СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ ПРОТЯЖЕННОГО АТМОСФЕРНОГО РАЗРЯДА

А.А. Летунов, *А.В. Огинов, *А.А. Родионов, *К.В. Шпаков Институт общей физики им. А.М. Прохорова РАН, Москва, Россия, let@fpl.gpi.ru *Физический институт им. П.Н. Лебедева РАН, Москва, Россия Представлены результаты спектральных исследований протяженного атмосферного разряда на установке ЭРГ ФИАН (1 МВ, 60 кДж, фронт 150 нс) [1]. Изучение такого типа разряда в лабораторных условиях представляет интерес, поскольку позволяет промоделировать параметры, характерные для грозовых и высотных разрядов. Исследования гроз показывают, что разряды молний происходят при напряженностях поля меньше порогового значения, необходимого для пробоя газа, и сопровождаются излучения (РИ) с энергией вплоть до 20 МэВ [2].

Излучение в видимой области спектра при развитии протяженного разряда в воздушной атмосфере в межэлектродном пространстве длиной 600 мм несет информацию о параметрах стримерно-лидерной стадии разряда, взаимодействии канала разряда с материалом электродов, о стадии релаксации плазмы канала после затухания тока разряда.

Для регистрации спектров излучения использовались спектрометры AvaSpec 3648 с разрешением 0,3 нм в диапазоне длин волн от 370 нм до 920 нм и AvaSpec 2048 с разрешением 1-1,3 нм в диапазоне длин волн от 185 нм до 750 нм. Излучение собиралось интегрально в поперечном сечении из области существенно удаленной от обоих электродов.

Работа выполнена при частичной поддержке РФФИ, гранты 13-08-01379, 14-08-31397.

- air section shells (shown transparent), 5 - through-pass oil-air insulator, 6 - electrode system of anode, 7 - electrode system of cathode, 8 - main discharge gap.

Типичные формы разряда

X-ray, UV and visible radiations of discharge vs anode current. Gap 500 mm, spherical cathode and anode with 90 mm in diameters. Voltage ~800 kV.

СПЕКТР В ЕДИНИЦАХ МОЩНОСТИ

СПЕКТР РАЗРЯДА В КООРДИНАТАХ ВИНА

Здесь представлены спектры одного из разрядов, снятые AvaSpec 2048 в два последовательных интервала времени. Первый включает стримерно-лидерную стадию и некоторую часть стадии релаксации, а второй – всю остальную стадию релаксации

Спектр природной линейной молнии из работы [3]

Представленные спектры дополняются спектрами AvaSpec 3648, имеющего лучшее разрешение. В совокупности зарегистрированные спектры сходны со спектром природной линейной молнии в работе [3], в частности преобладанием линий однократно ионизованного азота - N II. В тоже время при просмотре, как спектров снятых с разрешением 0,3 нм, так и таблиц NIST видно, что линии в более коротковолновой части спектра не уширены, а состоят из нескольких, иногда и пары десятков линий.

Структура наиболее яркой линии спектра – «500.5» нм

Wavelength Wavelength

	Air (nm)	Air (nm)							
lon	Observed	Ritz	Rel. Int.	gkAki (s-1)	Acc.	Ei (ev)	Ek (ev)	gi	gk
N II	498.737	498.7376	285	6.98E+07	B+	20.93997	23.42523	3	1
NII		499.1243		1.77E+08	C+	25.4909	27.97424	3	5
NII	499.436	499.436	450	1.83E+08	C+	25.49787	27.97967	5	7
NII		499.437		2.13E+08	B+	20.93997	23.42175	3	3
NII		499.7224		5.88E+07	C+	25.4909	27.97127	3	3
NII		500.1134		4.82E+08	А	20.64606	23.12449	3	5
NII	500.148	500.1474	650	7.28E+08	А	20.65359	23.13185	5	7
NII	500.27	500.2703	360	2.50E+07	В	18.46231	20.93997	1	3
NII	500.515	500.515	870	1.03E+09	А	20.66552	23.14196	7	9
NII		500.53		3.26E+07	C+	25.49787	27.97424	5	5
N II	500.732	500.7328	550	3.72E+08	B+	20.93997	23.41533	3	5
N II	501.062	501.0621	450	6.30E+07	В	18.46623	20.93997	3	3
NII		501.1314		1.75E+08	C+	25.49787	27.97127	5	3
NII		501.2036		3.63E+08	C+	25.50663	27.97967	7	7
O II		501.5339		2.47E+05	С	26.35827	28.82969	4	4
N II	501.639	501.6381	360	7.95E+07	А	20.65359	23.12449	5	5
01		501.8782		2.14E+06	C+	10.74023	13.20994	3	5
01		501.9291		3.56E+06	C+	10.74048	13.20994	5	5
01		502.0218		4.99E+06	C+	10.74093	13.20994	7	5

- Эту совокупность нельзя использовать для оценки электронной температуры, поскольку она состоит не только из линий разных сортов ионов, но и переходы для преобладающего N II иона исходят с уровней имеющих существенно разную энергию.
- Были найдены две такие компактные совокупности линий N II, которые исходят с одних и тех же или достаточно мало отличающихся по энергии уровней. Это группы «517,9 нм» и «568 нм».
- Их интегральные интенсивности и просуммированные параметры переходов были использованы для определения электронной температуры в соответствии с моделью ЛТР обычным соотношением:

$$\frac{J_{k}}{J_{k1}} = \frac{A_{k}g_{k}\lambda_{k1,i1}n_{k}}{A_{k1}g_{k1}\lambda_{k,i}n_{k1}} = \frac{A_{k}g_{k}\lambda_{k1,i1}}{A_{k1}g_{k1}\lambda_{k,i}} \cdot \exp\frac{E_{k1} - E_{k}}{T_{e}}$$

- Здесь Jk и Jk1 интенсивности линий, сответствующих переходам с уровней k и k1, Ak и Ak1 – вероятности переходов, gk и gk1 - статистические веса уровней k и k1, и - длины волн линий переходов с уровней k и k1 на уровни i и i1, nk и nk1 - населенности уровней k и k1, Ek и Ek1 - энергии соответствующих возбужденных уровней.
- Оцененная таким образом электронная температура составила около 3 еВ. Это соответствует значительной степени ионизации.
- Литература
- 1. Агафонов А.В., Богаченков В.А., Огинов А.В., Русецкий А.С., Рябов В.А., Чубенко А.П., Шпаков К.В. Сб. тезисов докладов XLII Международной конференции по физике плазы и УТС, 9 – 13 февраля 2015 г., Звенигород, с. 210.
- 2. Tsuchiya H., Enoto T., Torii T., PRL 102, 255003 (2009).
- 3. Jianyong Cen, Ping Yuan and Simin Xue. Observation of the Optical and Spectral Characteristics of Ball Lightning, Phys. Rev. Lett., 112, 035001 (2014).