Метод эвристических приемов

Часто задачи решаются методом проб и ошибок, т.е. путем логического анализа недостатков и их устранения.

Если таким образом задача решена, то изобретатель, помимо решения, приобретает еще и метод решения.

При появлении другой задачи изобретатель примеряет к ее решению прежде всего известные ему методы поиска идеи.

Если эти методы не дают желаемого результата, то изобретатель решает задачу опять методом проб и ошибок и находит новый метод.

Так постепенно у человека формируется набор методов, приемов.

Такие приемы называют эвристическими.

Примеры эвристических приемов:

- изменить традиционную ориентацию объекта в пространстве: горизонтальное положение на вертикальное или наклонное;
- изменить габаритные размеры, объем или длину объекта при переводе его в рабочее или нерабочее состояние;
- элементу, работающему под нагрузкой, придать выпуклую форму;
- вместо твердых частей использовать жидкие или газообразные (надувные, воздушные подушки);
- присоединить к объекту новый элемент в виде жестко или шарнирно соединенной пластины, трубы, находящейся в рабочей среде;
- заранее расставить элементы так, чтобы они могли вступить в действие с наиболее удобного места;
- перейти от неподвижного физического поля к движущемуся;
- использовать массу объекта (элемента).

Изменение традиционной ориентации объекта в пространстве

Примеры:

- Хранилище лодок на спортивной базе с размещением их в вертикальном положении;
- Подвижная пусковая установка: на марше ракеты находятся в горизонтальном положении, а перед пуском их устанавливают вертикально.

Самоходная пусковая установка ЗРС семейства С-300П

Изменение габаритных размеров, объема или длины объекта при переводе его в рабочее или нерабочее состояние

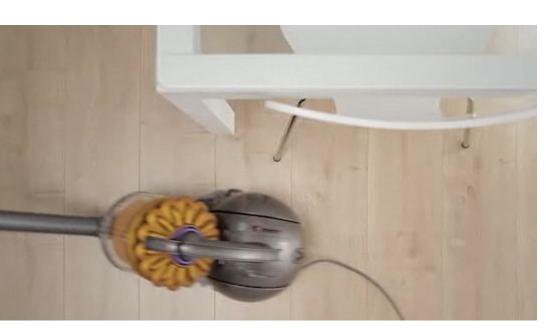
Примеры:

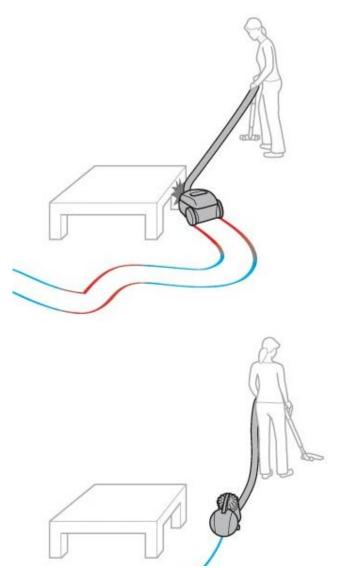
• Надувная лодка;

• Телескопическая антенна;

• Выдвижная лестница.

Пожарная машина MAN с выдвижной лестницей


Элементу, работающему под нагрузкой, придать выпуклую форму


Примеры:

- Элементы мостов, плотин, подпорных стенок и других сооружений, имеющие арочную и сводчатую форму, обеспечивают более эффективное противодействие нагрузкам;
- Колеса в форме шара, обеспечивают перемещение транспортного средства в любом направлении;
- Выпуклая форма носовой части корабля ниже ватерлинии (бульб Юркевича) снижает волновое сопротивление при движении на большой скорости.



Пылесос с системой рулевого управления

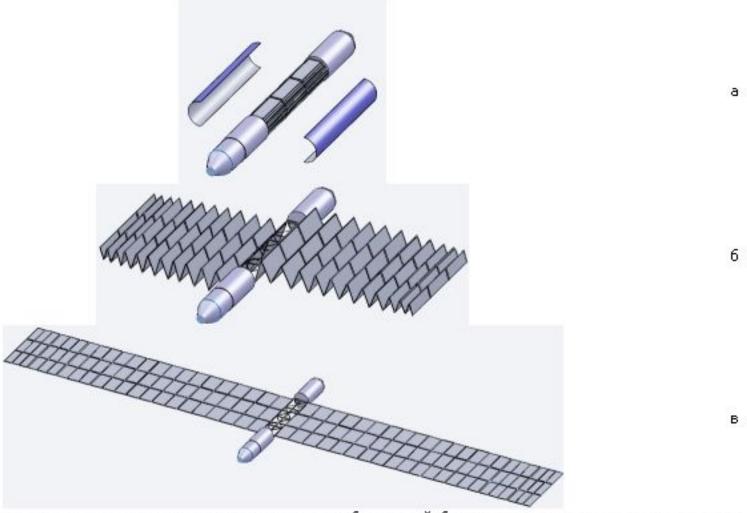
Носовой бульб

Вместо твердых частей использовать жидкие или газообразные

Примеры:

- Стенки дымовой трубы выполнены в виде воздушной завесы (А. с. №243809);
- Гидростатические или аэростатические направляющие станков.

Гидростатическая направляющая

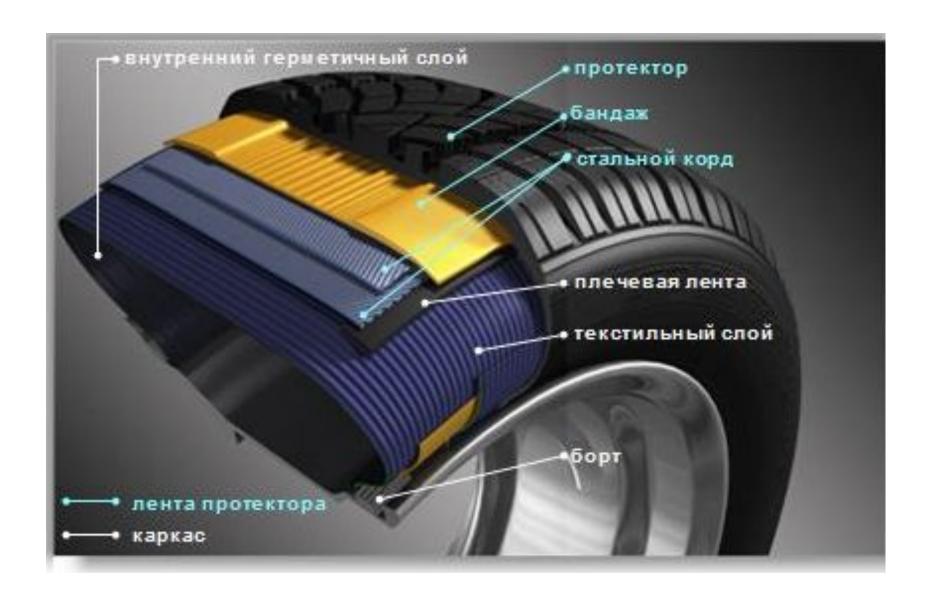

Присоединить к объекту новый элемент в виде жестко или шарнирно соединенной пластины, трубы, находящейся в рабочей среде

Пример:

К корпусу теплообменника прикрепляют «лепестки» из никелида титана.

При повышении температуры корпуса «лепестки» отгибаются, увеличивая площадь теплообмена.

Процесс раскрытия излучателя


[.] Поэтапная схема раскрытия излучателя: а — отстрел обтекателей, б — момент раскладки, в — полностью раскрытый излучатель

Заранее расставить элементы так, чтобы они могли вступить в действие с наиболее удобного места

Пример:

Патент США № 2879821: жесткий металлический диск, заранее расположенный внутри автомобильной шины и позволяющий продолжать движение на спущенной шине без повреждения покрышки.

Конструкция автомобильной шины

Перейти от неподвижного физического поля к движущемуся

Пример:

Поезда на магнитной подушке.

Поезд на магнитной подушке

Использовать массу объекта

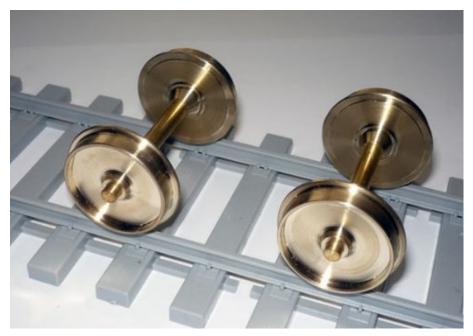
Пример:

Сортировка изделий по их массе.

Алгоритм решения задачи поиска новых решений

- 1. Постановка задачи.
- 2. Решение задачи.
- 3. Оценка вариантов и выбор решения.

Постановка задачи выполняется в пять этапов:


- Описание проблемной ситуации;
- Описание функции (назначения) объекта;
- Выбор прототипа и составление списка требований;
- Составление списка недостатков прототипа;
- Формулировка задачи.

Описание проблемной ситуации

Краткая формулировка задачи, в которой содержатся ответы на следующие вопросы:

- в чем состоит проблемная ситуация и какова ее предыстория;
- что нужно сделать для устранения проблемной ситуации;
- что мешает устранению проблемной ситуации;
- что дает решение задачи для людей.

Пример для колесной пары железнодорожного вагона

Проблемная ситуация (на примере колесной пары)

Колесные пары железнодорожных вагонов или локомотивов изнашиваются, и время от времени их надо приводить в порядок - обтачивать бандажи колес в строгом соответствии с железнодорожными требованиями.

Это делается по традиционной схеме: колеса выкатывают из-под вагонов или тепловозов, устанавливают на специальные токарные станки и обрабатывают.

Специального оборудования на ремонтных заводах для этого недостаточно.

Поэтому многие вагоны и тепловозы простаивают, дожидаясь "своей очереди".

Кроме того, тратится много времени и сил для снятия и установки колес.

Как более производительно и с меньшей затратой сил обтачивать колеса?

Станок для обработки колесных пар

Режущие инструменты для обработки

Что нужно сделать для устранения проблемной ситуации

Обточку осуществлять не снимая колесной пары с вагона.

Что мешает устранению проблемной ситуации

Если обточку производить не на токарном станке, а непосредственно на вагоне, то колесную пару не нужно снимать, но при этом не ясно, как обрабатывать колеса с требуемой точностью в таких условиях.

Что дает решение задачи

Идеальный конечный результат - точная и удобная обработка колес без снятия их с вагона.

Описание функции (назначения) системы

Сначала дают обобщенное качественное описание, а затем приводят количественное описание.

Обобщенное качественное описание (на примере обработки колесной пары)

Токарный станок должен обтачивать колеса, не снимая их с вагона.

Выбор прототипа и составление списка требований

Из числа аналогов выбирают прототип — наиболее близкий аналог по сущности и достигаемому результату при его использовании.

Список требований к прототипу должен быть достаточным для достижения в разрабатываемой системе требуемых характеристик: работоспособности, производительности, надежности, ремонтопригодности и т.п.

Если в этом списке не будет учтено хотя бы одно требование, то в системе окажется по крайней мере один серьезный недостаток.

Список требований - это список ограничений и критериев, использование которых необходимо и достаточно для достижения цели и выбора технического решения.

Выбор прототипа и составление списка требований (на примере колесной пары)

Прототип – токарный станок.

Требования к токарному станку:

- Обработка колес колесной пары с требуемой точностью;
- Обработка колес должна осуществляться не снимая колесную пару с вагона.

Составление списка недостатков прототипа

Каждый прототип обладает недостатками.

Для того чтобы эти недостатки не перешли в проектируемую систему, для каждого прототипа необходимо указать следующее:

- критерии развития;
- показатели, не соответствующие сформулированной функции;
- факторы, снижающие эффективность или затрудняющие использование прототипа;
- показатели, которые желательно улучшить.

По каждому показателю желательно дать количественную оценку с перспективой на будущее.

Составленный таким образом документ называют списком недостатков прототипа.

Заканчивают данный этап ранжированием списка недостатков в порядке их важности.

Недостатки прототипа (на примере колесной пары)

Токарный станок слишком большой, что не позволяет установить его для обработки колес колесной пары непосредственно на вагоне.

Формулировка задачи

Обобщаются результаты, полученные выше.

Задача формулируется следующим образом.

Дано:

- качественное и количественное описания функции (назначения, условий и ограничения);
- описание прототипа и список требований к нему (критериев);
- ранжированный список недостатков прототипа.

Требуется:

найти такое решение задачи, которое соответствовало бы функциональному назначению и не имело бы недостатков, присущих прототипу.

Формулировка задачи (на примере обработки колесной пары)

Токарный станок включает привод главного движения, шпиндель, суппорт с резцедержателем, привод подачи режущего инструмента, которые установлены на станине.

Наиболее громоздкие части: станина, суппорт, приводы.

Все большие части токарного станка не должны быть на локомотиве или на вагоне в процессе обработки колес колесной пары, но их функции должны выполняться.

Решение технической задачи

Задачу прежде всего надо разделить на несколько простых задач.

Простой задачей считают ту, в которой **требуется разрешить только одно** техническое **противоречие.**

Технических противоречий и простых задач будет столько, **сколько отмечено нежелательных эффектов** в списке недостатков прототипа.

Решение следует начать в порядке ранжирования недостатков.

Процесс решения технической задачи проходит несколько этапов.

Этапы решения технической задачи

- формулировка технического противоречия;
- подбор нескольких подходящих эвристических приемов;
- преобразование прототипа;
- синтез предлагаемых вариантов технической системы;
- оценка вариантов и выбор решения.

Формулировка технического противоречия (на примере обработки колесной пары)

Необходимо обрабатывать колеса колесной пары на вагоне, но массо-габаритные характеристики токарных станков не позволяют это выполнить.

Подбор эвристических приемов для решения противоречия (на примере колесной пары)

- 1. Эвристический прием **дробление** токарный станок представить в виде отдельных элементов:
 - Привод вращения колесной пары;
 - Суппорт обеспечивающий подачу режущего инструмента;
 - Станина, несущая суппорт, закрепленная на вагоне.
- 2. Эвристический прием **динамичность** разделить объект на части, способные перемещаться относительно друг друга:
- Одна часть колесная пара;
- Вторая часть перемещающийся на суппорте режущий инструмент.
- 3. Эвристический прием **универсальность** объект выполняет несколько разных функций:
- Колесная пара обеспечивает перемещение вагона и одновременно выполняет функцию привода колес при их вращении в процессе движения вагона.

Преобразование прототипа (на примере колесной пары

- 1. Заменить источник энергии в качестве движителя привода вращения колесной пары использовать не электродвигатель токарного станка, а энергию вращение колесной пары при движении вагона.
- 2. Существенно изменить компоновку элементов суппорт с режущим инструментом установить на вагоне, а не на станине токарного станка.

Оценка вариантов и выбор решения

Создается несколько вариантов устройств для обработки колес колесной пары без снятия ее с вагона, различающиеся особенностями, такими как, например:

- Схемами устройства;
- Способом закрепления суппорта, несущего резцедержатель;
- Разновидностями используемых режущих инструментов и направлениями их перемещения;
- Другими особенностями.

Каждый из этих вариантов анализируется, в результате чего выбирается лучший вариант.

Основные приемы устранения технических противоречий

Дробление:

- разделить объект на независимые части;
- выполнить объект разборным;
- увеличить степень дробления объекта.

Вынесение:

- отделить от объекта «мешающую» часть («мешающее» свойство);
- или, наоборот, выделить единственно нужную часть или нужное свойство.

Местное качество:

- перейти от однородной структуры объекта или внешней среды (внешнего, воздействия) к неоднородной;
- разные части объекта должны выполнять различные функции;
- каждая часть объекта должна находиться в условиях, наиболее благоприятных для ее работы.

Асимметрия:

- перейти от симметрической формы объекта к асимметрической;
- если объект уже, асимметричен, увеличить степень асимметрии.

Объединение:

- соединить однородные или предназначенные для смежных операций объекты;
- объединить во времени однородные или смежные операции.

Универсальность: объект выполняет несколько разных функций, благодаря чему отпадает, необходимость в других объектах.

«Матрешка»:

- один объект размещен внутри другого, который, в свою очередь, находится внутри третьего и т. д.;
- один объект проходит сквозь полость в другом объекте.

Антивес:

- компенсировать вес объекта соединением с другим объектом, обладающим подземной силой;
- компенсировать вес объекта взаимодействием со средой (преимущественно за счет аэро- и гидродинамических сил).

Предварительное антидействие: если по условиям задачи необходимо совершать какоето действие, надо заранее совершить антидействие.

Предварительное действие:

- заранее выполнить требуемое действие (полностью или хотя бы частично);
- заранее расставить, объекты так, чтобы они могли вступить в действие без затрат времени на доставку и с наиболее удобного места.

«Заранее положенная подушка»: компенсировать относительно невысокую надежность объекта аварийными средствами.

Эквипотенциальность: изменить условия работы так, чтобы не приходилось поднимать или опускать объект.

«Наоборот»:

- вместо действия, диктуемого условиями задачи, осуществить обратное действие; сделать движущуюся часть объекта или внешней среды неподвижной, а неподвижную движущейся;
- повернуть объект «вверх ногами», вывернуть его.

Сфероидальность:

- перейти от прямолинейных частей к криволинейным, от плоских поверхностей к сферическим, от частей, выполненных в виде куба или параллелепипеда, к шаровым конструкциям;
- использовать ролики, шарики, спирали;
- перейти от прямолинейного движения к вращательному, использовать центробежную силу.

Динамичность:

- характеристики объема (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы;
- разделить объект на части, способные перемещаться относительно друг друга;
- если объект в целом неподвижен, сделать его подвижным.

Частичное или избыточное действие: если трудно получить 100% требуемого эффекта, надо получить «чуть меньше» или «чуть больше»,— задача при этом может существенно упроститься.

Переход в другое измерение:

- трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух-трех измерениях;
- использовать многоэтажную компоновку объектов вместо одноэтажной;
- наклонить объект или положить его набок;
- использовать обратную сторону данной площади;
- использовать оптические потоки, падающие на соседнюю площадь или на обратную сторону имеющейся площади.

Использование механических колебаний:

- привести объект в колебательное движение;
- если такое движение уже совершается, увеличить его частоту (вплоть до ультразвукового);
- использовать резонансную частоту;
- применить вместо механических вибраторов пьезовибраторы;
- использовать ультразвуковые колебания в сочетании с электромагнитными полями.

Периодическое действие:

- перейти от непрерывного действия к периодическому (импульсному);
- если действие уже осуществляется периодически, изменить периодичность;
- использовать паузы между импульсами.

Непрерывность полезного действия:

- вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой);
- устранить холостые и промежуточные ходы.

Проскок: вести процесс или отдельные его части (например, вредные или опасные) на большой скорости.

«Обратить вред в пользу»:

- использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта;
- устранить вредный фактор за счет сложения с другими вредными факторами;
- усилить вредный фактор, чтобы он перестал быть вредным.

Обратная связь:

- ввести обратную связь;
- если обратная связь есть, изменить ее.

«Посредник»:

- использовать промежуточный объект, переносящий или передающий действие;
- на время присоединить к объекту другой (легкоудалимый) объект.

Самообслуживание:

- объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции;
- использовать отходы (энергии, вещества).

Копирование:

- вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии;
- заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии);
- если используются видимые: оптические копии, перейти к : копиям инфракрасным или ультрафиолетовым.

Дешевая недолговечность взамен дорогой долговечности: заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).

Замена механической схемы:

- заменить механическую схему оптической, акустической;
- использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом;
- перейти от неподвижных полей к движущимся, от фиксированных к меняющимся во времени, от неструктурных к имеющим определенную структуру; использовать поля в сочетании с ферромагнитными частицами.

Использование пневмо- и гидроконструкций: вместо твердых частей объекта использовать газообразные и жидкие (надувные и гидронаполняемые, воздушную подушку, гидростатические и гидрореактивные).

Использование гибких оболочек и тонких пленок:

- вместо обычных конструкций использовать гибкие оболочки и тонкие пленки;
- изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.

Применение пористых материалов:

- выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. д.);
- если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.

Изменение окраски:

- изменить окраску объекта или внешней среды;
- изменить степень прозрачности объекта или внешней среды;
- для наблюдений за плохо видными объектами или процессами использовать красящие добавки;
- если такие добавки уже применяются, использовать люминофоры.

Однородность: объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).

Отброс и регенерация частей:

- выполнившая свое назначение и ставшая ненужной часть объекта должна быть отброшена (растворена, испарена и т. д.) или видоизменена непосредственно в ходе работы;
- расходуемые части объекта должны быть восстановлены непосредственно в ходе работы.

Изменение агрегатного состояния объекта: сюда входят не только простые переходы, например от твердого состояния к жидкому, но и переходы к «псевдосостояниям» («псевдожидкость») и промежуточным состояниям, например использование эластичных твердых тел.

Применение фазовых переходов: использовать явления, возникающие при фазовых переходах, например изменение объема, выделение или поглощение тепла и т. д.

Применение теплового расширения:

- использовать тепловое расширение (или сжатие) материалов;
- использовать несколько материалов с разными коэффициентами теплового расширения.

Применение сильных окислителей:

- заменить обычный воздух обогащенным;
- заменить обогащенный воздух кислородом;
- воздействовать на воздух или кислород ионизирующими излучениями;
- использовать озонированный кислород;
- заменить озонированный (или ионизированный) кислород озоном.

Применение инертной среды:

- заменить общую среду инертной;
- вести процесс в вакууме.

Применение композитных материалов: перейти от однородных материалов к композитным.

Преобразование прототипа

Выполняют преобразование прототипа так, чтобы каждый полученный вариант подсистемы могобеспечить:

- устранение нежелательного эффекта;
- неухудшение других сторон и способностей технической системы;
- выполнение ограничений и критериев (списка требований);
- выполнение всех требований "само собой", повышение идеальности технической системы.

Все улучшенные варианты подсистем надо фиксировать в виде описаний и схем. Надо стремиться получить несколько улучшенных идей. Если из них не удается отобрать удовлетворительного решения, то наилучшую полученную схему следует принять за прототип, который следует снова обработать с помощью эвристических приемов.

Эвристические приемы преобразования объектов

Преобразование формы:

- Использовать круговую, спиральную, древовидную, сферическую или другую компактную форму.
- Сделать в объекте (элементе) отверстия или полости (инверсия приема).
- Проверить соответствие формы объекта законам симметрии. Перейти от симметричной формы и структуры к асимметричной (инверсия приема).
- Перейти от прямолинейных частей, плоских поверхностей, кубических и многогранных форм (особенно в местах сопряжений) к криволинейным, сферическим и обтекаемым формам (инверсия приема).
- Объекту (элементу), работающему под нагрузкой, придать выпуклую (более выпуклую) форму.
- Компенсировать нежелательную форму сложением с обратной по очертанию формой.

- Выполнить объект в форме:
 - другого технического объекта, имеющего аналогичное название или назначение;
 - животного, растения или их органа;
 - человека или его органов.
 - сделать объект (элемент) приспособленным к форме человека или его органов;
- Использовать в аналогичных условиях работы природный принцип формирования в живой или неживой природе.
- Сделать рациональный (оптимальный) раскрой листового или объемного материала;
- Внести изменения в форму деталей для более полного использования материала.

- Выбрать конструкцию деталей, в наибольшей мере приближающуюся по форме и размерам выпускаемого проката и других профильных заготовок.
- Найти глобально-оптимальную форму объекта.
- Найти наибольшую цельную форму объекта (зрительное выделение главного функционального элемента, устранение или прикрытие многих ненужных деталей и т. д.).
- Использовать различные виды симметрии и асимметрии, динамические в статические свойства формы, ритма (чередования одинаковых или схожих элементов), нюансов и контраста.
- Осуществить гармоническую увязку форм различных элементов (выбор масштабов и соотношений между объектами и окружаю щей предметной средой, использование эстетически предпочтительных пропорций).
- Выбрать (придумать) наиболее красивую форму объекта и его элементов.

Преобразование структуры.

- Исключить наиболее напряженный (нагруженный) элемент.
- Исключить элемент при сохранении объектом всех прежних функций. Один элемент выполняет несколько функций, благодаря чему отпадает необходимость в других элементах. Убрать «лишние детали» даже при потере «одного процента эффекта».
- Присоединить к объекту новый элемент в виде жестко или шарнирно соединенной пластины (стержня, оболочки или трубы), находящейся в рабочей среде или в контакте о ней.
- Присоединить к базовому объекту дополнительное специализированное орудие труда, инструмент и т. п.
- Заменить связи (способ или средства соединения) между элементами; жесткую связь сделать гибкой или наоборот.

- Заменить источник энергии, тип привода, цвет и т. д.
- Заменить механическую схему электрической, тепловой, оптической или электронной.
- Существенно изменить компоновку элементов, уменьшить компоновочные затраты.
- Сосредоточить органы управления и контроля в одном месте.
- Объединить элементы единым корпусом, станиной или изготовить объект цельным.
- Ввести единый привод, единую систему управления или энергоснабжения.
- Соединить однородные или предназначенные для смежных операций объекты.

- Объединить в одно целое объекты, имеющие самостоятельное назначение, которое сохраняется после объединения в новом комплексе.
- Использовать принцип агрегатирования создать базовую конструкцию (единую раму, станину), на которую можно «навесить» различные (в различных комбинациях) рабочие органы, агрегаты, инструменты.
- Совместить или объединить явно или традиционно несовместимые объекты, устранив возникающие противоречия.
- Выбрать материал, обеспечивающий минимальную трудоемкость изготовления деталей и обработки заготовок.
- Использовать раздвижные раскладные сборные, надувные и другие конструкции, обеспечивающие значительное уменьшение габаритных размеров при переводе ТО из рабочего состояния в нерабочее.
- Найти глобально-оптимальную структуру.
- Выбрать (придумать) наиболее красивую структуру.

Преобразования в пространстве.

- Изменить традиционную ориентацию объекта в пространстве:
- горизонтальное положение на вертикальное или наклонное;
- положить на бок;
- повернуть низом вверх;
- повернуть путем вращения.
 - Использовать «пустое пространство» между элементами объекта - один элемент проходит сквозь полость в другом элементе.
 - Объединить известные порознь объекта (элемента) с размещением одного внутри другого по принципу «матрешки».

- Размещение по одной линии заменить размещением по нескольким линиям или по плоскостям (инверсия приема).
- Заменить размещение по плоскости размещением по нескольким плоскостям или в трехмерном пространстве; перейти от одноэтажной (однослойной) компоновки к многоэтажной (многослойной) (инверсия приема).
- Изменить направление действия рабочей силы или среды.
- Перейти от контакта в точке к контакту по линии от контакта по линии к контакту по поверхности или от контакта по поверхности к объемному (пространственному) (инверсия приема).
- Осуществить сопряжение по нескольким поверхностям.
- Приблизить рабочие органы объекта к месту выполнения ими своих функций без передвижения самого объекта.
- Заранее расставить объекты так, чтобы они могли вступить в действие с наиболее удобного места и без затрат времени на их доставку.

- Перейти от последовательного соединения элементов к параллельному или смешанному (инверсия приема).
- Разделить объект на части так, чтобы приблизить каждую из них к тому месту, где она работает.
- Разделить объект на две части «объемную» и «необъемную»; вынести «объемную» часть за пределы, ограничивающие объем.
- Вынести элементы, подверженные действию вредных факторов, за пределы их действия.
- Перенести (поместить) объект, или его элемент в другую среду, исключающую действие вредных факторов.
- Выйти за традиционные пространственные ограничения или габаритные размеры.

Преобразования во времени.

- Перенести выполнение действия на другое время. Выполнить требуемое действие до начала или после окончания работы.
- Перейти от непрерывной подачи энергии (вещества) или непрерывного действия (процесса) к периодическому или импульсному (инверсия приема).
- Перейти от стационарного во времени режима к изменяющемуся.
- Исключить бесполезные («вредные») интервалы времени.
 Использовать паузу между импульсами (периодическими действиями) для осуществления другого действия.
- По принципу непрерывного полезного действия осуществлять работу объекта непрерывно, без холостых ходов. Все элементы объекта должны все время работать с полной нагрузкой.
- Изменить последовательность выполнения операций.
- Перейти от последовательного осуществления операций к параллельному (одновременному) (инверсия приема).
- Совместить технологические процессы или операции. Объединить однородные или смежные операции (инверсия приема).

Синтез предлагаемых вариантов технической системы

Проводят **анализ последствий** от новых технических решений с целью установления их совместимости с другими подсистемами и надсистемой.

Анализ **проводят в таблице положительных и отрицательных последствий** для всех перспективных отобранных вариантов.

Синтез начинают с главной подсистемы, в наибольшей степени определяющей выполнение главной полезной функции. При синтезе необходимо получить несколько вариантов решения задачи для системы.

Оценка вариантов и выбор решения

В процессе оценки вариантов производится их анализ и сравнение с критериями качества. Сначала делается качественная оценка, а затем количественная по качественным и количественным критериям. Оценка позволяет отсечь неработоспособные, неэффективные варианты и варианты, не соответствующие поставленным целям.

Количественная оценка критериев предполагает количественный анализ синтезированных технических систем. Это единственное средство, позволяющее убедиться, что полученная новая техническая система удовлетворяет списку требований.

После анализа вариантов и их сравнения с критериями качества часть вариантов отсекается, а оставшаяся часть предназначается для выбора предпочтительного варианта.