_{L}^{\bigotimes} H \, d \, \vec{l} = \int_{S} (\vec{j}_{npos} + \frac{\partial \vec{D}}{\partial t}) \, d \, \vec{S}$$

$$\oint_{L}^{\bigotimes} D \, d \, \vec{S} = \int_{V} \rho dV \qquad \oint_{S} \vec{B} \, d \, \vec{S} = 0$$

Резюм

электрические поля

Электрическое поле создают либо электрические заряды, либо изменяющиеся во времени магнитные поля. Магнитное поле создают либо движущиеся электрические заряды, либо изменяющиеся во времени

ЧАСТНЫЕ СЛУЧАИ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ

1. Стационарные поля:

$$\oint_{L} \stackrel{\boxtimes}{E} d \stackrel{\boxtimes}{l} = -\int_{S} \frac{\partial B}{\partial t} dS = 0$$

$$\oint_{D} \stackrel{\boxtimes}{D} d \stackrel{\boxtimes}{S} = \int_{V} \rho dV$$

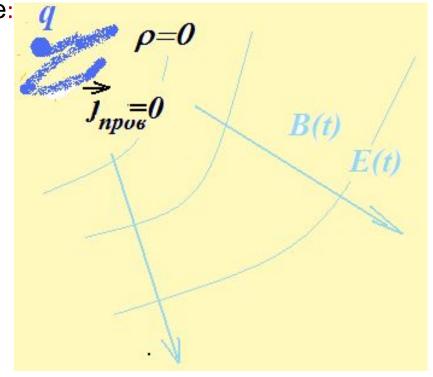
$$\oint H dl = \int j_{npos} dS$$

$$L \qquad \oint_{S} S_{\boxtimes}$$

$$\oint B d S = 0$$

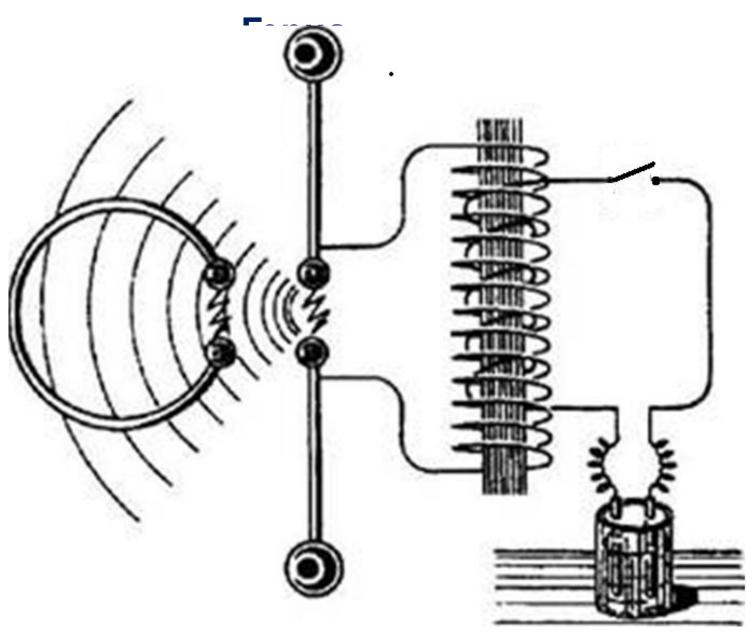
$$\frac{\partial \vec{D}}{\partial t} = \frac{\partial \vec{B}}{\partial t} = 0$$

Вывод


- 1. Стационарные электрическое и магнитное поля существуют независимо друг от друга.
- 2. Разделение эл.-маг. поля на электрическое и магнитное относительно и зависит от выбора системы отсчета.

2. Переменное электромагнитное поле (т. е. не содержащее стационарной составляющей): Пусть в некоторой области пространства нет зарядов и токов проводимости Согласно уравнениям Максвелла, там может существовать

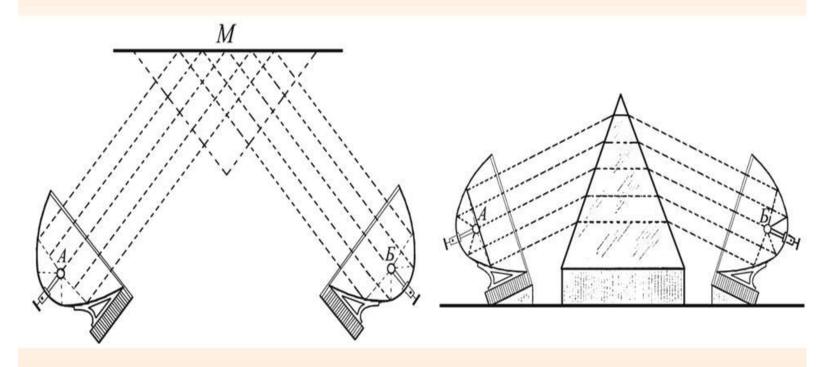
переменное электромагнитное поле:


$$\oint_{L} \overset{\mathbb{N}}{H} d \overset{\mathbb{N}}{l} = \int_{S} \frac{\partial D}{\partial t} d \overset{\mathbb{N}}{S}$$

$$\oint_{L} \overset{\mathbb{N}}{E} d \overset{\mathbb{N}}{l} = -\int_{S} \frac{\partial B}{\partial t} d \overset{\mathbb{N}}{S}$$

Т. е. можно в какой-либо области пространства создать переменное электромагнитное поле, потом источник выключить, а поля остались, они сами друг друга поддерживают. Так Максвелл пришел к идее существования электромагнитных волн.

Схема опыта


Вибратор Герца

Герц использовал медные стержни с металлическими шарами на концах, в искровой промежуток которых включалась катушка Румкорфа. Если подать на такую конструкцию высокое напряжение, в промежутке проскочит искра, а в вибраторе возникнут колебания с периодом меньше, чем время горения искры. Длина электромагнитных волн примерно в два раза превышает размеры самого вибратора. [2] Наименьший из применявшихся Герцем вибраторов (0,26 м) позволял получить колебания с частотой порядка $5 \cdot 10^8$ Гц, что соответствует длине волны в 0,6 м. Герц также помещал вибраторы в фокусе вогнутых зеркал для получения направленных плоских волн.

С помощью металлических зеркал и <u>асфальтовой призмы</u> Герц убедился в том, что законы отражения и преломления электромагнитных волн невидимого спектра подчиняются законам геометрической оптики видимого спектра.

Герц также померил скорость электромагнитной волны.

Опыт Герца с металлическими параболическими зеркалами и призмой

Установлена полная аналогия преломления и отражения ЭМВ со световыми волнами

Материальные

4 уравнения **Максвелла допо**лняются 3-мя уравнениями, связывающими характеристики поля со свойствами среды:

$$D = \varepsilon \varepsilon_0 E$$

$$B = \mu \mu_0 H$$

$$j = \sigma E$$

Теория Максвелла является МАКРОСКОПИЧЕСКОЙ, т. е. рассматривает поля, созданные макроскопическими зарядами и токами. Величинь $\mathfrak{E}, \mu, \sigma$ вводятся без связи с молекулярным строением вещества. Эта теория не может вскрыть внутреннего механизма явлений, происходящих в среде при возникновении в ней электромагнитных полей.