
Innovative
Entrepreneurship

Saltanat Kondybayeva, PhD

Lecture # 11

Topic 11.
Examination of innovative

projects

P L A N

1. Necessary of Examination
2. Types of Testing (Examination)

Necessary of Examination

Examination allows us to reveal the most effective
innovative projects, and to estimate the results of
their implementation.

An innovative project should finally provide
scientific and technical progress, as well as the
economic growth that will positively affect the
quality of human life.

Examination of innovative projects is limited to evaluation of the
technological level of new products and the technological processes of
their manufacture. The criteria for this examination include: novelty,
competitiveness, economic efficiency, terms of implementation of the
innovation, etc.

The goal of the efficiency examination of an innovative project is not
only the evaluation of its scientific and technological levels, but the
resources and capability of its implementation as well.

Therefore, the examination should be performed through quality to
understand whether the organization which has conceived the
innovation, or plans its application, is capable of implementing the
project. In fact, the final result of innovative activity depends on both
scientific and technical levels, and the conditions in which it is carried
out.

Experimentation
•The experimentation stage tests an idea, such as with a prototype or

pilot test.

•Experimentation can remain continuous or exist in spurts, as
advocates and screeners reevaluate an idea. Sometimes,
experimentation leads to new ideas due to information that is
gathered on the results and the overall feasibility of the original idea.

•Time is crucial in this process; individuals must be given adequate
time to run the experiments. As refinements and evaluations occur,
they must be given enough time to reflect on the experiments.

Experimentation

Good ideas - Bad Products

•Not viable
manufacturing
techniques

•Expensive

•Apprehensive market

•Ahead of its time

up-to-date quality management techniques

•quality management systems;

•environment management systems;

•self-assessment;

•assessment results for quality contests.

What You Need to Know About Testing
Project managers need to realize that only people can do
everything above the line in the testing continuum (see figure 1
below). People read work products, using any of the reviewing
techniques: inspections, reviews, walkthroughs, buddy reviews, or
pairing. Since only people can perform this work, project teams
tend to postpone work product review, unless it's built into how
people do their work (like pairing), or if the time to do this work is
built into the project schedule. The more serial the lifecycle, the
more project managers need to help the team make time to do
work product review, because it's the earliest feedback about the
project's progress anyone can get.

Types of Testing (Examination)

•Unit testing

•Smoke testing

•Regression testing

•Conversion validation

•Integration testing

•UX / usability testing

•System testing

•Load testing

•Survivability testing

•User acceptance testing

•Parallel testing

What is Unit Testing?

•Unit testing, a testing technique using which
individual modules are tested to determine if there
are any issues by the developer himself. It is
concerned with functional correctness of the
standalone modules.

•The main aim is to isolate each unit of the system to
identify, analyze and fix the defects.

Unit Testing - Advantages:

•Reduces Defects in the Newly developed features or
reduces bugs when changing the existing
functionality.

•Reduces Cost of Testing as defects are captured in
very early phase.

•Improves design and allows better refactoring of code.

•Unit Tests, when integrated with build gives the
quality of the build as well.

Unit Testing Techniques:

•Black Box Testing - Using which the user interface,
input and output are tested.

•White Box Testing - used to test each one of those
functions behaviour is tested.

•Gray Box Testing - Used to execute tests, risks and
assessment methods.

What is Smoke Testing?
•Smoke testing is the initial testing process exercised to check
whether the software under test is ready/stable for further
testing.

•The term ‘Smoke Testing’ is came from the hardware testing, in
the hardware testing initial pass is done to check if it did not
catch the fire or smoked in the initial switch on.

•Prior to start Smoke testing few test cases need to created once
to use for smoke testing. These test cases are executed prior to
start actual testing to check critical functionalities of the
program is working fine.

Advantages of Smoke testing:

•It helps to find issues introduced in integration of
modules.

•It helps to find issues in the early phase of testing.

•It helps to get confidence to tester that fixes in the
previous builds not breaking major features (off
course, only features exercised by smoke testing).

What is Regression Testing?
•Regression Testing is defined as a type of software testing to
confirm that a recent program or code change has not
adversely affected existing features.

•Regression Testing is nothing but full or partial selection of
already executed test cases which are re-executed to ensure
existing functionalities work fine.

•This testing is done to make sure that new code changes
should not have side effects on the existing functionalities. It
ensures that old code still works once the new code changes
are done.

Need of Regression Testing

•Change in requirements and code is modified
according to the requirement

•New feature is added to the software

•Defect fixing

•Performance issue fix

Regression Testing Techniques

Following are most important tools used for
regression testing:

•Selenium: This is an open source tool used for automating web
applications. Selenium can be used for browser based regression testing.

•Quick Test Professional (QTP): HP Quick Test Professional is automated
software designed to automate functional and regression test cases. It
uses VBScript language for automation. It is a Data driven, Keyword
based tool.

•Rational Functional Tester (RFT): IBM's rational functional tester is
a Java tool used to automate the test cases of software applications. This
is primarily used for automating regression test cases and it also
integrates with Rational Test Manager.

Following are the major testing problems for
doing regression testing:

•With successive regression runs, test suites become fairly
large. Due to time and budget constraints, the entire
regression test suite cannot be executed

•Minimizing test suite while achieving maximum Test
coverage remains a challenge

•Determination of frequency of Regression Tests, i.e., after
every modification or every build update or after a bunch
of bug fixes, is a challenge.

Conversion validation

When one “heritage” system is replaced with a newer
system, it is common for some historical records or current
work in progress to be loaded into the new system at
cut-over to production. The goal here is to validate that the
records are properly and completely represented in the new
system. This requires inspection of both the mapping of the
data elements and the translations or manipulations
accomplished prior to the load, as well as the related records
created by the system during the load process.

What is Integration testing?

Integration testing tests integration or
interfaces between components, interactions
to different parts of the system such as an
operating system, file system and hardware or
interfaces between systems.

Integration testing is done by a specific
integration tester or test team

Also after integrating two
different components togeth
er we do the
integration testing. As
displayed in the image below
when two different modules
‘Module A’ and ‘Module B’
are integrated then the
integration testing is done.

Integration testing follows two approach known
as ‘Top Down’ approach and ‘Bottom Up’

approach

Big Bang integration testing

In Big Bang integration testing all components
or modules are integrated simultaneously,
after which everything is tested as a whole.
As per the below image all the modules from
‘Module 1’ to ‘Module 6’ are integrated
simultaneously then the testing is carried out.

• Advantage: Big Bang testing has the
advantage that everything is finished
before integration testing starts.

• Disadvantage: The major disadvantage is
that in general it is time consuming and
difficult to trace the cause of failures
because of this late integration.

Top-down integration testing

Testing takes place from top to
bottom, following the control
flow or architectural structure
(e.g. starting from the GUI or
main menu). Components or
systems are substituted by
stubs.

Advantages of Top-Down approach:

•The tested product is very consistent because the
integration testing is basically performed in an
environment that almost similar to that of reality

•Stubs can be written with lesser time because when
compared to the drivers then Stubs are simpler to
author.

Disadvantages of Top-Down approach:

•Basic functionality is tested at the end of cycle

Bottom-up integration testing

Testing takes place from the
bottom of the control flow
upwards. Components or
systems are substituted by
drivers.

Advantage of Bottom-Up approach:

•In this approach development and testing can be
done together so that the product or application will
be efficient and as per the customer specifications.

Disadvantages of Bottom-Up approach:

•We can catch the Key interface defects at the end of
cycle

•It is required to create the test drivers for modules at
all levels except the top control

•UX / usability testing – Increasingly, we’re as concerned about the ability
of the user to interact with the system as we are about the ability of the
system to correctly operate on the user’s instructions. The goal in
usability testing is to fine-tune the design of the user experience, in order
to maximize delivered value.

• System testing – The notion of system testing has evolved from the early
days of simply exercising all of the modules to a more comprehensive end
to end test of the integrations with other systems, the correct evolution of
a growing set of transaction data records, and validation of access and
data security measures. The goal is to ensure that the system, including
all software, hardware, network and user actors, works reliably.

• Load testing – As more and more actors make demands on a system
whether human users or other systems, performance may be impacted.
The goal here is to provide a basis for “tuning” and optimizing delivery of
services, whether UX or integration, under a variety of expected demands.

• Survivability testing – Different systems have different availability
requirements. Those with high availability or continuity of business
operations requirements generally have commensurately more complex
designs. The goal here is to exercise key failure modes to ensure that
recovery, whether automatic or manual, works as expected.

•User acceptance testing – Decision makers need a basis for accepting
delivery of a completed system. The goal here is to exercise not just the
system under test but all supporting capabilities, from user training to
problem reporting and resolution to managing updates and planned
outages. UAT is the final test before the go / no-go decision that
determines whether the system can be put into production.

•Parallel testing – This is usually reserved for applications like payroll,
where the results of the system under test are compared to the results
from the system in production. Like UAT, for applications where it applies,
some number of successful parallel cycles are required in order to
approve the system for a move to production.

