

AMT Technical Training

Automatic Mechanical Transmission

Kindly attention:

- 1.The course will take you approx 45 minutes
- 2.Please linsten carefully, and we will have a test
- 3. Please refer to the remarks at the bottom
- 4. Keep your cellphone on mute condition

Catalag

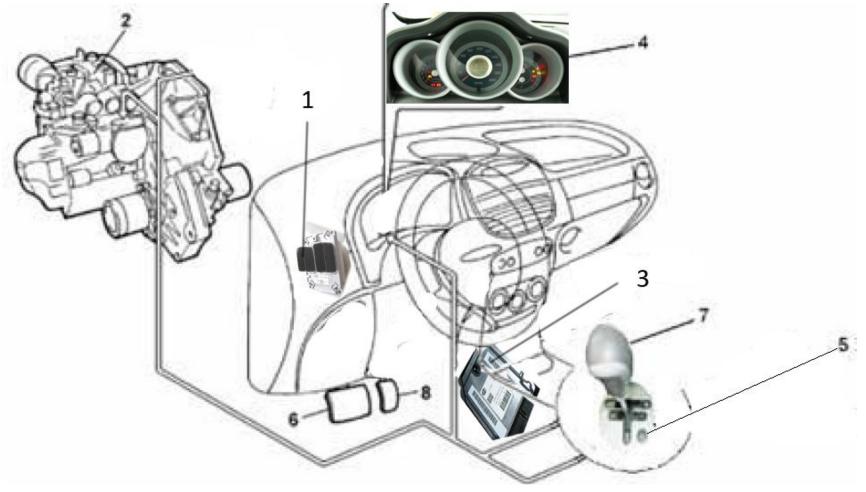
Catalog				
System overview				
Basic principle				
System specification				
Components				
Service standard				

Trouble-shooting and solutions

System overview

Human-computer interface

Following information display on LCD and cluster:


- Current gears, Current mode(Auto/Manual)
- Normal/Economical(Shifting pattern under auto Mode)
- Fault light

Buzzer in cluster will work under following conditions:

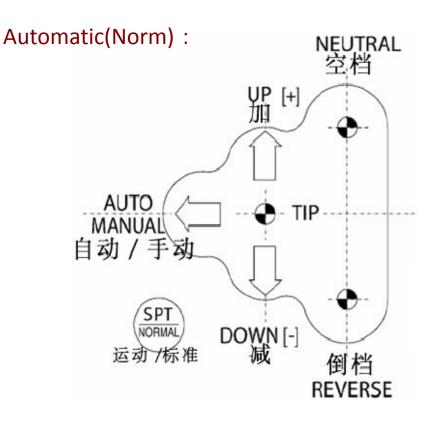
- Reverse gear request to ECU
- After system self-learning
- Illogical gears request from shifting lever
- System fault

1ECU 2 Electrohydraulic unit 5Econ/Norm button 6brake switch

3TCU 7Shift lever

4 Cluster 8Accelerator

System introduction

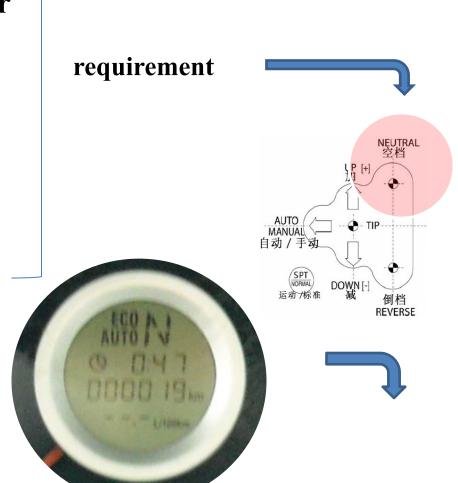

- On the basis of the original manual transmission gearbox and clutch to add auxiliary hydraulic power control unit, Which retains all the advantages of clutch and mechanical gearbox (weight, strength and reliability, low power consumption), and to have automatic transmission.
- 2. Eliminated clutch pedal and shift wires, gear lever machines were replaced by an electronic joystick marked with (+/-/ N / R) reduce costs, improve the system reliability.
- 3. Improved user interface, less operation to improve the driving safety, especially in urban conditions.
- 4. Shifting point will alter with the vehicle and driver's willing.

Shift lever

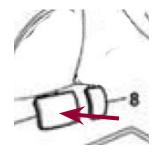
Manual (semi-auto mode)

Automatic(Eco):

Shift lever position with three stable and three unstable position, the position signal was transformed by the Hall sensor into electrical signals.

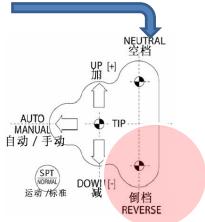

Shift to Neutral during running

APP sensor released



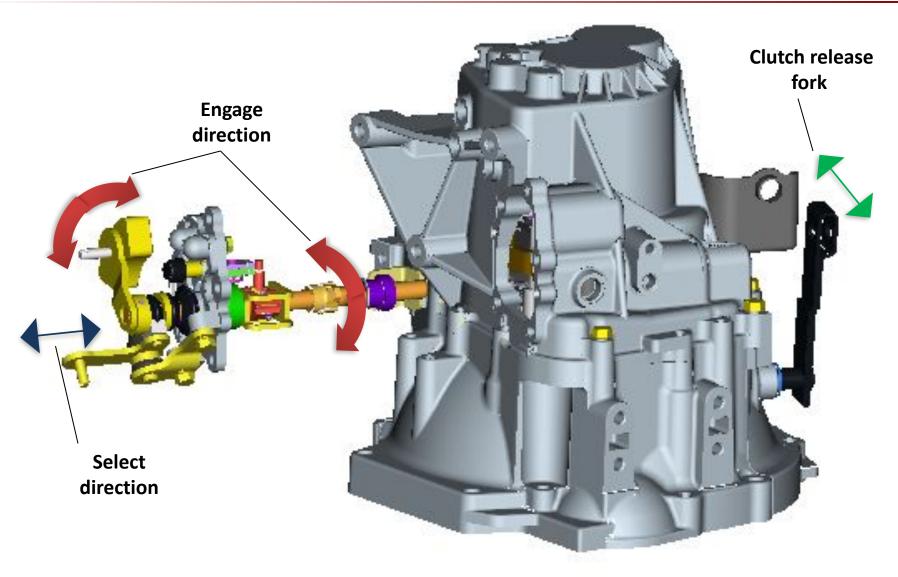
Vehicle speed <80KM/H

Shift to Reverse



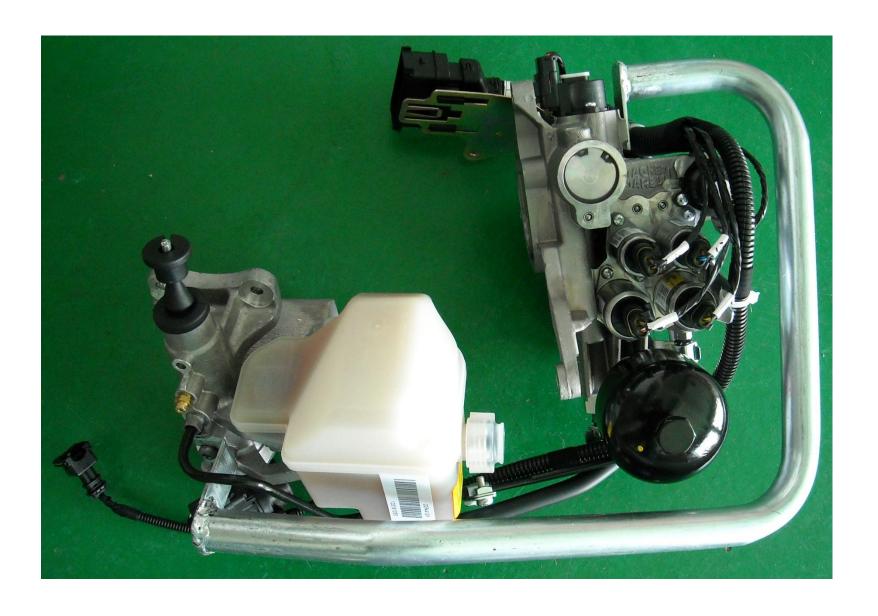
Brake pedal was depressed

Vehicle speed <2Km/h


Shift lever instructions

Possible following situation may cause when the driver try to move shift lever without depressing the brake pedal.

Transmission engaged in	LCD displays	Shift lever final position	buzzer	Fault light
Neutral	[N]	[N] TIP O		Off
Reverse	[R]	TIP	0n	Off
Reverse	[R]	Neutral	0n	Off
A gears	[A]	Neutral	0n	Off
Neutral	[N]	Reverse	0n	Off
A Gears	[A]	Reverse	On	Off


System will automatically switch to Neutral gear once the driver's door opens

Three types of operation on transmission are replace by Actuator (Electrohydraulic mechanism)

AMT Electrical Control Components

ECU<------□
Brake switch -----□
Clutch speed --- --- □
Clutch fork position-□
Gear selected position□
Gear engaged position□
Fluid pressure-----□

Shift lever input-----□

Driver's door switch--□

Ignition switch -----□

	□□Gear	sel	lection
--	--------	-----	---------

Gear selection

---- 🗆 🗆 Gear engage

Gear engage

solenoid valve 2

Input signal

APP sensor

Engine speed sensor

Mode switch(M/A)

Econ/Norm button

Shift Up/down(+/-) switch

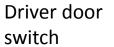
TCU

Vehicle speed sensor

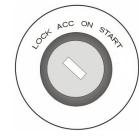
Coolant temperature sensor

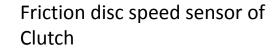
Brake switch

Input signal



Gear engage position sensor


Gear selection sensor



Ignition switch

TCU

Fluid pressure sensor

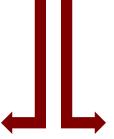
Clutch fork

position sensor

Output signal

1-2 gears selection solenoid valve(EV3) Clutch solenoid valve(EV0)

5-R gears selection solenoid



Even gears engage solenoid valve(EV2)

Odd gears engage solenoid valve(EV1

TCU

Relay of pump

System specification

System will be woke up in two ways:

— Open the driver's side door: The system will automatically wake up and hydraulic pump will run to supply enough pressure for starting.

— Turn on the ignition switch.

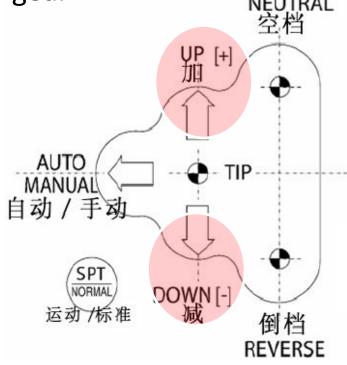
Start requirement:

- 1. Once TCU receives the brake (except Neutral gear) and the start signal, it will automatically ground the control wire and run the starter.
- 2. After starting conditions are met, TCU simultaneously through CAN bus to send a start signal to allow engine control system (ECU) to start.

Emergency start:

Battery with low energy fails to start engines but with enough electric power to run the pump supplying enough fluid pressure to shift operations, that is gears can still be engaged.

Set the transmission under Manual mode and pull vehicle to certain low speed, shift the gear manually to $1^{st}/2^{nd}$ gear.


Starting move

Vehicle can start to move on 1st & 2nd gear

Tip +

Tip —

Driver release brake pedal and stepping on the accelerator pedal, the system will gradually engage the clutch. When the system detects the engine speed with the clutch rotational speed synchronized, the clutch will be fully engaged. Different gears in different APP and speeds ,the engagement will vary to ensure rapid and smooth start.

Shift process under Manual Mode

Shift process

When vehicle is running and the clutch engaged, driver can manually shift gears.

Three stages:

Stage 1: engine decrease torque output

Stage 2: shift process

Stage 3: increase engine torque output

Shift request will only be accepted by ECU when it does not cause the overspeed or stall.

Control intervention under Manual Mode

In Manual mode, TCU will control the gears automatically avoid overspeed or stall under following situations:

- 1.Downshift intervention: higher gear when the driver began to slow down, the system will automatically help the driver to downshift.
- 2. Upshift intervention: System will automatically upshift avoid overspeed.

Attention: that these two cases the system is still in manual mode, the following, the main reason is to help the driver to take control rather than driving engine for the purpose of protection, engine protection should be the engine control system (EMS) functions.

Auto mode

Shift lever can switch to automatic mode at any time(If condition is met). Once automatic mode is activated ,the letter "AUTO" will be shown in cluster. At the same time the meter will display under the E button is in the state of economic model or the ordinary mode $_{\circ}$

In automatic mode, there are two sets of shift curve, it has considered economy and power to meet the different driving needs.

When the driver stepped on the accelerator to fully open, TCU will downshift one or two gears to increase the torque.

Deceleration

TCU will automatically downshift during deceleration and the gears above 2nd gear.

For example, in 5th gear, clutch engaged and accelerator pedal released, when the engine speed reach idle speed, the system will automatically downshift from 5th to 4th, to avoid the engine speed drops below the target idle speed which led to stall.

When a downshift depends on the following parameters: stalls, engine idling, the brake pedal and engine deceleration rate.

Continuous deceleration until the vehicle stopped, TCU will be automatically shift to Neutral, and disengage the clutch.

Auto clutch engagement

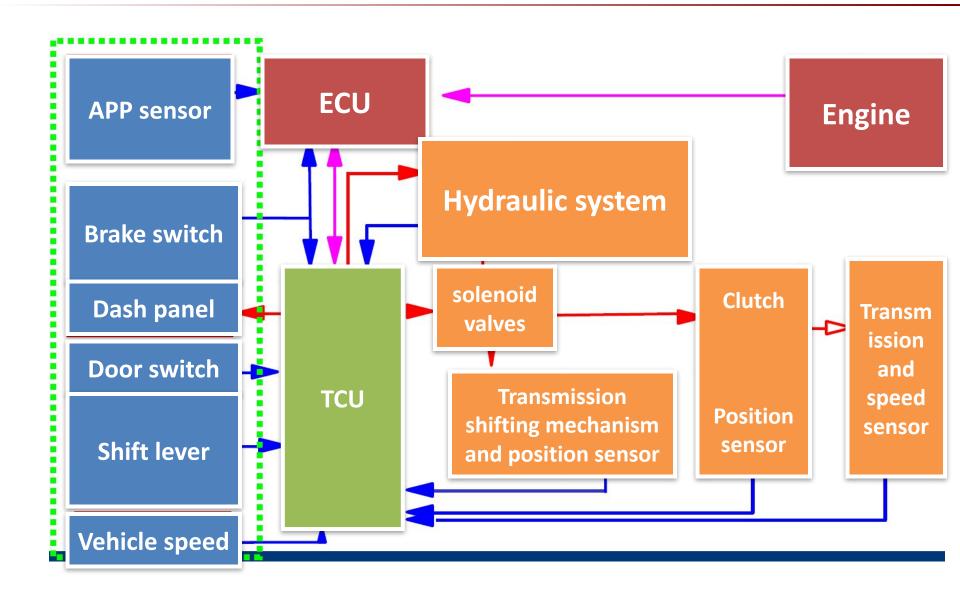
During the downhill and the vehicle speed increase, if the gear engaged during running and APP was released, when the reach a certain speed, the clutch will automatically engage to provide engine braking.

System security features

System security features

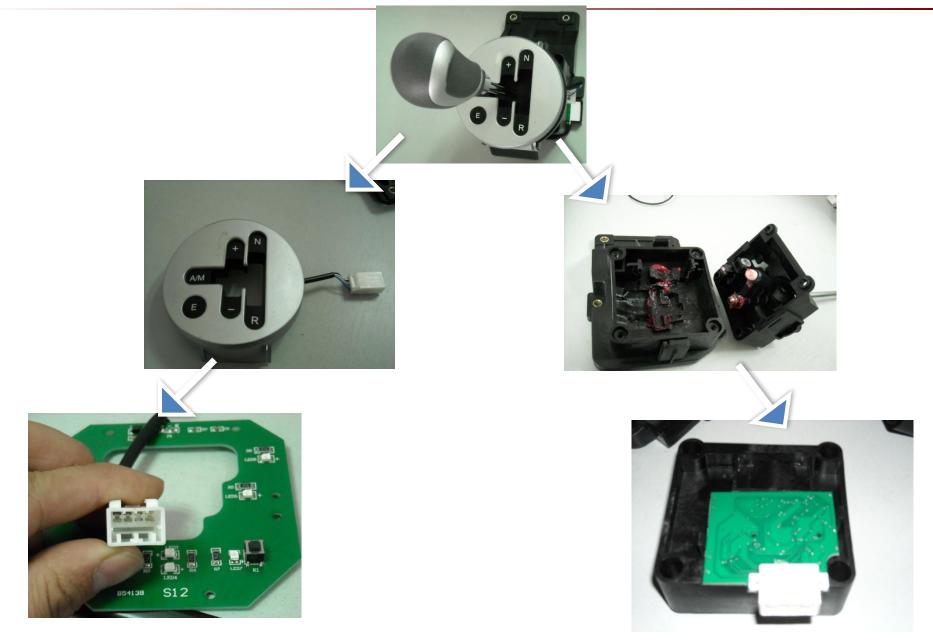
- When the vehicle stopped but the engine working and engage gear (such as 1st, 2nd and Reverse).
- 1. When the driver's door open, if the driver stepped on the brakes or APP, the system will remain the current gear.
- 2.If the driver's side door open and the driver has not stepped on the brake or accelerator more than three seconds, the system will automatically switch to Neutral gear dashboard displays the current operating mode and N.
- 3.If the driver does not take any action (except depress the brake pedal) more than three minutes, the system will automatically switch to Neutral gear dashboard displays the current operating mode and N.
- 4.If the driver depresses the brake more than 10 minutes without any operation, the system will automatically select the Neutral. Dashboard displays the current operating mode and Neutral.

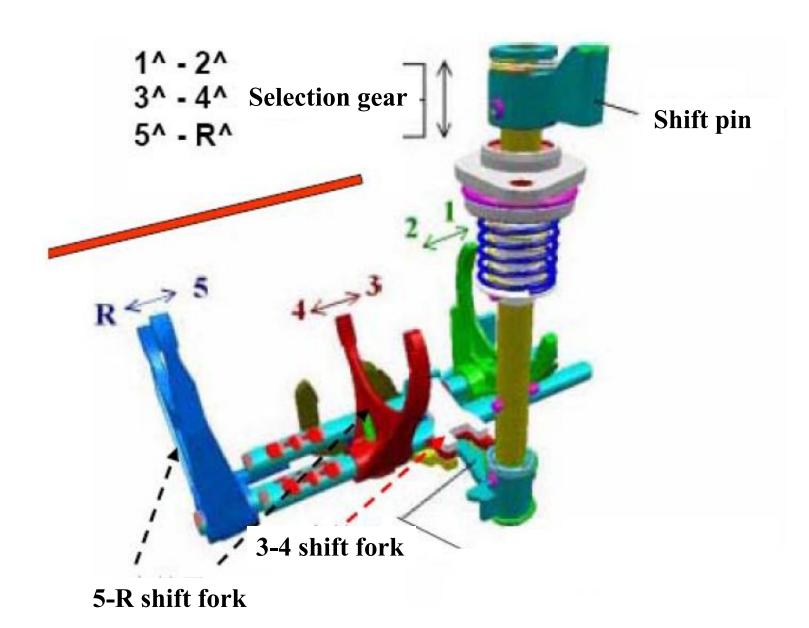
Emergency start during brake switch is broken


If the TCU detected brake switch is broken, Ignition key remains in the starting position about 10 seconds before starting vehicle. After the start, TCU will inform the

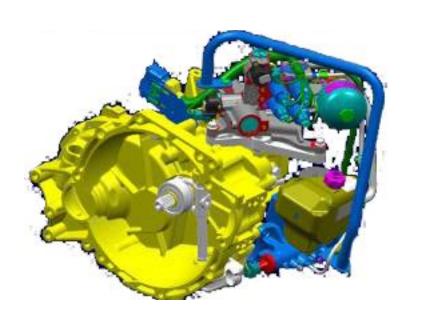
driver by warning lights.

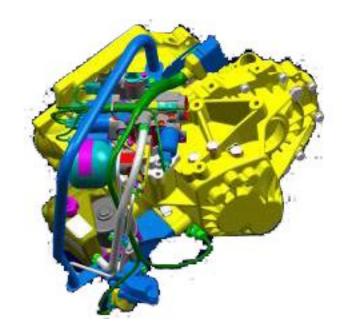
System control theory

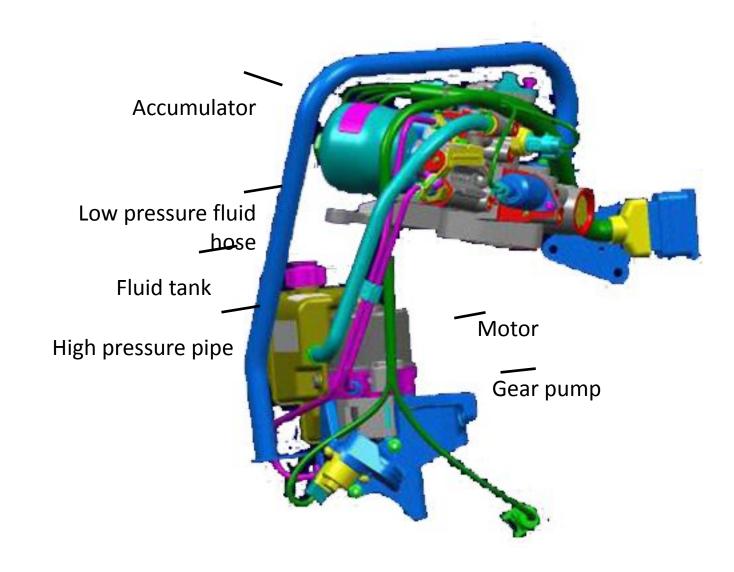



Components

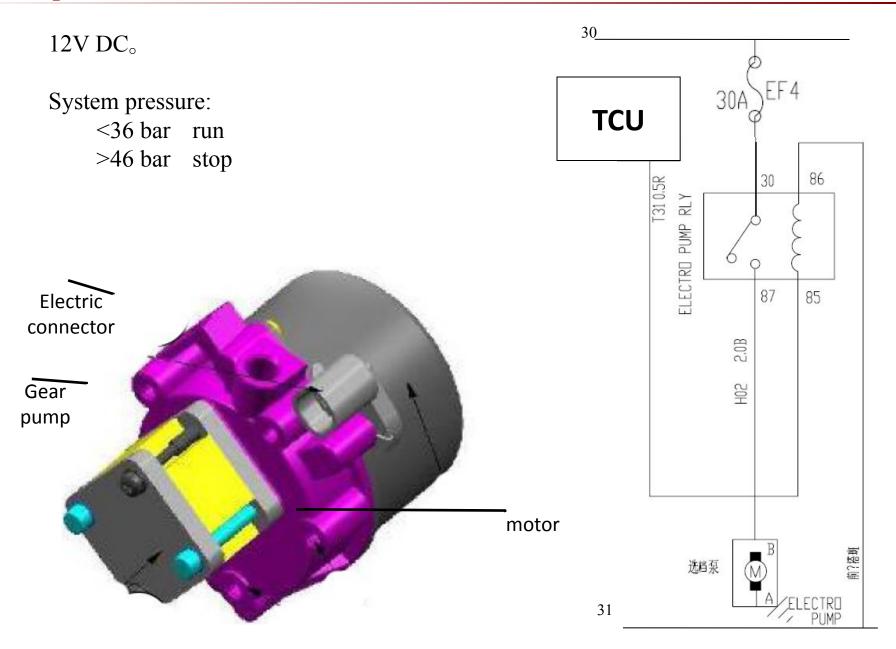
Shift components





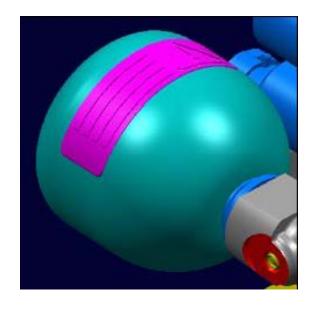


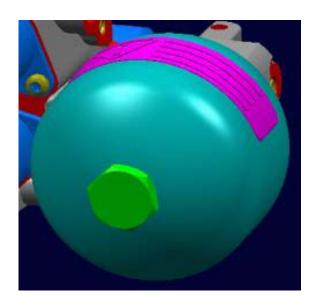
SQR 513 transmission hydraulic actuator location


(Bracket of hydraulic actuator must be remove)

Hydraulic power unit provides power to hydraulic.

150 micrometer filter was fitted in exports of tank.

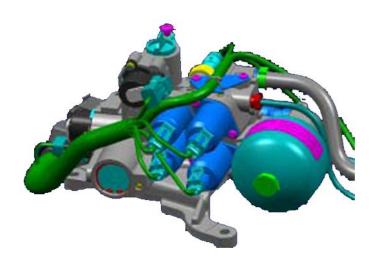

Fluid level standard


Relief system pressure using X431 and then observe the liquid level inside the tank.

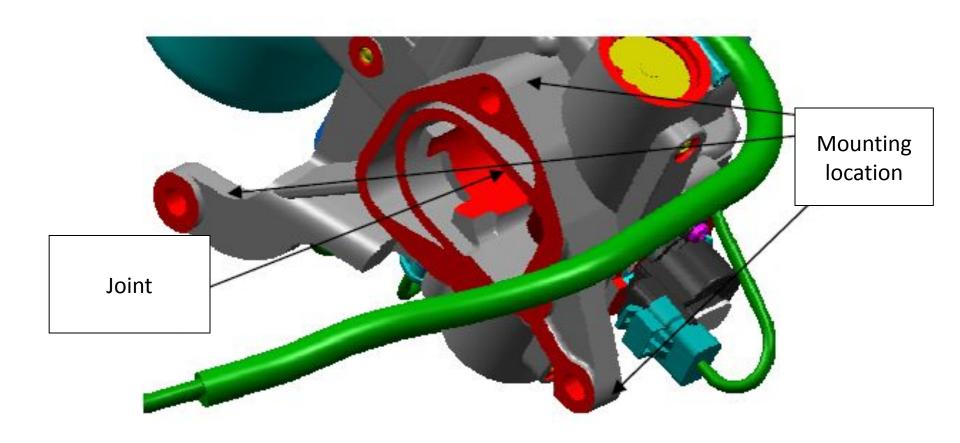
Pressure fluid manufacturer: -TUTELA CAR CS SPEED PN:EW.0011602.A

Capacity:250 cm3

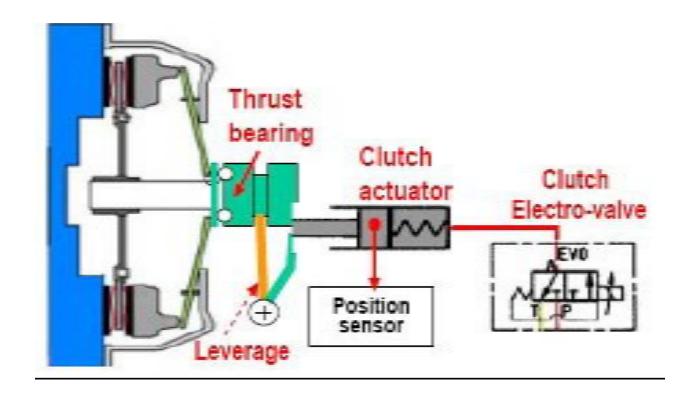
Valve body

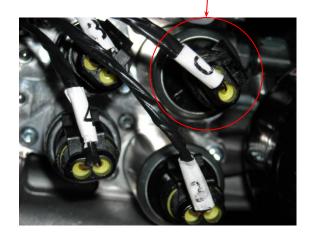


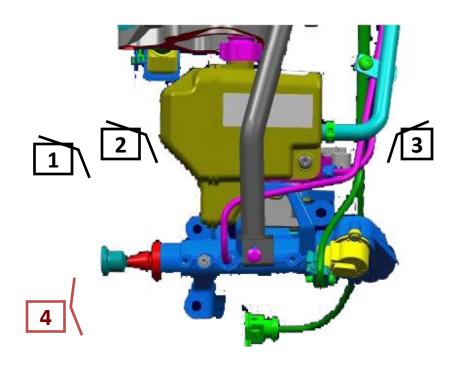
Valve body has follow functions:


- 1. Control gear engage and detach.
- 2. Control gear selection
- 3. Control clutch engage and detach

Components:


- 1. Clutch solenoid valve(EV0)
- 2. Even gear engage valve(EV2)
- 3. Odd gear engage valve(EV1)
- 4. 1-2 selection gears solenoid valve(EV3)
- 5. 5-R selection gears solenoid valve(EV4)
- 6. Gear engage position sensor
- 7. Gear selection position sensor
- 8. Press sensor (0-70 bar)
- 9. Valve body




Clutch actuator assembly

- 1. Release cable
- 2. Clutch actuator body
- 3. Clutch cable position sensor
- 4. System air bleed bolt

Clutch solenoid valve (EV₁0)

DATA STREAM				
Clutch Ac	tuator Pos	ition 19	0.404 mm	
Clutch Ac Reference	tuator Pos	ition 18	.920 mm	
Engine Sp	eed	83	5 rpm	
Clutch Sp	eed	0	rpm	
PAGE UP PAGE DOWN SAVE GRAPHIC-1				
HOME	BACK	PRINT	HELP	
Start 1 15:13				

Clutch cable position sensor

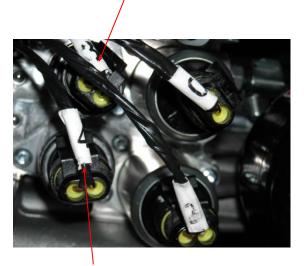
Function: feedback the clutch cable position signal to TCU

DATA stream	IG ON, Engine off, 1 st gear	IG ON, Engine off, Neutral gear	Engine running Neutral gear
Clutch actuator position	26.356mm	26.312	18.084mm
Clutch actuator position Reference	26.356mm	26.268	18.084mm

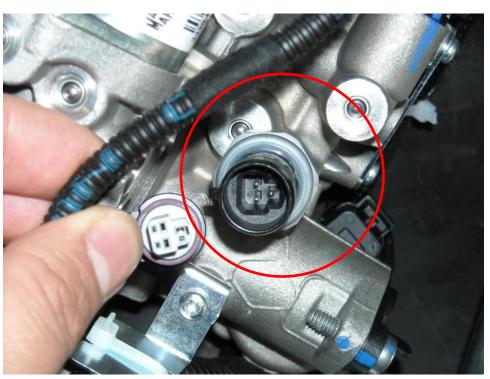
Gear engage and selection solenoid valves EV1 EV4 EV3 EV2 1^ - 2^ 3^ - 4^ 选档 外选挂档指 5^ - R^ 内选挂档指 大拨叉

Gear engage solenoid valves

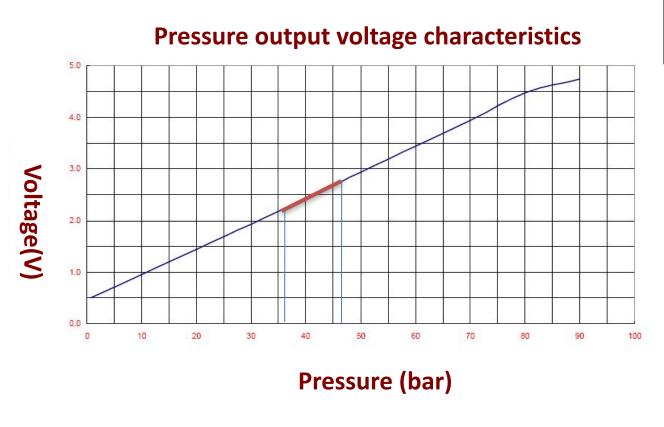
Even gear engage valve(EV2)
Odd gear engage valve(EV1)


Gear selection valves

1-2 gears selection solenoid valve(EV3)


5-R gears selection solenoid valve(EV4)

No.	Generation No.	Name	Fault code	Standard R(Ω)
1	EV0	Clutch solenoid valve	P0900	2.7
2	EV1	Odd gear engage valve	P0750	2.7
3	EV2	Even gear engage valve	P0755	2.7
4	EV3	1-2 gears selection solenoid valve	P209D	5.5
5	EV4	5-R gears selection solenoid valve	P209E	5.5



Function : Monitor system pressure

TCU

40 73 66

What is special meaning that the range from 36-46 bar?

Maintenance specification

——AMT system self-learn

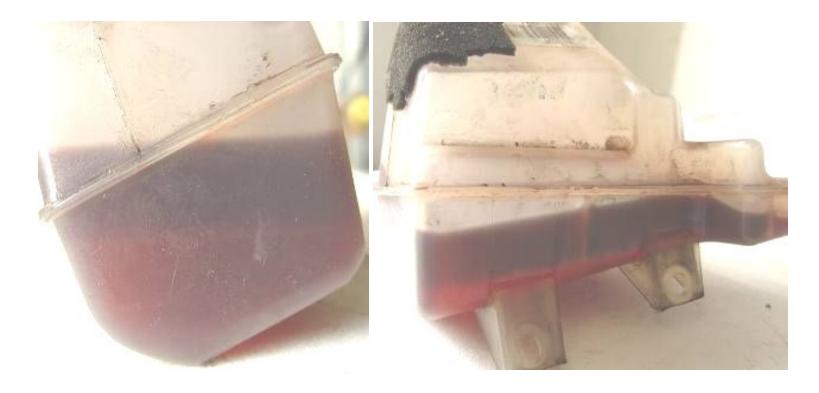
Replace or assemble parts must perform the following functions in whole or in part:

NO.		
service1	System air-bleed	
service2	Relief system pressure	
service3	Clutch kiss point self-learn	
service4	Gear self- learn	
service6	New actuator	
×	Shift lever self-learn	
service5	Clear the data in the TCU	
×	Write data	

After replace the following parts: clutch actuator, tank, pump, high pressure pipe, pressure sensors, accumulators and other major parts, Bleed the system 3, and then take gear self-learn one time, 3 to 5 times the clutch self-learning. Finally check the oil level according to the method.

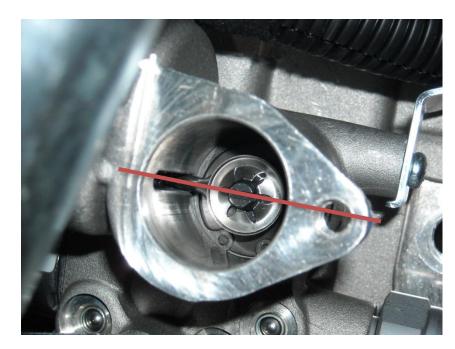
Service should be taken after parts replacement

Items	Name of parts	Service 1	Service 2	Service 3	Service 4	Service 5	Service 6
1	Electro-hydraulic (AMT)ASSY	after replacement	before replacement	after replacement	after replacement	after replacement	after replacemen t
2	hose	after replacement	before replacement				
3	Pressure sensor	after replacement	before replacement	after replacement	after replacement		
4	accumulator	after replacement	before replacement	after replacement	after replacement	after replacement	
5	Wire harness			after replacement	after replacement	after replacement	
6	Clutch position sensor			after replacement			
7	Gear selection sensor			after replacement	after replacement		
8	tank	after replacement	before replacement	after replacement	after replacement		
9	Clutch actuator	after replacement	before replacement	after replacement	after replacement	after replacement	
10	motor	after replacement	before replacement	after replacement	after replacement	after replacement	
12	High pressure pipe	after replacement	before replacement	after replacement	after replacement		
13	TCU			after replacement	after replacement		
14	Clutch			after replacement		after replacement	
15	transmission			after replacement	after replacement	after replacement	
16	Pump relay					after replacement	
17	Shift lever					after replacement	

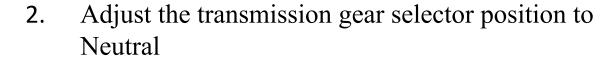

Maintenance specification

——Guide of dismount and assemble

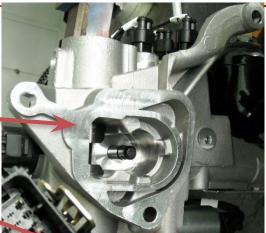
Abnormal pressure fluid add into system will cause a serious situation and miss the warranty!


Dismount select shaft

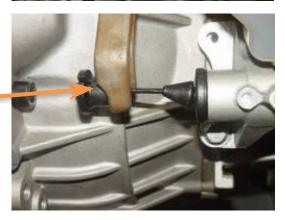
 Before removing the AMT ASSM, selection shaft must be released. Remove the cover


2. Rotate the selection shaft 90° with flat screwdriver .(both directions can be rotated)

Mount guide



1. First of all, after cleaning and coating sealant, should ensure a good seal interfaces



2. Fasten the bolts

3. Assemble the release cable

1. Remove cover

2. Select shaft must be adjusted to the self-locking pole position, then press it down, such as the right picture. Hear the "click," engagement is finish.

3. Assemble the cover

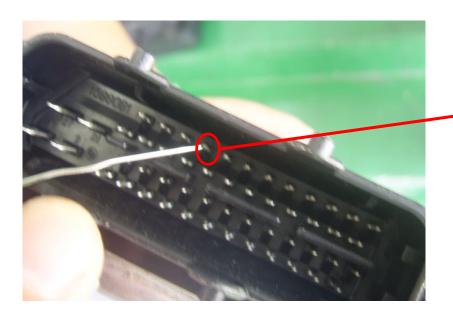
Fault code

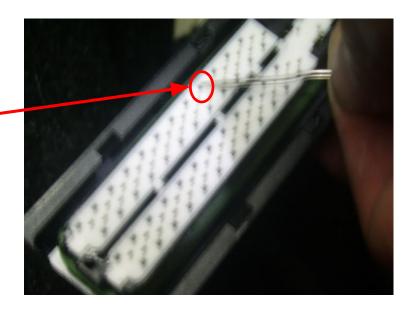
NO.	DTC 代码	Description	
1	P0880	TCU +5V supply	
2	P0932	pressure sensor	
3	P0823	shift lever signal	
4	P0561	battery voltage too low(<3V)	
5	P0914 & P290A	gear selection position sensor	
6	P0822	shift lever signal 1	
7	P0805	clutch position sensor	
8	P0821	Shift lever signal 2	
9	P0820	Shift lever signal 0	
10	P0904	gear selection position sensor	
11	P0710	Engine temperature	
12	P2906	CAN engine torque	
13	P2903	CAN APP sensor	
14	P0719	brake switch	
15	P0703	CAN brake switch signal	
16	P0725	Engine speed	
17	P0715	Clutch friction disc speed	
18	P0720	Vehicle speed	
19	P2901	Accumulator self relief	
20	P2909	shift failed	
21	P2905	Transmission error	

Fault code

22	P2904	clutch error	
23	P2908	clutch control error	
24	P2900	ECO button	
25	P0825	shift lever stuck	
26	P0933	Pump relay error	
27	P0755	even gears shift solenoid valve	
28	P0750	Odd gears shift solenoid valve	
29	P0900	Clutch solenoid valve	
30	P290E	5—R gears selection solenoid valve	
31	P290D	1-2 gears selection solenoid valve	
32	P0701	solenoid valve interior fault	
33	P0881	TCU 12V power supply	
34	P081A	starter relay	
35	P0945	pump relay (open or ground)	
36	P0560	battery voltage too low	
37	P0780	Illogical operation	
38	P2712	pressure system relief and leakage	
39	P0942	system pressure too or pump overheat	
40	P0613	SMP (vice-processor) error	
41	P060C	MMP (main processor) error	
42	U1701	CAN bus fault	
43	U1601	CAN fault	
44	P0604	microprocessor error	

Trouble-shooting and solutions




Problem I: The vehicle shivers noticeably upon releasing the accelerator pedal at the first, second or third gear or slightly depressing the brake pedal, with low comfort level.

Failure code: P0500 (Vehicle speed sensor failure)

Testing and solution: Start the engine, and use the dianalyzer software to collect the data at real time. The vehicle speed signal is detected in TCU, but none in ECU. It is judged that the harness from the sensor to the ECU fails.

By testing with a multi-meter, it is found that TCU Pin 36 and ECU Pin 44 are in closed circuits. So ECU is in poor contact with its interface. Slightly bend the ECU Pin 44, and after connection, start the engine. The problem is thereby solved.

Problem II: The transmission failure lamp is lit during movement, and the failure code P0715 (friction disc revolution sensor open circuit) is indicated, with the gearshift disabled.

Testing and solution: Revolution signal failure; TCU issues the gear locking command. Remove the revolution sensor, and add a 0.2mm shim. Thereafter, upgrade TCU data to its latest version (CAA05QN0), and carry out the gear self-learn and clutch engagement point self-learn.

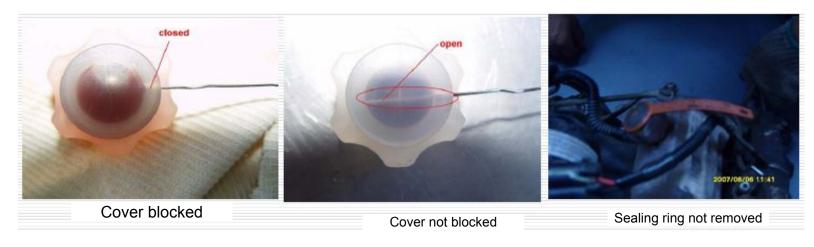
Add a 0.2mm shim here.

Problem III: Friction disc revolution sensor failure; the gear is locked at the first/second gear, allowing no shift to higher gears. After the failure code is eliminated and the self-learn conducted, this problem appears again later. Causes:

- 1.Disproportionate speed ratio: Under certain operating conditions (for example, from first gear to the reverse gear, or from the reverse gear to the neutral gear), the radial run-out may occur on the shaft on which the signal wheel is mounted in the transmission, leading to the abnormality of signals collected by the clutch speed sensor. This case may bring an incorrect proportion among the engine revolution, clutch revolution and vehicle speed, consequently resulting in the wrong report by TCU and the activation of the safe operation mode.
- 2. No signals from the clutch revolution sensor: Under certain operating conditions (for example, from first gear to the reverse gear, or from the reverse gear to the neutral gear), the severe radial run-out may occur on the shaft on which the signal wheel is mounted in the transmission, leading to the mutual interference between the signal wheel and the senor and also the damages of the senor, which further causes no signal output, to consequently result in the wrong report by TCU and the activation of the safe operation mode.
- 3. Serious skidding of the clutch: Owing to the serious wear of the clutch, there is a significant deviation in the proportion among the engine revolution, clutch revolution and vehicle speed under certain working conditions.

- 4. Clutch position sensor failure (in this case, P1810 and P0715 will be indicated at the same time): Some vehicles are not made accessible to such a technical upgrade that a waterproof pad is provided for the clutch position sensor, which leads to the water ingress into the sensor, consequently resulting in this problem.
- 5. transmission internal failure, for example, the disabled gear locking function (in this case, P1818 or P0720 will be indicated at the same time): The speed ratio does not conform to the actual gear.
- 6. Other electric failures (may be accompanied by the failure code 1810): The harness is damaged or improperly earthed.

Solutions:


- 1. Renew TCU, and calibrate it to CAA04OH0 version: This problem corresponds to Problem I (the disproportionate speed ratio), and the solution is to largely increase the judgment threshold value.
- 2. Repair of transmission: If there is interference between the transmission signal wheel and the senor, and the sensor is damaged, the recovery by software is impossible, but the only way is to repair the transmission.
- 3. Water ingress in the clutch position sensor: Replace this sensor and provide waterproof pad (this pad will be supplied together with the sensor).
- 4. Clutch skidding: Replace the clutch, and use a diagnoser to initiate the TCU.

Problem IV: Oil leakage in the oil pot

Causes: 1. The vent on the pot cover is blocked: during the service, in the oil pot, the negative pressure will be produced at low temperature while positive pressure at high temperature, leading to the expansion and breakage of the pot.

2. The sealing ring on the pot cover is not removed after it is fitted: leading to the blocking of the vent. This problem is frequently reported in the after-sales service.

Solutions:

- 1. Replacement of the oil pot cover
- 2. The sealing ring on the pot must be removed: This ring is used to prevent the oil leakage in the speed selector during transportation, and must be removed after the pot is fitted onto the vehicle; otherwise, the pressure in the pot may become abnormal, which will consequently influence the oil return, or increase air bubbles in the hydraulic oil to adversely affect the system pressure.

Problem V: There is trip stop or failure of gear engagement in the vehicle, and the failure code P1810 or P1743 is indicated.

Causes:

At the initial design of AMT, neither Chery nor Marelli has taken waterproof requirements into account. In actual application, the speed selector is mounted at a low position, which usually brings the sensor to be in contact with water spattered from the road. The entry of water into the sensor may cause abnormal signal output.

Solution: Marelli has conducted engineering modification, namely, providing a sealing ring in the clutch position sensor to improve its waterproof performance.

Problem VI: One of direct gears is always missing in the operation, for example, the transmission directly moves from the second gear to the fourth gear, with the third gear skipped, but can directly move from the fourth gear to the third gear.

Sometimes, a failure code P1810 will be indicated; when the vehicle is stopped, all gears will work correctly.

Causes:

- 1. The synchronizer of the transmission is excessively worn, and can't work. If serious, the sound of collision of teeth may be heard. This case mostly occurs in vehicles produced prior to 2007.
- 2. The transmission synchronizer is separated.
- 3. One of direct gears is always missing during the operation.

Solution:

- 1. In the first case, relevant parts must be replaced.
- 2. In the second case, only the reassembly of the transmission is required.

Problem VII

- 1. No depression of the accelerator pedal is required in the engagement of the first gear when the vehicle moves.
- 2. The vehicle shivers seriously at the beginning of movement, but restores its normal operation after the move-up.

Causes:

- 1. The clutch engagement point self-learn is not conducted, or the system is not disconnected from the power supply after the self-learn is finished. (Note: The data can be only successfully written into TCU 10s after the ignition switch is turned off after the each self-learn is finished.)
- 2. The clutch is not replaced until it skids due to the excessive wear. After the replacement, TCU is not initialized via a diagnoser.
- The clutch friction plate is uneven, including new parts. (This case may occur at self-learn of the engagement point. The return values after each learn are different, which can be used for judgment.)
- 4. There is water ingress in the clutch position sensor.
- 5. The clutch and TCU calibrations are misused.

Solutions:

- 1. Relevant personnel in the service station shall learn how to use the diagnoser. Each time after any part is replaced, the self-learn (clutch engagement point self-learn, gear self-learn) shall be conducted. The power supply shall be disconnected for 10s after the self-learn.
- 2. Replace the Valeo clutch and upgrade the TCU calibration to CAA05QM5: CAA04QHO is used together with Changchun Yidong clutch, while CAA05QM5 is used together with Valeo clutch. No confusion is allowed; otherwise, the vehicle may move up automatically, or does not move after refueling, or gears can't be shifted smoothly.

Problem VIII:

After the transmission is shifted to the first gear and the vehicle is stopped, the neutral gear is engaged automatically and immediately.

Possible causes:

- 1. The cab door lamp switch is disabled. (Move the roof lamp switch to its middle position, and if the lamp is lit suddenly, this fault can be identified.) Solutions:
- 1. Replace the door switch.

Thank you very much!

Check resistence of each solenoid valve.

	Function	Resistence
EV0		
EV1		
EV2		
EV3		
EV4		

- Remove gear selection/gear engage sensor/ clutch sensor and how it works
- Perform how to check the oil level.

Gear and clutch self-learn

Function the location of following parts

	location	
Pressure Pump relay		
TCU		
ECU		

 Disconnect the following part, find how the vehicle works and use X431 to detect the falut code

	Vehicle can run?/fault light on?	Fault code
Pressure Pump relay		
Engine speed sensor		
Clutch speed sensor		
Vehicle speed sensor		