Lecture by

Suradet Tantrairatn
Instructor and Researcher

Introduction to Automatic Control

Control
Engineering

Reference Book

- "Modern Control Engineering", Katsuhiko Ogata,
 Prentice Hall.
- "Automotive Control Systems for Engine, Driveline and Vehicle", U.Kiencke and L.Nielsen, Springer.
- "Stabilization and Regulation of Nonlinear Systems. A Robust and Adaptive Approach" Zhiyong Chen • Jie Huang. 2014.
- Khalil H (2002) Nonlinear systems. Prentice Hall, New Jersey
- Isidori A (1999) Nonlinear control systems, 3rd edn.
 Springer, New York

Month 200X

How is it important?

Good Improved control is a key enabling technology underpinning:

- generally
 - Convenience and Comfort
- doctor
 - Precision of tools
- industry
 - Enhance product quality
 - Waste minimization
 - Higher safety margins

Month 200X

What is Control System?

What is Control System? (2)

Dynamic Response Open-Loop Control System (No feedback)

02. All rights reserved. Confidential and proprietary documer

What is Control System? (3)

Feedback

- •Feedback is a key tool that can be used to modify the behavior of a system.
- •This behavior altering effect of feedback is a key mechanism that control engineers exploit deliberately to achieve the objective of acting on a system to ensure that the desired performance specifications are achieved.

What is Control System? (4)

What is Control System? (5)

Response of a position control system showing effect of high and low controller gain on the output response

Example Control System? (1)

Temperature Control System (Heater or Air Condition)

Example Control System? (2)

Example Control System? (3)

Example Control System? (4)

Control System Design Cycle

Modeling & Design in Control

I. DYNAMIC MODELING

- Deriving a dynamic model (= set of differential equations that describes the dynamic behavior of the plant)
- Linearization the dynamic model if necessary

II. DESIGN OF A CONTROLLER: Several design methods

- . <u>Classical control or Root Locus Design</u>:
 - Define the transfer function; Apply root locus, loop shaping,
- 2. <u>Modern control</u>:
 - Convert ODE to state equation; Apply Pole Placement, Robust control, ...
 - Nonlinear control: Apply Lyapunov's stability criterion

A continuous-time LINEAR state space system is given as :

$$\begin{cases} \dot{x}(t) = A(x(t) + Bu(t), \quad x(0) = x_0 \\ y(t) = Cx(t) + Du(t) \end{cases}$$
 (2)

- ▶ $x(t) \in \mathbb{R}^n$ is the system state (vector of state variables),
- ▶ $u(t) \in \mathbb{R}^m$ the control input
- ▶ $y(t) \in \mathbb{R}^p$ the measured output
- A, B, C and D are real matrices of appropriate dimensions
- \triangleright x_0 is the initial condition.

n is the order of the state space representation.

Matlab: ss(A,B,C,D) creates a SS object SYS representing a continuous-time state-space model

Month 200X

A first example of Modeling: DC Motor

The dynamical equations are:

$$Ri + L\frac{di}{dt} + e = u$$
 $e = K_e \omega$
 $J\frac{d\omega}{dt} = -f\omega + \Gamma_m$ $\Gamma_m = K_c i$

System of 2 equations of order $1 \Longrightarrow 2$ state variables.

A possible choice
$$x = \begin{pmatrix} \omega \\ i \end{pmatrix}$$
 It gives:

$$A = \begin{pmatrix} -f/J & K_c/J \\ -K_e/L & -R/L \end{pmatrix} B = \begin{pmatrix} 0 \\ 1/L \end{pmatrix} C = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

Extension: measurment= motor angular position

A second example of Modeling: Suspension

Let the following mass-spring-damper system.

where x_1 is the relative position, M_1 the system mass, k_1 the spring coefficient, u the force generated by the active damper, and F_1 is an external disturbance. Applying the mechanical equations it leads:

$$M_1 \ddot{x}_1 = -k_1 x_1 + u + F_1 \tag{3}$$

A second example of Modeling: Suspension (2)

The choice
$$x = \begin{pmatrix} x_1 \\ \dot{x}_1 \end{pmatrix}$$
 gives

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) + Ed(t) \\ y(t) = Cx(t) \end{cases}$$

where $d = F_1$, $y = x_1$ with

$$A = \begin{pmatrix} 0 & 1 \\ -k_1/M_1 & 0 \end{pmatrix}, B = E = \begin{pmatrix} 0 \\ 1/M_1 \end{pmatrix}, and C = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

Linear systems: transfer function

Equivalence transfer function - state space representation
 Consider a linear system given by:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & x(0) = x_0 \\ y(t) = Cx(t) + Du(t) \end{cases}$$
 (6)

Using the Laplace transform (and assuming zero initial condition $x_0 = 0$), (6) becomes:

$$s.x(s) = Ax(s) + Bu(s) \Rightarrow (s.I_n - A)x(s) = Bu(s)$$

Then the transfer function matrix of system (6) is given by

$$G(s) = C(sI_n - A)^{-1}B + D = \frac{N(s)}{D(s)}$$
 (7)

1ロトイクトイミトイミト ミ 少々ngineering

Matlab: if SYS is an SS object, then tf (SYS) gives the associated transfer matrix. Equivalent to tf (N, D)

State-Space Representations of Transfer-Function Systems

Go to Ogata Book 723