ГАОУ СПО ТО «Тюменский медицинский колледж»

Компенсаторно – приспособительные реакции

Автор: Анкушева Л.П.

Содержание:

- 1. Общая характеристика компенсаторно приспособительных реакций
- 2. Механизмы развития компенсаторно приспособительных реакций
- 3. Стадии развития компенсаторно приспособительных реакций
- 4. Структурно функциональные основы компенсаторно приспособительных реакций:
 - 1) Регенерация
 - 2) Гипертрофия и гиперплазия
 - 3) Организация и инкапсуляция
 - 4) Метаплазия

Компенсаторно-приспособительная реакция

-комплекс саморегулирующихся процессов, возникающих в организме человека, позволяющих ему выжить в изменяющихся условиях окружающей среды, а также в условиях патологии

Приспособление

–комплекс реакций организма определённого вида,
существующих у каждого человека с рождения

Компенсация

-комплекс реакций, возникающих у человека при утрате или нарушении какой-либо функции организма в условиях патологии

Механизмы

компенсаторно-приспособительных реакций

1. САМОРЕГУЛЯЦИЯ

Отклонение какого-либо показателя гомеостаза от нормы является стимулом возвращения к норме

повышение

содержания глюкозы в крови приводит к усилению

синтеза гликогена

пример

содержание глюкозы в крови 5 ммоль/л

понижение

содержания глюкозы в крови приводит к усилению

распада гликогена

2. СИГНАЛЬНОСТЬ ОТКЛОНЕНИЯ

Отклонение какого-либо показателя гомеостаза вызывает раздражение соответствующих рецепторов, от них импульс передаётся в ЦНС, затем активируются органы и системы организма, способные восстановить этот показатель

пример

Возбуждение рецепторов стенки сонной артерии

Снижение содержания кислорода в крови

Активация дыхательного и сердечно-сосудистого центров

Усиливается дыхание и кровообращение

3. ДУБЛИРОВАНИЕ ФИЗИОЛОГИЧЕСКИХ ПРОЦЕССОВ

В поддержании на нормальном уровне какого-либо показателя гомеостаза принимают участие несколько органов и систем организма

Стадии развития

компенсаторно-приспособительных реакций

1. СТАДИЯ СТАНОВЛЕНИЯ

–происходит усиление функции органов, участвующих в компенсации утраченной или сниженной функции организма

2. СТАДИЯ ЗАКРЕПЛЕНИЯ

 –развивается структурная перестройка и гипертрофия активно функционирующих органов

3. СТАДИЯ ДЕКОМПЕНСАЦИИ

-истощаются резервные запасы организма, нарушается функция органов, участвующих в компенсации

Структурно-функциональные основы компенсаторно-приспособительных реакций

РЕГЕНЕРАЦИЯ

ГИПЕРТРОФИЯ

ГИПЕРПЛАЗИЯ

ОРГАНИЗАЦИЯ

ИНКАПСУЛЯЦИЯ

МЕТАПЛАЗИЯ

РЕГЕНЕРАЦИЯ

–процесс восстановления структур ткани взамен погибших

ФИЗИОЛОГИЧЕСКАЯ РЕГЕНЕРАЦИЯ

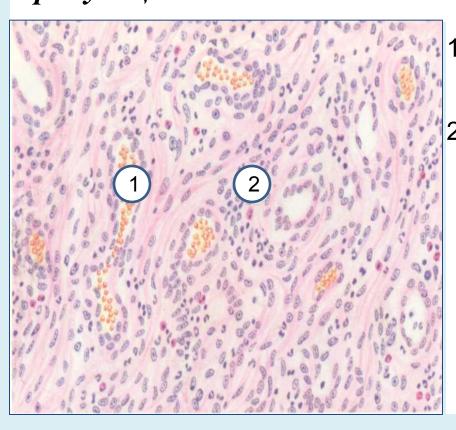
–процесс непрерывного обновления тканей в течение жизни

Протекает на клеточном, внутриклеточном и молекулярном - биохимическом уровне

РЕПАРАТИВНАЯ РЕГЕНЕРАЦИЯ

–процесс восстановления тканей после их повреждения

ПОЛНАЯ – образуется идентичная ткань


Полностью восстанавливается эпителиальная ткань после поверхностной язвы кишечника

НЕПОЛНАЯ – образуется соединительная ткань

При инфаркте миокарда мышечная ткань не восстанавливается, в этом участке образуется рубец

Репаративная регенерация

Регенерация рыхлой соединительной ткани - грануляционная ткань

- 1. Новообразованные сосуды
- 2. Клетки грануляционной ткани: лейкоциты, плазматические клетки, и полибласты, которые постепенно созревая, превращаются в фибробласты

ПАТОЛОГИЧЕСКАЯ РЕГЕНЕРАЦИЯ

-процесс регенерации нарушен

ИЗБЫТОЧНАЯ

Образование грубого рубца, нарушающего функцию органа

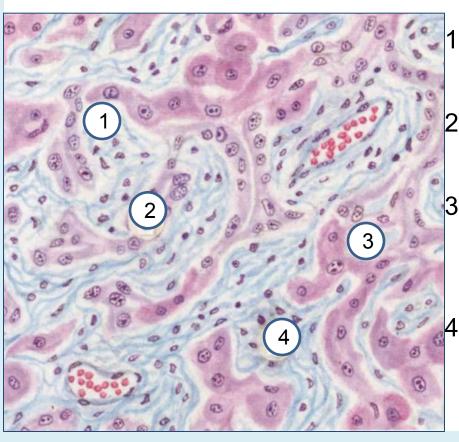
НЕДОСТАТОЧНАЯ

Длительное, вялое заживление ран, трофических язв, эрозий

Образование ложного сустава после перелома кости

Условия определяющие течение регенерации

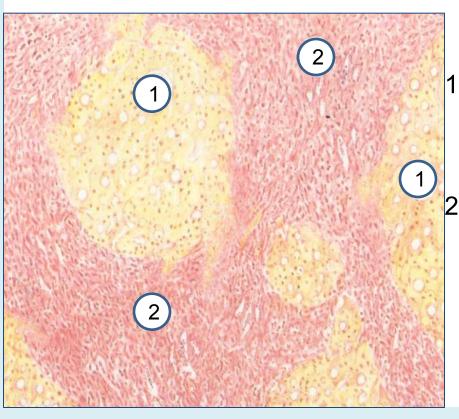
Общие:


- Возраст больного
- Общее состояние здоровья
- Особенности регуляции процесса регенерации нейроэндокринной системой

Местные:

- Характер повреждения
- Особенности регенерирующей ткани

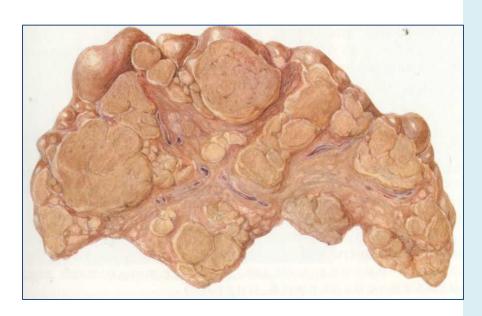
Избыточная патологическая регенерация


Регенерационная гиперплазия печени

- 1. Клетки грануляционной ткани
- 2. Вновь образованные гепатоциты
- 3. Гипертрофированные печёночные клетки (с двумя ядрами)
- 4. Тяжи фиброзной соединительной ткани

Избыточная патологическая регенерация

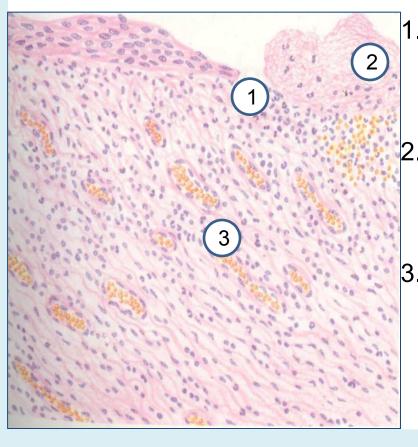
Постнекротический цирроз печени


- 1. Узлы-регенераты (ложные дольки) различной величины
- 2. Широкие поля фиброзной соединительной ткани

Окраска пикрофуксином по Ван-Гизону

Избыточная патологическая регенерация

Постнекротический цирроз печени


 Развивается как следствие массивного некроза печёночной ткани в результате вирусного или токсического гепатита.

- В печени образуются грубые рубцы и крупные узлырегенераты из неполноценных гепатоцитов
- Поверхность печени крупнобугристая

Недостаточная патологическая регенерация

Эрозия шейки матки

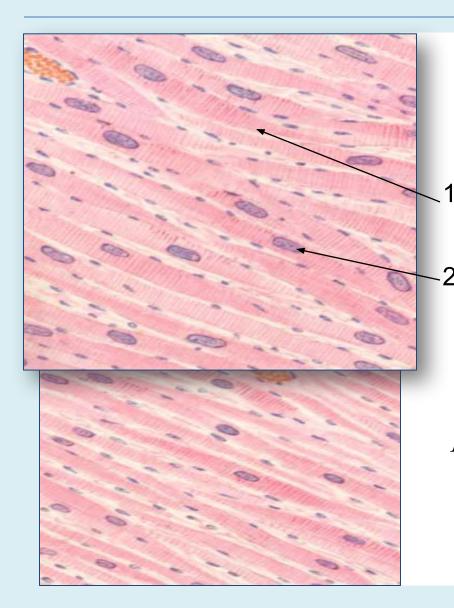
- Регенерация эпителия слизистой оболочки шейки матки (край эрозии)
- 2. Фибринозные наложения в участке дефекта слизистой оболочки
- 3. Подлежащие ткани инфильтрированы лейкоцитами

ГИПЕРПЛАЗИЯ

-увеличение количества клеток, внутриклеточных структур и других элементов ткани

ГИПЕРТРОФИЯ

-увеличение объёма органа, клеток, внутриклеточных структур, сопровождающееся усилением его функции

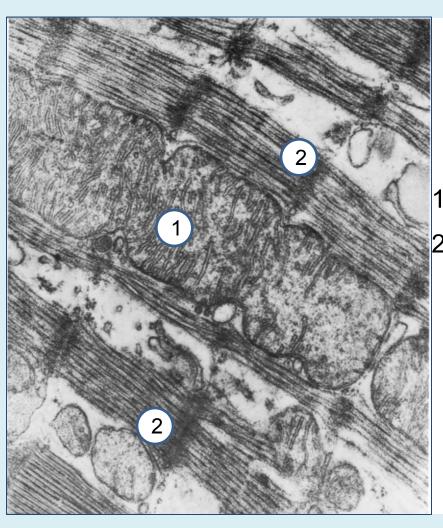

ИСТИННАЯ ГИПЕРТРОФИЯ

-увеличение органа за счёт специализированной ткани, выполняющей функцию данного органа

ЛОЖНАЯ ГИПЕРТРОФИЯ

-увеличение органа за счёт соединительной и жировой ткани, сопровождается снижением функции органа

Истинная гипертрофия


Гипертрофированные миокардиоциты

мышечные волокна увеличены в размерах

ядра увеличены имеют более яркую окраску - гиперхромны

Нормальные миокардиоциты

Истинная гипертрофия

Гипертрофированные миокардиоциты

- . Гигантская митохондрия
- 2. Гиперплазия миофибрилл

КОМПЕНСАТОРНАЯ РАБОЧАЯ ГИПЕРТРОФИЯ

-развивается в результате компенсаторного усиления функции органа в условиях патологии

При своевременном устранении причины, вызвавшей гипертрофию, возможно обратное развитие

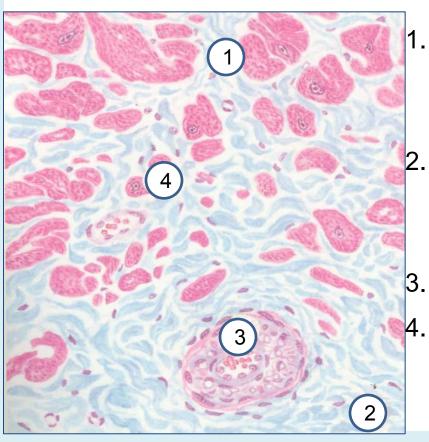
ВИКАРНАЯ ГИПЕРТРОФИЯ (ЗАМЕСТИТЕЛЬНАЯ)

–развивается при утратеодного из парных органов

При удалении одной почки, оставшаяся гипертрофируется

РЕГЕНЕРАЦИОННАЯ ГИПЕРТРОФИЯ

 возникает при гибели части ткани и обеспечивает её функцию


После инфаркта миокарда происходит гипертрофия миокардиоцитов вокруг очага склероза миокарда

Компенсаторная рабочая гипертрофия

Регенерационная гипертрофия

Регенерационная постинфарктная гипертрофия миокарда

- Гипертрофированные миокардиоциты вокруг участка кардиосклероза
- Рубцовая соединительная ткань, развившаяся в участке некроза
- 3. Артерия
- 4. Миокардиоциты в зоне склероза атрофичны

Окраска по Маллори

НЕЙРОГУМОРАЛЬНАЯ ГИПЕРТРОФИЯ И ГИПЕРПЛАЗИЯ

возникает при изменении регуляции функции органа

В нормальных условиях происходит гипертрофия матки и молочных желёз при беременности

При хроническом воспалении образуются полипы и кондиломы

При патологии гипофиза развивается акромегалия

Нейрогуморальная гипертрофия и гиперплазия при патологии не выполняет компенсаторно-приспособительную функцию, она имеет только отрицательное значение для организма

ОРГАНИЗАЦИЯ

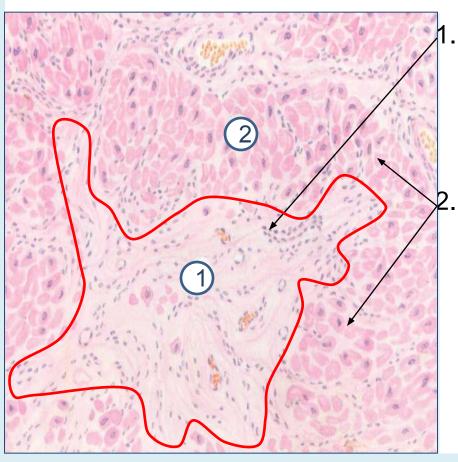
–процесс замещения соединительной тканью участков некроза, дефектов ткани, тромба и воспалительного экссудата

Восстанавливается целостность органа

ИНКАПСУЛЯЦИЯ

-образование капсулы из соединительной ткани вокруг участков некроза, животных паразитов, инородных тел

Позволяет отделить здоровые ткани от повреждённых


ПЕТРИФИКАЦИЯ

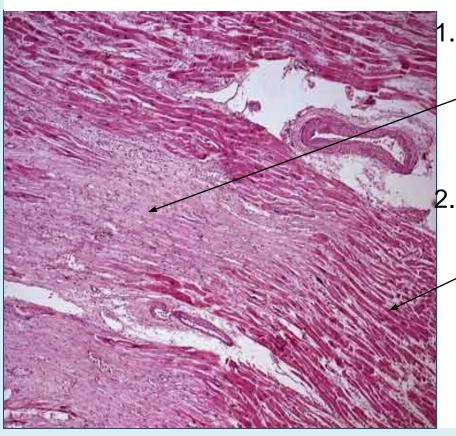
–пропитывание солями кальция инкапсулированных масс некроза

Участок ткани становится хрупким, при активном функционировании органа может разрушиться

Организация

Постинфарктный кардиосклероз

Замещение участка некроза рубцовой соединительной тканью


(организация)

Вокруг зоны кардиосклероза: гипертрофированные миокардиоциты

(регенерационная гипертрофия)

Организация

Постинфарктный кардиосклероз

Замещение участка некроза рубцовой соединительной тканью

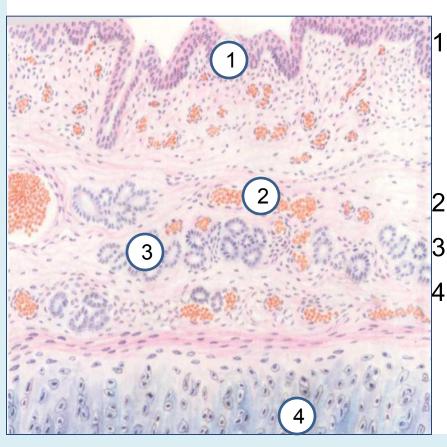
(организация)

Вокруг зоны кардиосклероза: гипертрофированные миокардиоциты

(регенерационная гипертрофия)

МЕТАПЛАЗИЯ

-переход одного вида ткани (эпителиальной или соединительной) в другой, родственный ей вид


Замещение мерцательного эпителия бронхов многослойным плоским ороговевающим при хроническом бронхите

Замещение кишечным эпителием эпителия желудка при хроническом гастрите

Метаплазия может способствовать развитию злокачественной опухоли в данном участке ткани

Метаплазия

Метаплазия эпителия слизистой оболочки бронха при авитаминозе A

- Многослойный плоский эпителий на месте однослойного цилиндрического эпителия
- 2. Кровеносные сосуды
- 3. Бронхиальные железы
- 4. Хрящ бронха

ЛИТЕРАТУРА

ОСНОВНАЯ ЛИТЕРАТУРА:

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. Серов В.В., Ярыгин Н.Е., Пауков В.С. Патологическая анатомия. Атлас. 2010.
- 2. Струков А.И., Серов В.В. Патологическая анатомия. 2010.

Спасибо за внимание!

