Векторы.

Линейные операции над векторами.

Скалярное, векторное, смешанное произведения векторов.

Прямая на плоскости.

Векторы и линейные операции над ними.

Определение. Вектором с началом в точке A и с концом в точке B называется отрезок с выбранным направлением, или направленный отрезок - \overrightarrow{AB} .

Вектор, у которого начало совпадает с его концом, называется *нулевым* вектором - $\vec{0}$.

Длина отрезка, изображающего вектор \vec{a} называется *модулем* этого вектора - $|\vec{a}|$. Векторы $\vec{a}_1, \vec{a}_2, \mathbb{N}$, \vec{a}_n параллельные одной прямой называются *коллинеарными*.

<u>Определение.</u> Пусть даны векторы \bar{a} и \bar{b} . Приложим начало \bar{a} к концу \bar{b} . Суммой $\bar{a} + \bar{b}$ двух векторов \bar{a} и \bar{b} называется вектор, начало которого совпадает с началом вектора \bar{a} , а конец - с концом вектора \bar{b} .

<u>Определение</u>. Pазностью \bar{a} - \bar{b} векторов \bar{a} и \bar{b} , выходящих из одной точки, называется вектор, соединяющий конец вектора \bar{b} с концом вектора \bar{a} .

Определение. Произведением вектора \bar{a} на число λ называется вектор $\lambda \bar{a}$, удовлетворяющий трем условиям: 1) $|\lambda \bar{a}| = |\lambda| |\bar{a}|$, 2) $\lambda \bar{a}| |\bar{a}|$, 3) вектор $\lambda \bar{a}$ одинаково направлен с вектором \bar{a} , если $\lambda > 0$, и направлен в противоположную сторону, если $\lambda < 0$.

Линейные операции над векторами обладают следующими свойствами:

- 1. $1 \cdot \overline{a} = \overline{a}$.
- $2.0 \cdot \overline{a} = \overline{0}$.
- 3. $\overline{a} + \overline{b} = \overline{b} + \overline{a}$.
- 4. $(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c})$.
- $5.\lambda(\bar{a}+\bar{b})=\lambda\bar{a}+\lambda\bar{b}$.
- 6. $\lambda(\beta \overline{a}) = (\lambda \beta) \overline{a}$.
- 7. $(\lambda + \beta) \overline{a} = \lambda \overline{a} + \beta \overline{a}$.
- 8. $\forall \overline{a} : \overline{a} = |\overline{a}| \cdot \overline{a}^{0}$.
- 9. Если $\overline{b} = \lambda \overline{a}$, то $\overline{b} \mid |\overline{a}$. И обратно, если $\overline{b} \mid |\overline{a} \Rightarrow \exists \lambda : \overline{b} = \lambda \overline{a}$.

Базис и координаты вектора

Определение. Линейной комбинацией векторов $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ с коэффициентами $C_1, C_2, ..., C_n$ называется вектор $C_1 \vec{a}_1 + C_2 \vec{a}_2 + ... + C_n \vec{a}_n$.

Векторным пространством называется такое множество векторов, что любая линейная комбинация векторов этого множества также ему принадлежит.

Определение. Любой ненулевой вектор Θ на прямой называется **базисным вектором этой прямой**. Любая пара неколлинеарных векторов $\{\vec{\Theta}_1, \vec{\Theta}_2\}$ плоскости называется **базисом этой плоскости**. Любая тройка некомпланарных векторов $\{\vec{\Theta}_1, \vec{\Theta}_2, \vec{\Theta}_3\}$ называется **базисом пространства**.

Теорема о базисе. Любой вектор **а** (на прямой, плоскости или в пространстве) единственным образом записывается в виде линейной комбинации соответствующих базисных векторов. То есть,

- 1) на прямой: $\vec{a} = x\vec{e}$,
- 2) на плоскости: $\vec{a} = x\vec{e}_1 + y\vec{e}_2$,
- 3) в пространстве: $\vec{a} = x \vec{e}_1 + y \vec{e}_2 + z \vec{e}_3$

Определение. Коэффициенты линейной комбинации базисных векторов выражающих вектор а на прямой, в плоскости или в пространстве называются координатами вектора а в данном базисе.

Теорема. При сложении векторов их соответствующие координаты складываются, при умножении вектора на число все его координаты умножаются на это число.

Пусть в пространстве имеется декартова система координат OXYZ.

С ней связан стандартный базис из единичных взаимно перпендикулярных векторов i, j, k, расположенных вдоль осей Ox, Oy, Oz.

Если (x,y,z) — координаты точки A в системе OXYZ, то вектор \overrightarrow{OA} можно записать в виде $\overrightarrow{OA} = x \, i \, + y \, \vec{j} + z \, k$.

Теорема. Пусть в декартовой системе координат Охуг заданы две точки $A(x_A, y_A, z_A)$ и $B(x_A, y_A, z_A)$, тогда в базисе $\{i, j, k\}$ вектор \overrightarrow{AB} имеет координаты $((x_B - x_A), (y_B - y_A), (z_B - z_A))$.

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

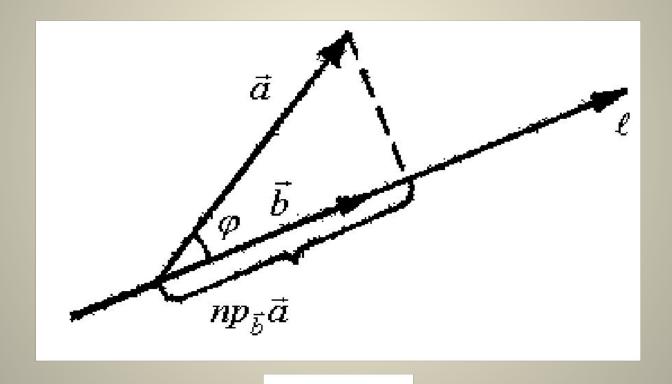
Определение. В Скалярным произведением векторов а и b называется число, равное произведению модулей этих векторов на косинус угла между ними, т. е. $a \cdot b = |a| \cdot |b| \cdot \cos(a, b).$

Для любых векторов справедливы следующие свойства

1) $\overrightarrow{ab} = b\overrightarrow{a}$. 2) $\overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}|^2$, T. K. $\cos(\overrightarrow{a}, \overrightarrow{a}) = \cos 0 = 1$.

3) Скалярное произведение ненулевых векторов а и в равно 0 только в том случае, когда эти векторы ортогональны (перпендикулярны).

Проекцией вектора $\stackrel{\boxtimes}{a}$ на ненулевой вектор $\stackrel{\boxtimes}{b}$ (обозначение $\Pi p_b^{\boxtimes} a$) называется его проекция на ось 1, проведенную через вектор b.



4) $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot \text{пр}_{\vec{a}}\vec{b} = |\vec{b}| \text{пр}_{\vec{b}}\vec{a}$.

5) Для любого вектора \vec{a} с координатами (x, y, z) в базисе $\{i, j, k\}$ верно:

x = ai, y = aj, z = ak.

6) $(\lambda a) \cdot b = \lambda \cdot (a \cdot b)$; $\lambda - \pi b \delta b = 4 \iota c \delta b$.

7) $(a + b) \cdot c = ac + bc$. **Теорема.** Пусть в базисе $\{i, j, k\}$ вектор a имеет координаты (x_1, y_1, z_1) а вектор $b - (x_2, y_2, z_2)$. Тогда $a \cdot b = x_1x_2 + y_1y_2 + z_1z_2$.

Из этой теоремы вытекают следствия:

- 1. Длина вектора $\overline{a} = (x, y, z)$ равна $|\overline{a}| = \sqrt{x^2 + y^2 + z^2}$.
- 2. Косинус угла ϕ между векторами $\overline{a} = (x_1, y_1, z_1)$ и $\overline{b} = (x_2, y_2, z_2)$ определяется по формуле:

$$\cos \varphi = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}}.$$

3. Условие перпендикулярности векторов $\overline{a} = (x_1, y_1, z_1)$ и $\overline{b} = (x_2, y_2, z_2)$:

$$\overline{a} \perp \overline{b} \Leftrightarrow x_1x_2 + y_1y_2 + z_1z_2 = 0.$$

4. Проекция вектора $\bar{a} = (x_1, y_1, z_1)$ на вектор $\bar{b} = (x_2, y_2, z_2)$ равна

$$np_{\bar{b}} \bar{a} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_2^2 + y_2^2 + z_2^2}}.$$

ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

Определение. Векторным произведением векторов \vec{a} и \vec{b} называется вектор $\vec{c} = \vec{a} \times \vec{b}$, удовлетворяющий трём условиям:

a) $|\vec{c}| = |\vec{a}| |\vec{b}| \sin(a, b)$

- в) \vec{c} перпендикулярен векторам \vec{a} и \vec{b} , т. е. он перпендикулярен плоскости, проходящей через векторы
- с) Тройка векторов a, b, c правая, т.е. при взгляде со стороны конца третьего вектора кратчайший поворот от первого ко второму происходит против часовой стрелки.

СВОЙСТВА ВЕКТОРНОГО ПРОИЗВЕДЕНИЯ

Для любых векторов справедливы следующие свойства.

 1° . Векторное произведение антикоммутативно: $b \times a = -a \times b$. 2° . Ненулевые векторы а и b коллинеарны только

в том случае, когда $\overset{\boxtimes}{a} \times \overset{\boxtimes}{b} = \overset{\boxtimes}{0}$. 3°. $(\lambda a) \times b = \lambda (a \times b), \lambda - число.$ 4°. $(a_1 + a_2) \times b = a_1 \times b + a_2 \times b$.

Теорема. Пусть в базисе $\{i,j,k\}$ векторы a и bимеют координаты (x_1, y_1, z_1) и (x_2, y_2, z_2) соответственно. Тогда в этом базисе

Следствие 1. Площадь параллелограмма, построенного на векторах $\ddot{a} = (x_1, y_1, z_1)$ и $\ddot{b} = (x_2, y_2, z_2)$, равна $S_{\text{пар}} = \begin{vmatrix} \mathbb{X} \\ \mathbf{a} \times \mathbf{b} \end{vmatrix} = \sqrt{(y_1 z_2 - z_1 y_2)^2 + (x_1 z_2 - z_1 x_2)^2 + (x_1 y_2 - y_1 x_2)^2}$.

$$S_{nap} = \left| \stackrel{\boxtimes}{a} \times \stackrel{\boxtimes}{b} \right| = \sqrt{(y_1 z_2 - z_1 y_2)^2 + (x_1 z_2 - z_1 x_2)^2 + (x_1 y_2 - y_1 x_2)^2}$$

Площадь треугольника, построенного на этих векторах, равна:

$$S_{mp} = \frac{1}{2} \left| \stackrel{\boxtimes}{a} \times \stackrel{\boxtimes}{b} \right| = \frac{1}{2} \sqrt{(y_1 z_2 - z_1 y_2)^2 + (x_1 z_2 - z_1 x_2)^2 + (x_1 y_2 - y_1 x_2)^2}.$$

Следствие 2. Площадь параллелограмма, построенного на векторах $\ddot{a} = (x_1, y_1)$ и $\ddot{b} = (x_2, y_2)$, лежащих в плоскости Оху, равна

$$S_{nap} = |\mathbf{X}_1 \mathbf{y}_2 - \mathbf{y}_1 \mathbf{X}_2| .$$

Площадь треугольника, построенного на этих векторах, равна

$$S_{\tau p} = \frac{1}{2} |x_1 y_2 - y_1 x_2|.$$

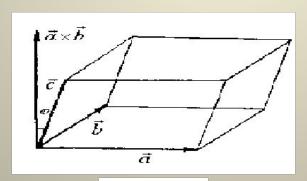
СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

Определение. Смешанным произведением трех векторов a, b и c называется число, равное скалярному произведению векторного произведения векторов a и b c вектором c: ($a \times b$)c).

1. Теорема. Смешанное произведение векторов $\overset{\square}{a}$, $\overset{\square}{b}$ и $\overset{\square}{c}$ равно \pm объему параллелепипеда, построенного на этих векторах:

 $\overset{\mathbb{N}}{a}\overset{\mathbb{N}}{b}\overset{\mathbb{N}}{c}=\pm V_{\mathsf{nap}}.$

 \mathbb{Z}_{a} , \mathbb{Z}_{b} , \mathbb{Z}_{c} знак "+" берется, в случае, если тройка векторов \mathbb{Z}_{a} , \mathbb{Z}_{c} – правая, "-" если она левая.



<u>Теорема.</u> Смешанное произведение векторов $\overline{a} = (x_1, y_1, z_1), \ \overline{b} = (x_2, y_2, z_2)$ и $\overline{c} = (x_3, y_3, z_3)$, заданных своими декартовыми координатами, вычисляется по формуле:

$$\overline{a}\overline{b}\overline{c} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

Следствие 1. Объём параллелепипеда, построенного на векторах $\bar{a} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ и $\bar{c} = (x_3, y_3, z_3)$, равен:

$$V_{nap} = | \, \overline{a} \, \overline{b} \, \overline{c} \, | = | egin{array}{ccc} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{array} | \, .$$

Объём треугольной пирамиды (тетраэдра), построенной на этих же векторах, равен:

$$V_{\text{пир}} = \frac{1}{6} \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$
.

Следствие 2. Если $\bar{a} = (x_1, y_1, z_1)$, $\bar{b} = (x_2, y_2, z_2)$ и $\bar{c} = (x_3, y_3, z_3)$, то:

векторы
$$\overline{a}$$
, \overline{b} , \overline{c} - компланарны $\Leftrightarrow \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = 0.$

ПРЯМАЯ НА ПЛОСКОСТИ

Уравнение вида Ax+By+C=0 называется общим уравнением прямой.

Уравнение вида $\frac{x}{a} + \frac{y}{b} = 1$ называется *уравнением прямой в "отрезках"*.

Уравнение прямой, проходящей через две точки $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$ записывается в виде:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}.$$

Уравнение прямой с угловым коэффициентом записывается в виде: y = kx + b.

Здесь $k = tg\alpha$ - тангенс угла наклона прямой к оси Ox называется угловым коэффициентом прямой

Уравнение прямой, проходящей через данную точку $M_0(x_0, y_0)$ с данным угловым коэффициентом:

$$y - y_0 = k(x - x_0).$$

Расстояние от точки $M_0(x_0,y_0)$ до прямой L:Ax+By+C=0 определяется по формуле:

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}.$$

Угол между двумя прямыми.

Условия параллельности и перпендикулярности двух прямых

Тангенс угла между двумя прямыми $L_1: y = k_1 x + b_1$ и $L_2: y = k_2 x + b_2:$

$$tg\boldsymbol{\varphi} = \frac{k_1 - k_2}{1 + k_1 k_2}.$$

Условие параллельности прямых $L_1: y = k_1 x + b_1$ и $L_2: y = k_2 x + b_2:$

$$L_1||L_2 \Leftrightarrow k_1=k_2.$$

Условие перпендикулярности прямых $L_1: y = k_1 x + b_1$ и $L_2: y = k_2 x + b_2:$

$$k_1 k_2 = -1$$
.

Косинус угла φ между прямыми $L_1: A_1x + B_1y + C_1 = 0$ и $L_2: A_2x + B_2y + C_2 = 0$:

$$\cos \varphi = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}.$$

Условие параллельности прямых L_1 : $A_1x+B_1y+C_1=0$ и L_2 : $A_2x+B_2y+C_2=0$: $A_1A_2+B_1B_2=0$.

Эти прямые параллельны только в том случае, когда

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} \ .$$