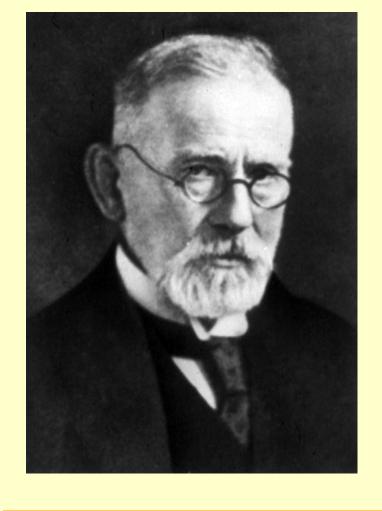

ПРОТИВОМИКРОБНЫЕ СРЕДСТВА

Количество описанных в настоящее время индивидуальных веществ с противомикробными свойствами приближается к 20 000 Такие препараты получают 30% госпитализированных больных На 100 жителей приходится 30 назначений в год



Пауль Эрлих



Илья Ильич Мечников

Иллюстрация И.И.Мечникова к статье о фагоцитозе

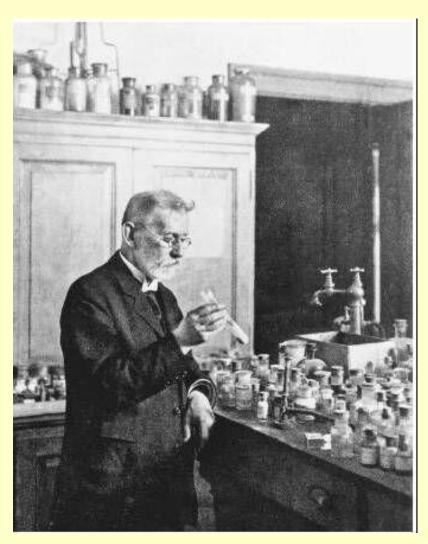
Карикатура начала XX века, иллюстрирующая научное противостояние Эрлиха и Мечникова

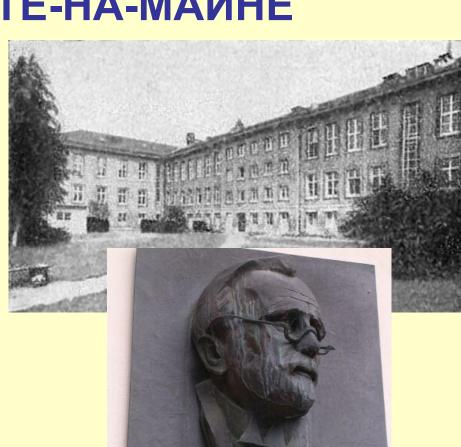
Пауль Эрлих (1854-1915)

Немецкий фармаколог, биохимик и гистолог, создатель теории циторецепторов и основоположник химиотерапии, лауреат Нобелевской премии 1908 г.

...Метаболизм микробов отличен от метаболизма клеток человека... Chemotherapie ist ein Zauberkugel

Секреты научного успеха по П. Эрлиху:


Geld - деньги

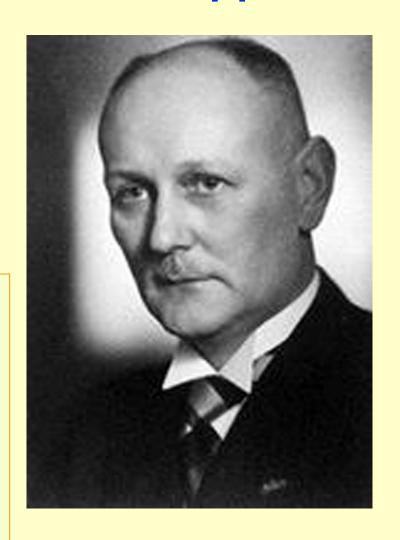

Geschick – удача

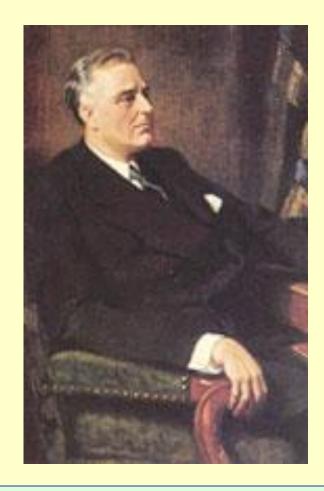
Geduld - терпение

Glück - счастье

ИНСТИТУТ им. ПАУЛЯ ЭРЛИХА во ФРАНКФУРТЕ-НА-МАЙНЕ

Пауль Эрлих

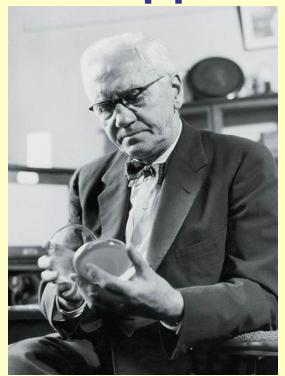



«Для того, чтобы успешно проводить химиотерапию, мы должны искать вещества, имеющие сродство к клеткам паразитов, губительное влияние этих веществ на паразиты должно быть сильнее вреда, наносимого макроорганизму. Это значит, что мы должны «волшебной пулей» (Zauberkugel) ударять по паразитам и только по паразитам, если это возможно. Для осуществления этого необходимо учиться попадать в цель с помощью химических веществ»

СОЗДАНИЕ СУЛЬФАНИЛАМИДОВ

Герхард Домагк – немецкий фармаколог В 1935 г. открыл сульфаниламиды как средства для лечения инфекционных заболеваний Лауреат Нобелевской премии 1939 г.

Франклин Делано Рузвельт 32 президент США (1933–1945)


«ЭКСТРАКТ СУЛЬФАНИЛАМИДА», ЗАГРЯЗНЕННЫЙ ДИЭТИЛЕНГЛИКОЛЕМ, ВЫЗВАЛ ГИБЕЛЬ 107 ПАЦИЕНТОВ

FDA – FOOD & DRUG ADMINISTRATION

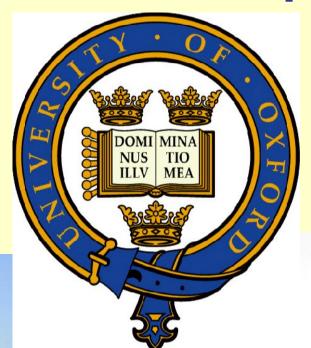
В 1938 г. в США в законе о продуктах питания, лекарственных веществах и косметических средствах появился пункт, обязывающий производителей проверять лекарства на безопасность

АНТИБИОТИКИ

СОЗДАНИЕ ПЕНИЦИЛЛИНА

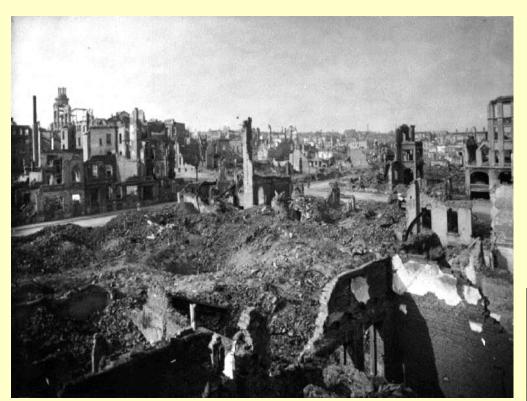
Александр Флеминг

Хоуард Флори



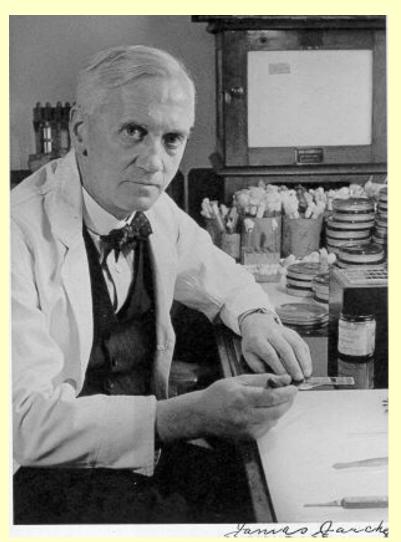
Эрнст Чейн

Английские ученые, в 1940 г. создали первый антибиотик пенициллин, лауреаты Нобелевской премии 1945 г.



ОКСФОРД

КОВЕНТРИ



ПЕНИЦИЛЛИНЫ

Зинаида Виссарионовна Ермольева – российский микробиолог В 1942 г. создала отечественный препарат пенициллина – пенициллин-крустозин ИЭМ

ПЕНИЦИЛЛИНЫ

Зинаида Виссарионовна Ермольева и Хоуард Флори «Пенициллин-ханум и сэр Флори – огромный мужчина»

Александр Флеминг

КЛАССИФИКАЦИЯ АНТИБИОТИКОВ ПО СПЕКТРУ ДЕЙСТВИЯ

ШИРОКОГО
 СПЕКТРА

ПОДАВЛЯЮТ Г(+) КОККИ И Г(-) БАКТЕРИИ КИШЕЧНОЙ ГРУППЫ

ЧАСТЬ ПОЛУСИНТЕТИЧЕСКИХ ПЕНИЦИЛЛИНОВ, КАРБАПЕНЕМЫ, ЦЕФАЛОСПОРИНЫ III—V ГЕНЕРАЦИЙ, АМИНОГЛИКОЗИДЫ, РИФАМПИЦИН, ТИГЕЦИКЛИН, ТЕТРАЦИКЛИНЫ, ХЛОРАМФЕНИКОЛ

• УСЛОВНО-ШИРОКОГО СПЕКТРА

ПОДАВЛЯЮТ Г(+) КОККИ И ВНУТРИКЛЕТОЧНЫХ ВОЗБУДИТЕЛЕЙ – МАКРОЛИДЫ

ПОДАВЛЯЮТ ПРЕИМУЩЕСТВЕННО Г(+) КОККИ

ПРИРОДНЫЕ И НЕКОТОРЫЕ ПОЛУСИНТЕТИЧЕСКИЕ ПЕНИЦИЛЛИНЫ, ЦЕФАЛОСПОРИНЫ I—II ГЕНЕРАЦИЙ, ГЛИКОПЕПТИДЫ, ЛИПОПЕПТИДЫ, ЛИНКОЗАМИДЫ

ПОДАВЛЯЮТ ПРЕИМУЩЕСТВЕННО Г(-) ВОЗБУДИТЕЛЕЙ МОНОБАКТАМЫ, ПОЛИМИКСИНЫ, ПРОТИВОГРИБКОВЫЕ ПОЛИЕНОВЫЕ АНТИБИОТИКИ

ПРОБЛЕМНЫЕ ПОЛИРЕЗИСТЕНТНЫЕ ГРАМ (+) МИКРООРГАНИЗМЫ

Штаммы золотистого стафилококка (Staphylococcus aureus)

MRSA МЕТИЦИЛЛИНРЕЗИСТЕНТНЫЕ

MR-CNS КОАГУЛАЗОНЕГАТИВНЫЕ

VISA ВАНКОМИЦИНРЕЗИСТЕНТНЫЕ

Штаммы энтерококков

VRE ВАНКОМИЦИНРЕЗИСТЕНТНЫЕ

БИОПЛЕНКИ

- Катетер-ассоциированные инфекции
- Эндокардит протезированных и нативных клапанов
- Инфекции ликворных шунтов
- Инфекции протезированных суставов
- Инфекции костей и суставов
- Длительно текущие инфекции кожи и мягких тканей

КЛАССИФИКАЦИЯ АНТИБИОТИКОВ

ПО ХАРАКТЕРУ ДЕЙСТВИЯ

БАКТЕРИЦИДНЫЕ

ПЕНИЦИЛЛИНЫ ЦЕФАЛОСПОРИНЫ КАРБАПЕНЕМЫ ГЛИКОПЕПТИДЫ ЛИПОПЕПТИДЫ РИФАМПИЦИН АМИНОГЛИКОЗИДЫ ПОЛИМИКСИНЫ

БАКТЕРИОСТАТИЧЕСКИЕ

ТЕТРАЦИКЛИН ТИГЕЦИКЛИН ХЛОРАМФЕНИКОЛ ЛИНКОЗАМИДЫ (ЛИНКОМИЦИН, КЛИНДАМИЦИН)

БАКТЕРИЦИДНЫЕ ИЛИ БАКТЕРИОСТАТИЧЕСКИЕ В ЗАВИСИМОСТИ ОТ ВИДА ВОЗБУДИТЕЛЯ И ДОЗЫ МАКРОЛИДЫ

КЛАССИФИКАЦИЯ АНТИБИОТИКОВ

ПО КЛИНИЧЕСКОМУ ПРИМЕНЕНИЮ

ДЛЯ КАЖДОГО ВОЗБУДИТЕЛЯ ИНФЕКЦИИ ИЛИ ЕГО ОТДЕЛЬНЫХ ШТАММОВ ВЫДЕЛЯЮТ

АНТИБИОТИКИ ВЫБОРА 1 РЯД **АЛЬТЕРНАТИВНЫЕ АНТИБИОТИКИ**

2 РЯД

3 РЯД

ВНЕБОЛЬНИЧНЫЕ Г(+) ИНФЕКЦИИ ВЕРХНИХ И НИЖНИХ ДЫХАТЕЛЬНЫХ ПУТЕЙ

ПРИ РЕЗИСТЕНТНОСТИ ВОЗБУДИТЕЛЯ ИЛИ НЕПЕРЕНОСИМОСТИ АНТИБИОТИКА

1 РЯД ПЕНИЦИЛЛИНЫ

2 РЯД ЦЕФАЛОСПОРИНЫ МАКРОЛИДЫ

КЛАССИФИКАЦИЯ АНТИБИОТИКОВ

ПО МЕХАНИЗМУ ДЕЙСТВИЯ

І. АНТИБИОТИКИ, НАРУШАЮЩИЕ СИНТЕЗ КЛЕТОЧНОЙ СТЕНКИ

β-ЛАКТАМНЫЕ

- •ПЕНИЦИЛЛИНЫ
- •ЦЕФАЛОСПОРИНЫ
- •КАРБАПЕНЕМЫ
- •МОНОБАКТАМЫ

ГЛИКОПЕПТИДЫ

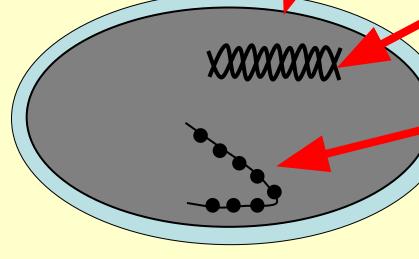
II. АНТИБИОТИКИ-ДЕТЕРГЕНТЫ, НАРУШАЮЩИЕ ПРОНИЦАЕМОСТЬ ЦИТОПЛАЗМАТИЧЕСКОЙ МЕМБРАНЫ

ЛИПОПЕПТИДЫ
ПОЛИМИКСИНЫ
ПОЛИЕНОВЫЕ АНТИБИОТИКИ
ГРАМИЦИДИН С

III. ИНГИБИТОРЫ
ТРАНСКРИПЦИИ И СИНТЕЗА
мРНК
РИФАМПИЦИН

ФТОРХИНОЛОНЫ

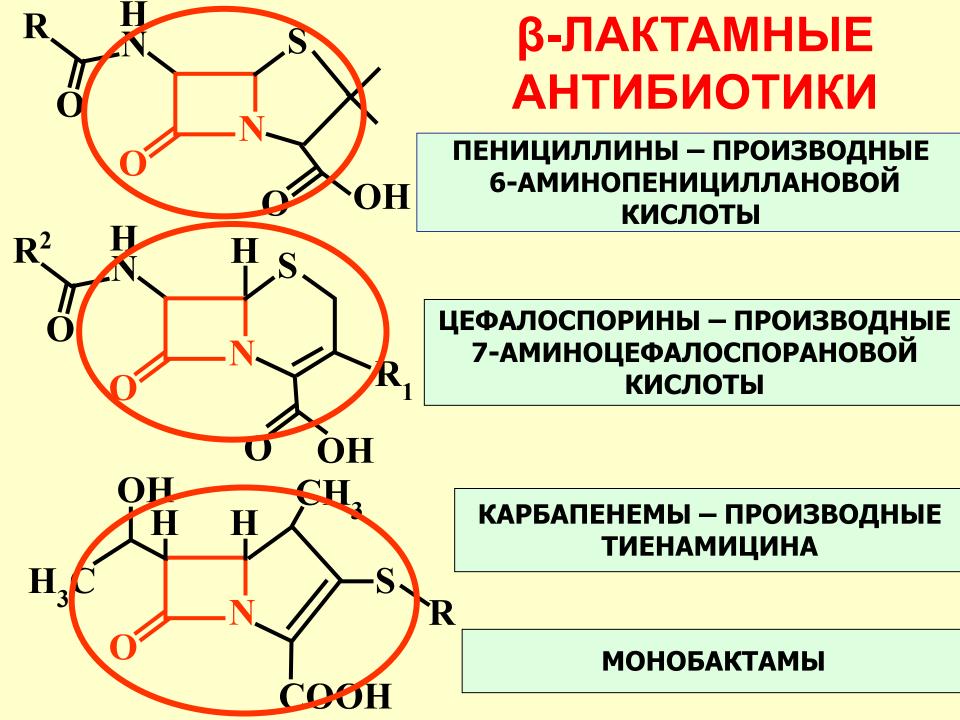
IV. ИНГИБИТОРЫ ТРАНСЛЯЦИИ


- HA 30S СУБЪЕДИНИЦЕ

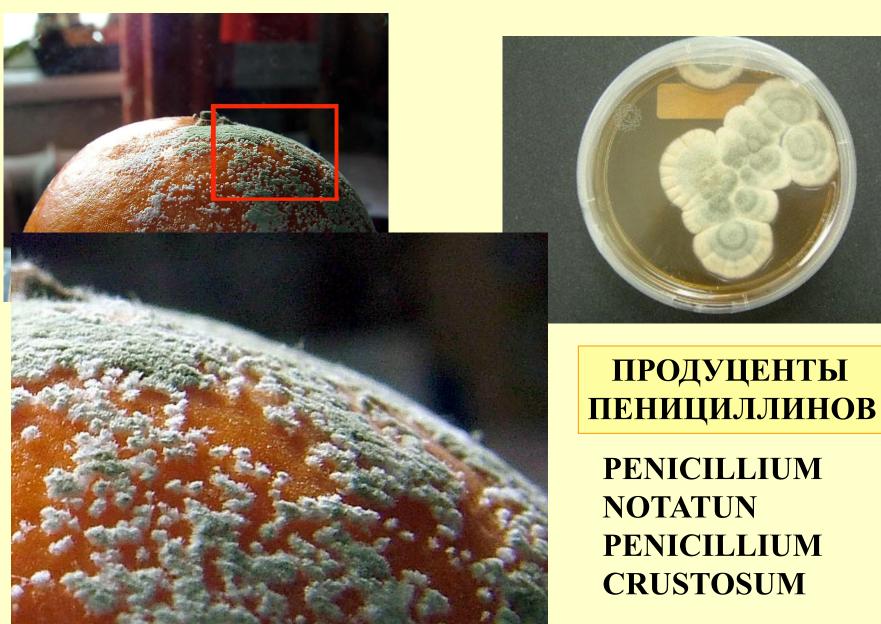
АМИНОГЛИКОЗИДЫ

ТЕТРАЦИКЛИНЫ, ТИГЕЦИКЛИН

- HA 50S СУБЪЕДИНИЦЕ


ХЛОРАМФЕНИКОЛ МАКРОЛИДЫ, ЛИНКОЗАМИДЫ

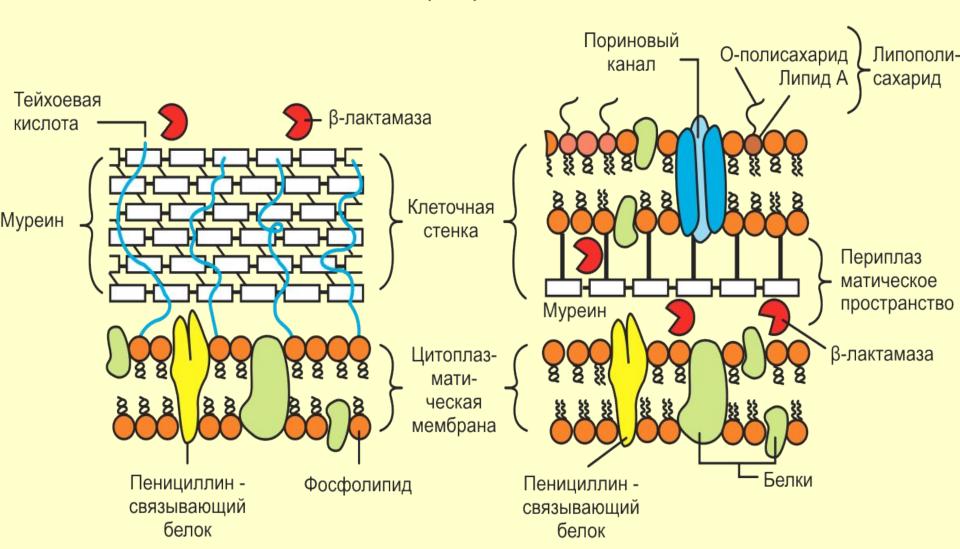
- НА 70S РИБОСОМАЛЬНОМ КОМПЛЕКСЕ ЛИНЕЗОЛИД


АНТИБИОТИКИ, НАРУШАЮЩИЕ СИНТЕЗ КЛЕТОЧНОЙ СТЕНКИ (БАКТЕРИЦИДНЫЕ)

β-ЛАКТАМНЫЕ АНТИБИОТИКИ

ПЕНИЦИЛЛИНЫ

ПЕНИЦИЛЛИНЫ

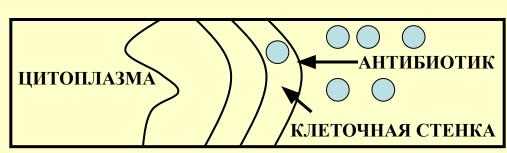


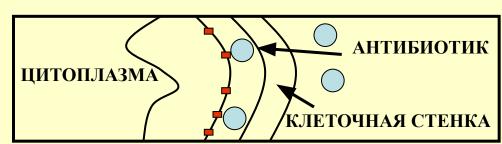
МЕХАНИЗМ ДЕЙСТВИЯ β-ЛАКТАМНЫХ АНТИБИОТИКОВ

Грамположительные

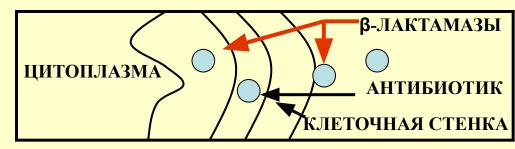
Грамотрицательные

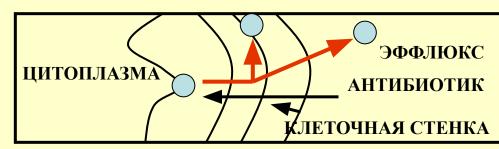
микроорганизмы


МЕХАНИЗМ ДЕЙСТВИЯ β-ЛАКТАМНЫХ АНТИБИОТИКОВ


N-ацетилглюкозамин и N-ацетилмурамовая кислота

МЕХАНИЗМЫ РЕЗИСТЕНТНОСТИ К β-ЛАКТАМНЫМ АНТИБИОТИКАМ


УМЕНЬШЕНИЕ ПРОНИЦАЕМОСТИ ПОРИНОВЫХ КАНАЛОВ КЛЕТОЧНОЙ СТЕНКИ


УМЕНЬШЕНИЕ АФФИНИТЕТА К ПЕНИЦИЛЛИНСВЯЗЫВАЮЩИМ БЕЛКАМ ВСЛЕДСТВИЕ ИХ МУТАЦИИ

ИНАКТИВАЦИЯ β-ЛАКТАМАЗАМИ

АКТИВАЦИЯ МЕХАНИЗМОВ УДАЛЕНИЯ АНТИБИОТИКА ИЗ КЛЕТКИ (ЭФФЛЮКС)

β-Лактамазы

Плазмидные β-лактамазы класса *А* стафилококков

Гидролизуют природные и полусинтетические пенициллины кроме метициллина и оксациллина, блокируются ингибиторами

Плазмидные β-лактамазы широкого спектра класса *А* грамотрицательных бактерий

Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I генерации, блокируются ингибиторами

β-Лактамазы

Плазмидные β-лактамазы расширенного спектра класса *А* грамотрицательных бактерий

Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I–IV генераций, блокируются ингибиторами

Хромосомные β-лактамазы класса *А* грамотрицательных бактерий

Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I–II генераций, блокируются ингибиторами

β-Лактамазы

Хромосомные β-лактамазы класса В грамотрицательных бактерий

Гидролизуют все β-лактамные антибиотики, включая карбапенемы, резистентны к ингибиторам

Хромосомные β-лактамазы класса С грамотрицательных бактерий

Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I–III генераций, резистентны к ингибиторам

• ДЛЯ ПАРЕНТЕРАЛЬНОГО ВВЕДЕНИЯ

БЕНЗИЛПЕНИЦИЛЛИН

- БЕНЗИЛПЕНИЦИЛЛИНА НАТРИЕВАЯ СОЛЬ
- БЕНЗИЛПЕНИЦИЛЛИНА КАЛИЕВАЯ СОЛЬ
- БЕНЗИЛПЕНИЦИЛЛИНА ПРОКАИНОВАЯ ТОЛЬ 2 Ч
- БЕНЗАТИНА БЕНЗИЛПЕНИЦИЛЛИН (РЕТАРПЕН, ЭКСТЕНЦИЛЛИН)

длительного действия 2 нед

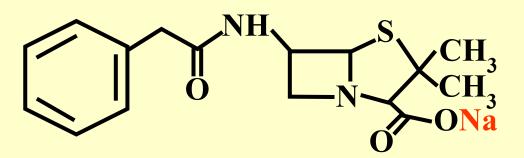
КОРОТКОГО

ДЕЙСТВИЯ

- ДЛЯ ПРИЕМА ВНУТРЬ
 - ФЕНОКСИМЕТИЛПЕНИЦИЛЛИН (ОСПЕН)

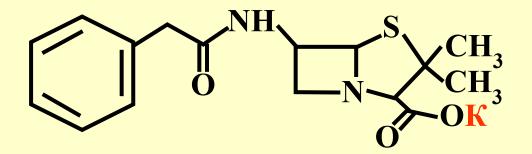
4 ч КОРОТКОГО ДЕЙСТВИЯ

- БЕНЗИЛПЕНИЦИЛЛИН КОРОТКОГО ДЕЙСТВИЯ
 - БЕНЗИЛПЕНИЦИЛЛИНА НАТРИЕВАЯ СОЛЬ (4 ч)


В МЫШЦЫ, ВЕНУ, СПИННОМОЗГОВОЙ КАНАЛ

- БЕНЗИЛПЕНИЦИЛЛИНА КАЛИЕВАЯ СОЛЬ (4 ч) ДЛИТЕЛЬНОГО ДЕЙСТВИЯ
- БЕНЗИЛПЕНИЦИЛЛИНА ПРОКАИНОВАЯ СОЛЬ (12 ч)
- ТРОКАИНОВАЯ СОЛВ (12 Ч)
- БЕНЗАТИНА БЕНЗИЛПЕНИЦИЛЛИН (РЕТАРПЕН, ЭКСТЕНЦИЛЛИН) (2 нед)

- ФЕНОКСИМЕТИЛПЕНИЦИЛЛИН (ОСПЕН)


ВНУТРЬ

ДЛЯ ПАРЕНТЕРАЛЬНОГО ВВЕДЕНИЯ КОРОТКОГО ДЕЙСТВИЯ (4 ч)

БЕНЗИЛПЕНИЦИЛЛИНА НАТРИЕВАЯ СОЛЬ

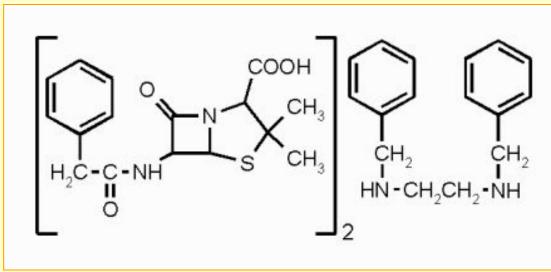
В МЫШЦЫ, ВЕНУ, СПИННОМОЗГОВОЙ КАНАЛ

БЕНЗИЛПЕНИЦИЛЛИНА КАЛИЕВАЯ СОЛЬ

В МЫШЦЫ

ДЛЯ ПАРЕНТЕРАЛЬНОГО ВВЕДЕНИЯ

ДЛИТЕЛЬНОГО ДЕЙСТВИЯ


БЕНЗИЛПЕНИЦИЛЛИНА ПРОКАИНОВАЯ СОЛЬ

 $(12 \ 4)$

в мышцы

ПРИРОДНЫЕ ПЕНИЦИЛЛИНЫ

ДЛЯ ПАРЕНТЕРАЛЬНОГО ВВЕДЕНИЯ ДЛИТЕЛЬНОГО ДЕЙСТВИЯ

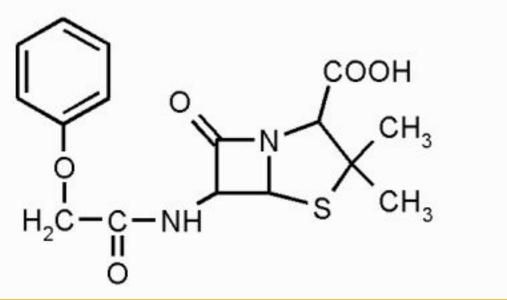
БЕНЗАТИНА БЕНЗИЛПЕНИЦИЛЛИН

В МЫШЦЫ

(БИЦИЛЛИН 1, РЕТАРПЕН, ЭКСТЕНЦИЛЛИН)

(2 недели)

БИЦИЛЛИН 5


БЕНЗАТИНА БЕНЗИЛПЕНИЦИЛЛИН / БЕНЗИЛПЕНИЦИЛЛИНА ПРОКАИНОВАЯ СОЛЬ (4:1)

ПРИРОДНЫЕ ПЕНИЦИЛЛИНЫ

ДЛЯ ПРИЕМА ВНУТРЬ

КОРОТКОГО ДЕЙСТВИЯ (4 ч)

ФЕНОКСИМЕТИЛПЕНИЦИЛЛИН (ОСПЕН)

ПРИРОДНЫЕ ПЕНИЦИЛЛИНЫ

СПЕКТР ДЕЙСТВИЯ УЗКИЙ (Г+):

ГЕМОЛИТИЧЕСКИЙ СТРЕПТОКОКК, ЧУВСТВИТЕЛЬНЫЕ ШТАММЫ ПНЕВМОКОККА (МНОГО РЕЗИСТЕНТНЫХ ШТАММОВ), ЧУВСТВИТЕЛЬНЫЕ ШТАММЫ ГОНОКОККА, МЕНИНГОКОКК, ВОЗБУДИТЕЛИ ДИФТЕРИИ, СИБИРСКОЙ ЯЗВЫ, ГАЗОВОЙ ГАНГРЕНЫ, СТОЛБНЯКА, СИФИЛИСА,

листерия,

АКТИНОМИЦЕТЫ

НЕ ДЕЙСТВУЮТ НА:

СТАФИЛОКОККИ, ПРОДУЦИРУЮЩИЕ β-ЛАКТАМАЗЫ, КИШЕЧНУЮ ГРУППУ ВОЗБУДИТЕЛЕЙ, ВНУТРИКЛЕТОЧНЫХ ВОЗБУДИТЕЛЕЙ, Г(-) ПАЛОЧКИ

ИЗОКСАЗОЛОПЕНИЦИЛЛИНЫ УЗКОГО СПЕКТРА
 ОКСАЦИЛЛИН
 УСТОЙЧИВЫ К β-ЛАКТАМАЗАМ

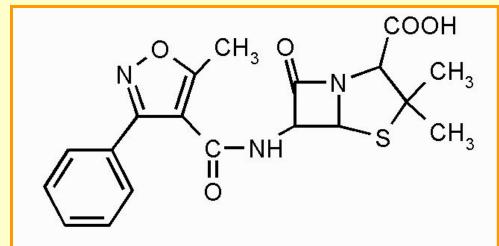
- АМИНОПЕНИЦИЛЛИНЫ АМПИЦИЛЛИН - АМОКСИЦИЛЛИН

ШИРОКОГО СПЕКТРА УСТОЙЧИВЫ В КИСЛОЙ СРЕДЕ НЕУСТОЙЧИВЫ К В-ЛАКТАМАЗАМ

- КАРБОКСИПЕНИЦИЛЛИНЫ КАРБЕНИЦИЛЛИН ТИКАРЦИЛЛИН

ШИРОКОГО СПЕКТРА (АНТИПСЕВДОМОНАДНЫЕ) НЕУСТОЙЧИВЫ В КИСЛОЙ СРЕДЕ НЕУСТОЙЧИВЫ К **β**-ЛАКТАМАЗАМ

– УРЕИДОПЕНИЦИЛЛИНЫ ПИПЕРАЦИЛЛИН


1. ИЗОКСАЗОЛОПЕНИЦИЛЛИНЫ - ОКСАЦИЛЛИН

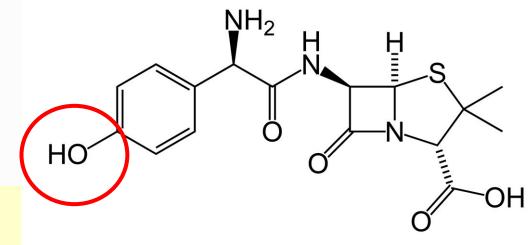
СПЕКТР ДЕЙСТВИЯ УЗКИЙ, КАК У ПРИРОДНЫХ ПЕНИЦИЛЛИНОВ (Г+):

ГЕМОЛИТИЧЕСКИЙ СТРЕПТОКОКК, ЧУВСТВИТЕЛЬНЫЕ ШТАММЫ ПНЕВМОКОККА

(МНОГО РЕЗИСТЕНТНЫХ), ГОНОКОКК, МЕНИНГОКОКК, ВОЗБУДИТЕЛИ ДИФТЕРИИ, СИБИРСКОЙ ЯЗВЫ, ГАЗОВОЙ ГАНГРЕНЫ, СТОЛБНЯКА, СИФИЛИСА, ЛИСТЕРИЯ, АКТИНОМИЦЕТЫ

СТАФИЛОКОККИ, ПРОДУЦИРУЮЩИЕ β-ЛАКТАМАЗЫ

ОКСАЦИЛЛИН


НЕ ДЕЙСТВУЕТ НА:

ВНУТРИКЛЕТОЧНЫХ ВОЗБУДИТЕЛЕЙ, Г(-) ПАЛОЧКИ И МОРАКСЕЛЛУ

2. АМИНОПЕНИЦИЛЛИНЫ

АМПИЦИЛЛИН

назначают внутрь, в виде натриевой соли вводят в мышцы и вену

АМОКСИЦИЛЛИН

активный метаболит ампициллина, принимают внутрь, обладает большей биодоступностью, создает в крови концентрацию, в 2,5 раза большую, чем ампициллин, всасывается быстрее и меньше раздражает кишечник

2. АМИНОПЕНИЦИЛЛИНЫ

СПЕКТР ДЕЙСТВИЯ ШИРОКИЙ (Г+ И Г-):

ГЕМОЛИТИЧЕСКИЙ СТРЕПТОКОКК, ЧУВСТВИТЕЛЬНЫЕ ШТАММЫ ПНЕВМОКОККА, ГОНОКОКК, МЕНИНГОКОКК, ВОЗБУДИТЕЛИ ДИФТЕРИИ, сибирской язвы, ГАЗОВОЙ ГАНГРЕНЫ, СТОЛБНЯКА, СИФИЛИСА, листерия. **АКТИНОМИЦЕТЫ**

САЛЬМОНЕЛЛЫ, ШИГЕЛЛЫ, ПРОТЕЙ, КИШЕЧНАЯ ПАЛОЧКА, ГЕМОФИЛЬНАЯ ПАЛОЧКА, БОРРЕЛИИ

АМПИЦИЛЛИН, **АМОКСИЦИЛЛИН**

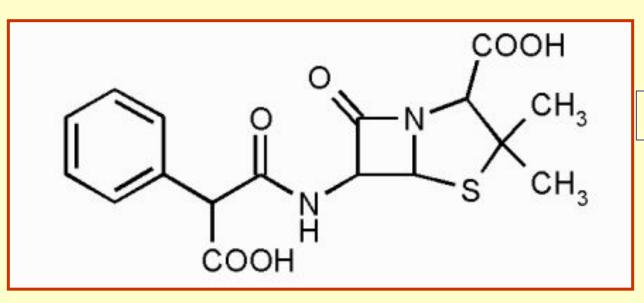
РАЗРУШАЮТСЯ

β-ЛАКТАМАЗАМИ

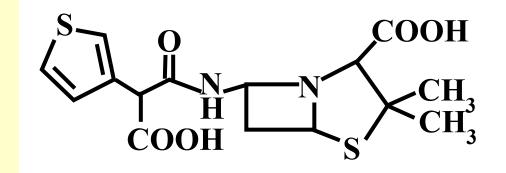
НЕ ДЕЙСТВУЮТ НА:

СИНЕГНОЙНУЮ ПАЛОЧКУ, СТАФИЛОКОККИ, ПРОДУЦИРУЮЩИЕ

В-ЛАКТАМАЗУ


- 3. КАРБОКСИПЕНИЦИЛЛИНЫ КАРБЕНИЦИЛЛИН ТИКАРЦИЛЛИН
- 4. УРЕИДОПЕНИЦИЛЛИНЫ ПИПЕРАЦИЛЛИН

СПЕКТР ДЕЙСТВИЯ ШИРОКИЙ (Г+ и Г-):


ГЕМОЛИТИЧЕСКИЙ СТРЕПТОКОКК,
ЧУВСТВИТЕЛЬНЫЕ ШТАММЫ ПНЕВМОКОККА,
ГОНОКОКК, МЕНИНГОКОКК,
ВОЗБУДИТЕЛИ ДИФТЕРИИ, СИБИРСКОЙ
ЯЗВЫ, ГАЗОВОЙ ГАНГРЕНЫ,
СТОЛБНЯКА, СИФИЛИСА,
ЛИСТЕРИЯ, АКТИНОМИЦЕТЫ

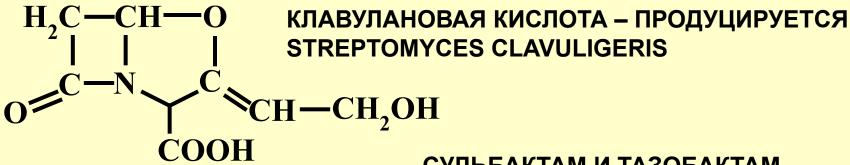
САЛЬМОНЕЛЛЫ, ШИГЕЛЛЫ, КЛЕБСИЕЛЛА, ПРОТЕЙ, СИНЕГНОЙНАЯ ПАЛОЧКА РАЗРУШАЮТСЯ β-ЛАКТАМАЗАМИ

3. КАРБОКСИПЕНИЦИЛЛИНЫ

КАРБЕНИЦИЛЛИН

ТИКАРЦИЛЛИН

ВЕНУ КАПЕЛЬНО

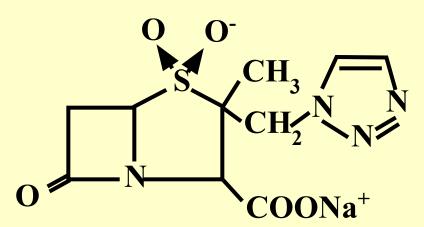

4. УРЕИДОПЕНИЦИЛЛИНЫ

ПИПЕРАЦИЛЛИН

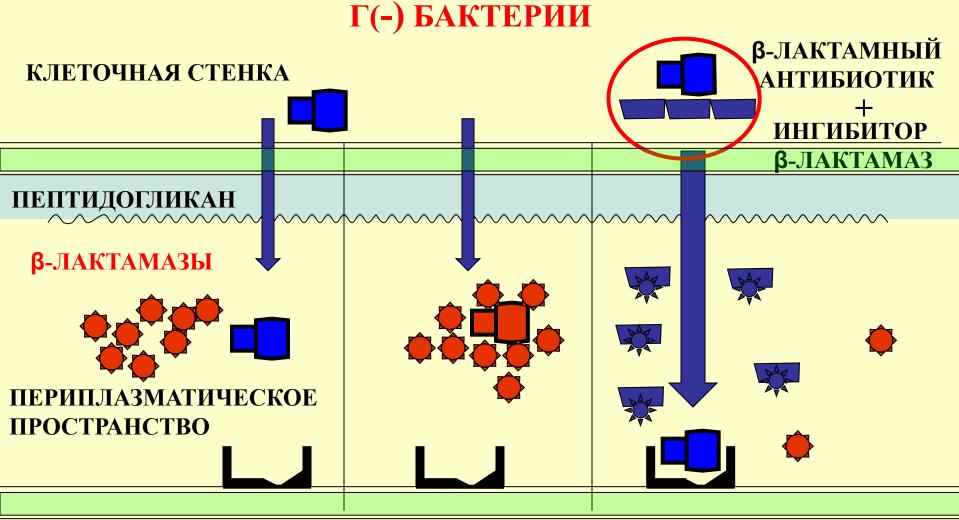
ВВОДЯТ В МЫШЦЫ И ВЕНУ КАПЕЛЬНО

У 4—17% ВЫЗЫВАЕТ ТРОМБОФЛЕБИТ, ГЕМОРРАГИЧЕСКИЙ ДИАТЕЗ, ЛЕЙКОПЕНИЮ, ЭОЗИНОФИЛИЮ

ингибиторы β-лактамаз



КЛАВУЛАНОВАЯ КИСЛОТА


САМОСТОЯТЕЛЬНО ПОДАВЛЯЕТ АЦИНЕТОБАКТЕР, ГОНОКОКК, МЕНИНГОКОКК И БАКТЕРОИДЫ

СУЛЬБАКТАМ И ТАЗОБАКТАМ – ПОЛУСИНТЕТИЧЕСКИЕ ПРОИЗВОДНЫЕ ПЕНИЦИЛЛАНОВОЙ КИСЛОТЫ (СУЛЬФОНЫ)

ТАЗОБАКТАМ

МЕХАНИЗМ ДЕЙСТВИЯ КОМБИНАЦИИ β-ЛАКТАМНОГО АНТИБИОТИКА И ИНГИБИТОРА β-ЛАКТАМАЗ НА

ЦИТОПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

- АМПИЦИЛЛИН / ОКСАЦИЛЛИН
 - АМПИОКС
- АМПИЦИЛЛИН / СУЛЬБАКТАМ
 - УНАЗИН
- АМОКСИЦИЛЛИН / КЛАВУЛАНОВАЯ КИСЛОТА
 - **АУГМЕНТИН**
 - АМОКСИКЛАВ
- АМОКСИЦИЛЛИН / СУЛЬБАКТАМ
 - ТРИФАМОКС
- ТИКАРЦИЛЛИН / КЛАВУЛАНОВАЯ КИСЛОТА
 - ТИМЕНТИН
- ПИПЕРАЦИЛЛИН / ТАЗОБАКТАМ
 - ТАЗОЦИН

АМПИЦИЛЛИН / ОКСАЦИЛЛИН

ВНУТРЬ, В МЫШЦЫ, ВЕНУ

АМПИЦИЛЛИН / СУЛЬБАКТАМ

УНАЗИН


В ВЕНУ

АМОКСИЦИЛЛИН / КЛАВУЛАНОВАЯ КИСЛОТА

ВНУТРЬ, В ВЕНУ КАПЕЛЬНО

la2bash.ru

АМОКСИЦИЛЛИН / СУЛЬБАКТАМ

ТРИФАМОКС

ВНУТРЬ, В МЫШЦЫ, ВЕНУ

ТИКАРЦИЛЛИН / КЛАВУЛАНОВАЯ КИСЛОТА

ТИМЕНТИН

В ВЕНУ КАПЕЛЬНО

ПИПЕРАЦИЛЛИН / ТАЗОБАКТАМ

ТАЗОЦИН

В ВЕНУ КАПЕЛЬНО

ПЕНИЦИЛЛИНЫ

- Создают бактерицидную концентрацию в синовиальной жидкости, плевральном экссудате, выпоте перикарда, желчи, моче
- Плохо проникают через ГЭБ у здоровых, в субарахноидальной жидкости 1% от концентрации в крови, при менингите 5%
- Выводятся в неизмененном виде почками: 10% фильтрация, 90% активная секреция

ПОБОЧНЫЕ ЭФФЕКТЫ ПЕНИЦИЛЛИНОВ

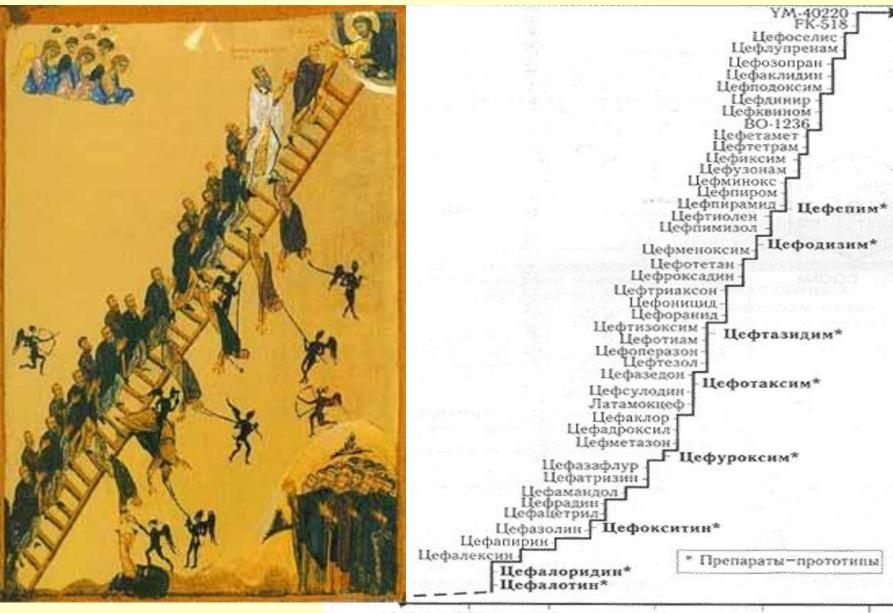
1. АЛЛЕРГИЧЕСКИЕ РЕАКЦИИ:

У 0,7–10% пациентов – кожная сыпь, крапивница, гипертермия, васкулит, сывороточная болезнь (расстройства сознания, миокардит, боль в суставах, лейкопения, лимфаденопатия, спленомегалия, альбуминурия, гематурия)
У 0,004–0,04% – анафилактический шок

АЛЛЕРГЕНОМ ЯВЛЯЕТСЯ В-ЛАКТАМНОЕ КОЛЬЦО

2. Энцефалопатия, судороги при инъекции в спиномозговой канал или введении в больших дозах (антагонизм с ГАМК)

ПОБОЧНЫЕ ЭФФЕКТЫ ПЕНИЦИЛЛИНОВ


КРАПИВНИЦА

ЦЕФАЛОСПОРИНЫ

ПРОДУЦЕНТ— ACREMONIUM CHRYSOGENUM

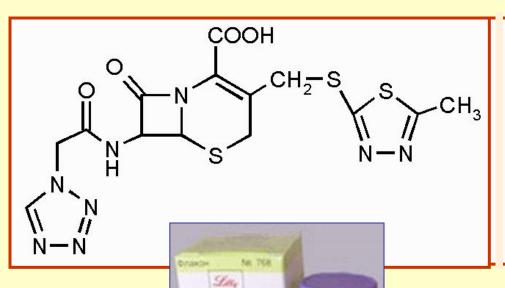
ВЫДЕЛЕН В 1945-1948 гг.

Цефалоспорины – производные **7-аминоцефалоспорановой кислоты**

ДЛЯ ВВЕДЕНИЯ В МЫШЦЫ И ВЕНУ

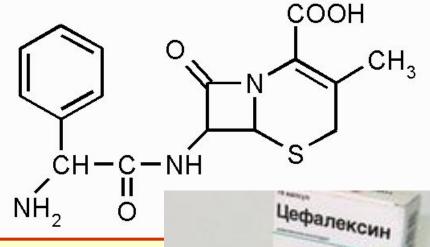
ДЛЯ ПРИЕМА ВНУТРЬ

ЦЕФАЗОЛИН (КЕФЗОЛ)


ЦЕФАЛЕКСИН (ЦЕПОРЕКС)

СПЕКТР ДЕЙСТВИЯ УЗКИЙ, В ОСНОВНОМ Г(+): МЕТИЦИЛЛИНЧУВСТВИТЕЛЬНЫЕ ШТАММЫ ЗОЛОТИСТОГО СТАФИЛОКОККА, ГЕМОЛИТИЧЕСКИЙ СТРЕПТОКОКК, ПНЕВМОКОКК ВОЗБУДИТЕЛИ СИБИРСКОЙ ЯЗВЫ, ДИФТЕРИИ СЛАБО ДЕЙСТВУЮТ НА ГЕМОФИЛЬНУЮ ПАЛОЧКУ, МОРАКСЕЛЛУ

РЕДКО ПРИМЕНЯЮТСЯ ИЗ-ЗА НЕФРОТОКСИЧНОСТИ, ЭФФЕКТИВНОСТЬ СОПОСТАВИМА С ДЕЙСТВИЕМ ПРИРОДНЫХ ПЕНИЦИЛЛИНОВ (ДОПОЛНИТЕЛЬНО ПОДАВЛЯЮТ ЗОЛОТИСТЫЙ СТАФИЛОКОКК)


ЦЕФАЗОЛИН

ЦЕФАЛЕКСИН

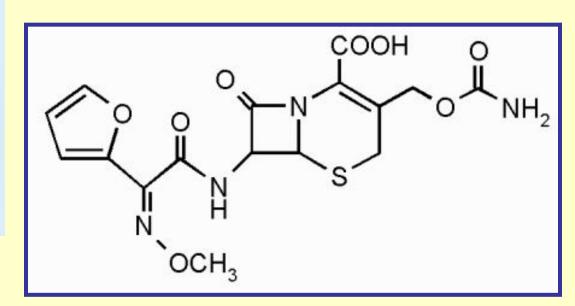
КЕФЗОЛ

Spring M. Work B. B.

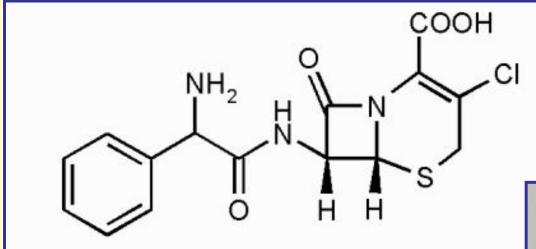
500 Mr

ДЛЯ ВВЕДЕНИЯ В МЫШЦЫ И ВЕНУ

ДЛЯ ПРИЕМА ВНУТРЬ


ЦЕФУРОКСИМ (ЗИНАЦЕФ)

ЦЕФУРОКСИМ АКСЕТИЛ (ЗИННАТ) ЦЕФАКЛОР (ЦЕКЛОР)


СПЕКТР ДЕЙСТВИЯ УЗКИЙ, В ОСНОВНОМ Г(+) ДОПОЛНИТЕЛЬНО ПОДАВЛЯЮТ Г(-): МОРАКСЕЛЛУ, ПРОТЕЙ, КЛЕБСИЕЛЛУ, ГЕМОФИЛЬНУЮ ПАЛОЧКУ

ЦЕФУРОКСИМ

ЦЕФАКЛОР

ДЛЯ ВВЕДЕНИЯ В МЫШЦЫ И ВЕНУ

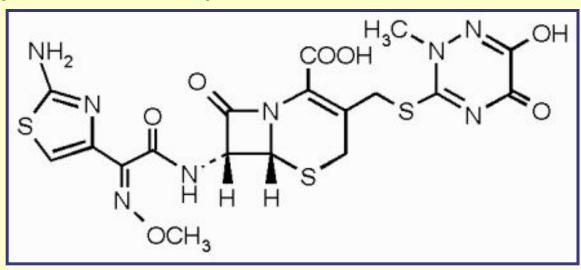
ДЛЯ ПРИЕМА ВНУТРЬ

ЦЕФОТАКСИМ (КЛАФОРАН) ЦЕФТРИАКСОН (РОЦЕФИН) ЦЕФОПЕРАЗОН (ЦЕФОБИД) ЦЕФТАЗИДИМ (ФОРТУМ) ЦЕФТИБУТЕН (ЦЕДЕКС)

СПЕКТР ДЕЙСТВИЯ ШИРОКИЙ: Г(+) и Г(-)

ГОНОКОКК, МЕНИНГОКОКК, МОРАКСЕЛЛА, КИШЕЧНАЯ ПАЛОЧКА, САЛЬМОНЕЛЛЫ, ШИГЕЛЛЫ, ИЕРСИНИЯ ПСЕВДОТУБЕРКУЛЕЗА, ПРОТЕЙ, КЛЕБСИЕЛЛА, ГЕМОФИЛЬНАЯ ПАЛОЧКА

ДЛЯ ВВЕДЕНИЯ В МЫШЦЫ И ВЕНУ



ЦЕФОТАКСИМ (КЛАФОРАН)

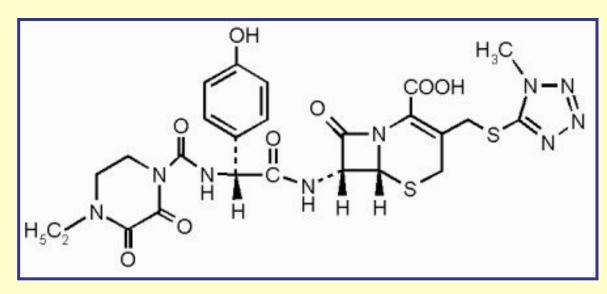
- ПРОНИКАЕТ ЧЕРЕЗ ГЭБ
- НЕ ПОДАВЛЯЕТ СИНЕГНОЙНУЮ ПАЛОЧКУ
- ОБРАЗУЕТ АКТИВНЫЙ МЕТАБОЛИТ

ДЛЯ ВВЕДЕНИЯ В МЫШЦЫ И ВЕНУ

ЦЕФТРИАКСОН (РОЦЕФИН)

- ПОДАВЛЯЕТ БЛЕДНУЮ ТРЕПОНЕМУ (ПРЕПАРАТ ВТОРОГО РЯДА ДЛЯ ЛЕЧЕНИЯ СИФИЛИСА)
- ПРОНИКАЕТ ЧЕРЕЗ ГЭБ
- ДЕЙСТВУЕТ ДЛИТЕЛЬНО, ДОСТАТОЧНО 1 ИНЪЕКЦИИ В СУТКИ

ДЛЯ ВВЕДЕНИЯ В МЫШЦЫ И ВЕНУ АНТИПСЕВДОМОНАДНЫЕ



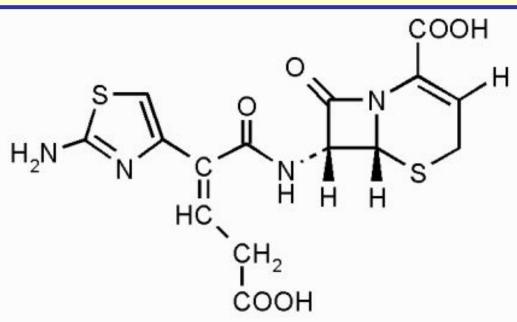
ЦЕФТАЗИДИМ (ФОРТУМ)

- ПРОНИКАЕТ ЧЕРЕЗ ГЭБ
- ПОДАВЛЯЕТ СИНЕГНОЙНУЮ ПАЛОЧКУ

ДЛЯ ВВЕДЕНИЯ В МЫШЦЫ И ВЕНУ АНТИПСЕВОДОМОНАДНЫЕ

ЦЕФОПЕРАЗОН (ЦЕФОБИД)

- ПОДАВЛЯЕТ СИНЕГНОЙНУЮ ПАЛОЧКУ И БАКТЕРОИДЫ
- ЭЛИМИНИРУЕТСЯ С МОЧОЙ И ЖЕЛЧЬЮ
- ВЫЗЫВАЕТ ДИСУЛЬФИРАМОПОДОБНЫЙ ЭФФЕКТ, КРОВОТЕЧЕНИЯ (ГИПОПРОТРОМБИНЕМИЯ), ДИАРЕЮ


ДЛЯ ВВЕДЕНИЯ В МЫШЦЫ И ВЕНУ

ЦЕФОПЕРАЗОН / СУЛЬБАКТАМ (СУЛЬПЕРАЗОН)

- УСИЛЕНИЕ ЭФФЕКТА В ОТНОШЕНИИ ВОЗБУДИТЕЛЕЙ ГОСПИТАЛЬНЫХ ИНФЕКЦИЙ СИНЕГНОЙНОЙ ПАЛОЧКИ, БАКТЕРОИДОВ
- ПРЕПАРАТ ДЛЯ ЭМПИРИЧЕСКОЙ АНТИБИОТИКОТЕРАПИИ ТЯЖЕЛЫХ ГОСПИТАЛЬНЫХ ИНФЕКЦИЙ

ДЛЯ ПРИЕМА ВНУТРЬ

ЦЕФТИБУТЕН (ЦЕДЕКС)

- БИОДОСТУПНОСТЬ ПРИ ПРИЕМЕ ВНУТРЬ 50%
- ДВОЙНОЙ ПУТЬ ЭЛИМИНАЦИИ С МОЧОЙ И ЖЕЛЧЬЮ
- ДЛИТЕЛЬНЫЙ ПЕРИОД ПОЛУЭЛИМИНАЦИИ
- ПРЕПАРАТ ДЛЯ СТУПЕНЧАТОЙ ПОДДЕРЖИВАЮЩЕЙ ТЕРАПИИ

ЦЕФАЛОСПОРИНЫ IV ГЕНЕРАЦИЯ

ДЛЯ ВВЕДЕНИЯ В МЫШЦЫ И ВЕНУ АНТИПСЕВОДОМОНАДНЫЕ

ЦЕФЕПИМ (МАКСИПИМ)

- МАКСИМАЛЬНО ШИРОКИЙ ПРОТИВОМИКРОБНЫЙ СПЕКТР СРЕДИ ВСЕХ ЦЕФАЛОСПОРИНОВ
- ПОДАВЛЯЕТ СИНЕГНОЙНУЮ ПАЛОЧКУ, ЭНТЕРОБАКТЕР, АЦИНЕТОБАКТЕР, БАКТЕРОИДЫ

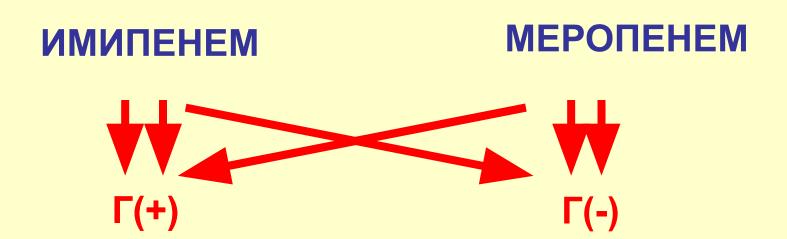
ЦЕФАЛОСПОРИНЫ V ГЕНЕРАЦИЯ

ЦЕФТОБИПРОЛ МЕДОКАРИЛ (ЗЕФТЕРА)

- ВВОДЯТ В ВЕНУ КАПЕЛЬНО ПРИ ОСЛОЖНЕННЫХ ИНФЕКЦИЯХ МЯГКИХ ТКАНЕЙ (ДИАБЕТИЧЕСКАЯ СТОПА) У ВЗРОСЛЫХ
- ПЕРИОД ПОЛУЭЛИМИНАЦИИ 0,5-3 ч, ИНЪЕКЦИИ
 ДЛИТЕЛЬНОСТЬЮ ДО 2 ч ПОВТОРЯЮТ 3 РАЗА В ДЕНЬ

ЦЕФТОБИПРОЛ

• Связывается со специфическими пенициллинсвязывающими белками *ПСБ 2а* Г (+) и Г (-) микроорганизмов, включая метициллинрезистентные штаммы золотистого стафилококка и ванкомицинрезистентные штаммы энтерококков


ЦЕФТОБИПРОЛ

- Устойчив к гидролизу β-лактамазами золотистого стафилококка и Г (-) бактерий
- Гидролизуется β-лактамазами расширенного спектра (карбапенемазы)

- Самый широкий противомикробный спектр
- Активны в отношении возбудителей, резистентных к ингибиторозащищенным пенициллинам, цефалоспоринам III–V генераций, фторхинолонам
- Оказывают длительный постантибиотический эффект
- Препараты для эмпирической антибиотикотерапии больных со сниженным иммунитетом

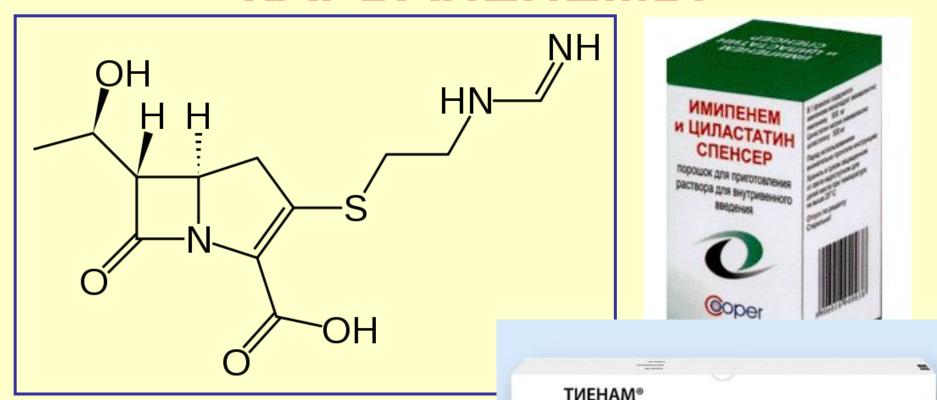
- Легче проникают через пориновые каналы клеточной стенки
- Создают в периплазматическом пространстве высокую концентрацию
- На цитоплазматической мембране связываются не только с обычной мишенью β-лактамных антибиотиков – ПСБ 2, но и с ПСБ 1β, 4 и 7
- Не разрушаются β-лактамазами широкого спектра
- Разрушаются β-лактамазами расширенного спектра (карбапенемазы) Г(-) возбудителей

- ИМИПЕНЕМ / ЦИЛАСТАТИН (ТИЕНАМ), 1990
- МЕРОПЕНЕМ (МЕРОНЕМ), 1996
- **ЭРТАПЕНЕМ** (ИНВАНЗ), 2002
- ДОРИПЕНЕМ (ДОРИПРЕКС), 2008

РАЗЛИЧИЯ В АКТИВНОСТИ ПРОТИВ СИНЕГНОЙНОЙ ПАЛОЧКИ И АЦИНЕТОБАКТЕРА

```
ЭРТАПЕНЕМ – не активен

ИМИПЕНЕМ – умеренная активность


(резистентность у 20-30% штаммов)

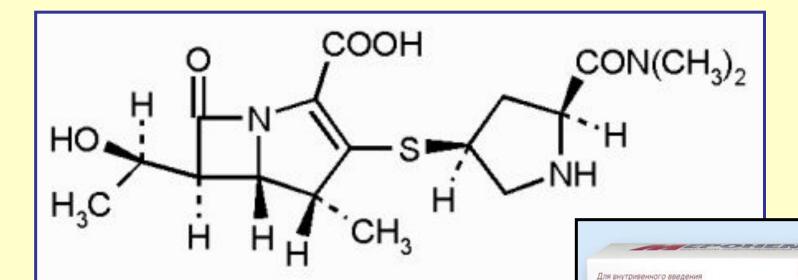
МЕРОПЕНЕМ – высокая активность

(резистентность у 5-15%)

ДОРИПЕНЕМ – высокая активность

(резистентность не выявлена)
```


5 флаконов


depain Mopel of Eq. (Now., C)(4)

ИМИПЕНЕМ / ЦИЛАСТАТИН

ТИЕНАМ

В ВЕНУ КАПЕЛЬНО

AstraZeneca 🕏

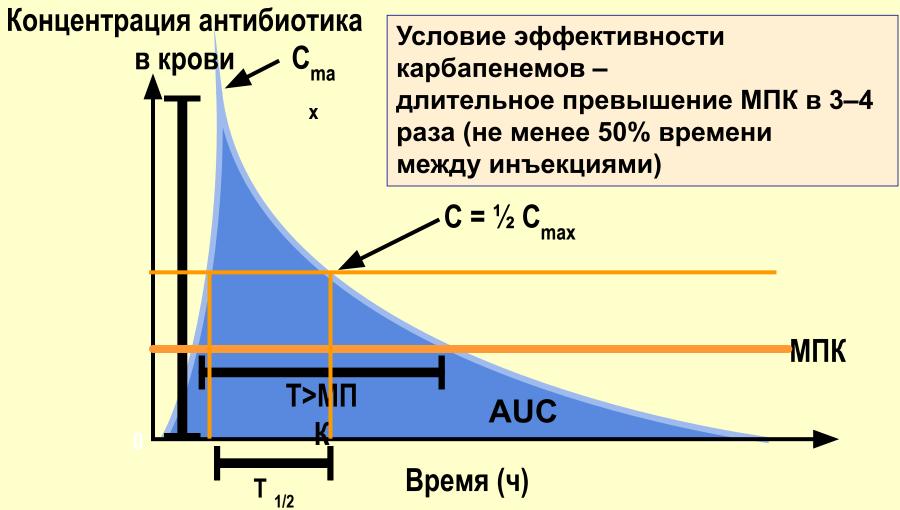


MEPOΠΕΗΕΜ (MEPOHEM)

В ВЕНУ В ВИДЕ БОЛЮСА И КАПЕЛЬНО

ЭРТАПЕНЕМ (ИНВАНЗ)

В ВЕНУ В ВИДЕ БОЛЮСА И КАПЕЛЬНО



ДОРИПЕНЕМ (ДОРИПРЕКС)

В ВЕНУ В ВИДЕ БОЛЮСА И КАПЕЛЬНО

ФАРМАКОКИНЕТИЧЕСКИЕ ПАРАМЕТРЫ

AUC = Площадь под кривой «концентрация-время»

С_{мах} = Максимальные концентрации в плазме

ИМИПЕНЕМ

- Короткий период полуэлиминации (< 1 ч)
- Разрушается дегидропептидазой щеточной каемки проксимальных извитых канальцев почек
 Используют только в комбинации с ингибитором дегидропептидазы – циластатином

ТИЕНАМИМИПЕНЕМ /
ЦИЛАСТАТИН
(1:1)

- Вводят в мышцы и вену капельно
- При быстром вливании в вену вызывает рвоту, тремор и судороги
- Не применяют при менингите
- Можно вводить детям с момента рождения

МЕРОПЕНЕМ

MEPOΠΕΗΕΜ (MEPOHEM)

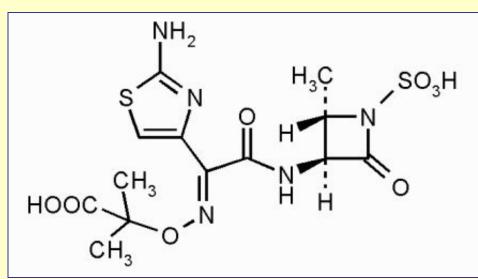
- Более длительный период полуэлиминации (> 1 ч)
- Устойчив к действию дегидропептидазы
- Вводят в вену в виде болюса и капельно
- Не применяют при бактериальном эндокардите, инфекциях костей и суставов
- Не вызывает судороги и рвоту
- Нельзя вводить детям до 3 мес

ПОБОЧНЫЕ ЭФФЕКТЫ КАРБАПЕНЕМОВ

- У 1–20% больных инъекции имипенема / циластатина сопровождаются тошнотой, рвотой, диареей, аллергическими реакциями
- При заболеваниях ЦНС, почечной недостаточности и быстром введении в вену имипенем создает риск тремора и судорог вследствие антагонизма с ГАМК
- Другие карбапенемы переносятся значительно лучше – не вызывают судороги и рвоту

МОНОБАКТАМЫ

СПЕКТР ДЕЙСТВИЯ УЗКИЙ

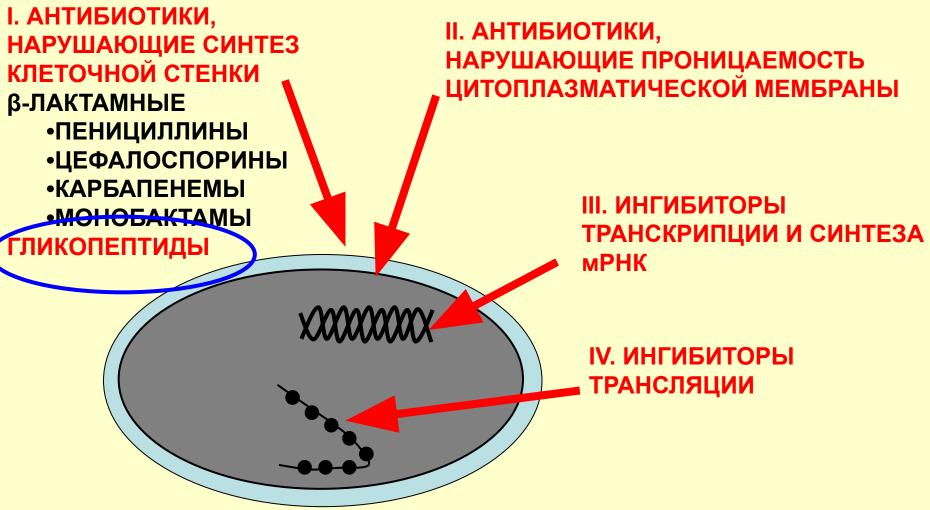

ПОДАВЛЯЮТ В ОСНОВНОМ Г(-)

возбудителей:

ПАЛОЧКИ

ГОНОКОКК, ПАТОГЕННЫЕ ШТАММЫ

КИШЕЧНОЙ ПАЛОЧКИ САЛЬМОНЕЛЛЫ ШИГЕЛЛЫ СИНЕГНОЙНУЮ И ГЕМОФИЛЬНУЮ

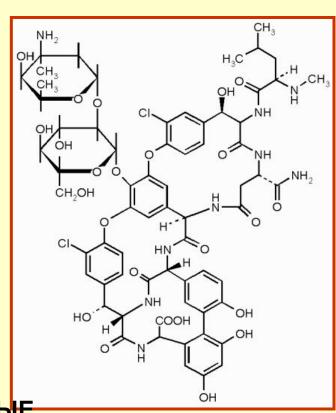

ВВОДЯТ В ВЕНУ И МЫШЦЫ ПРИ СЕПСИСЕ, ТЯЖЕЛЫХ ИНФЕКЦИЯХ АЗТРІ МОЧЕВЫВОДЯЩИХ ПУТЕЙ, АБДОМИНАЛЬНЫХ И ГИНЕКОЛОГИЧЕСКИХ ИНФЕКЦИЯХ,

A3TPEOHAM

вызванных г(-) возбудителями

КЛАССИФИКАЦИЯ АНТИБИОТИКОВ

ПО МЕХАНИЗМУ ДЕЙСТВИЯ


ГЛИКОПЕПТИДЫ

Механизм действия

Нарушают синтез муреина, препятствуют отсоединению комплекса N-ацетилмурамат-N-ацетилглюкозамин от пирофосфатного переносчика C55, включению этого комплекса в структуру муреина ЭФФЕКТ БАКТЕРИЦИДНЫЙ

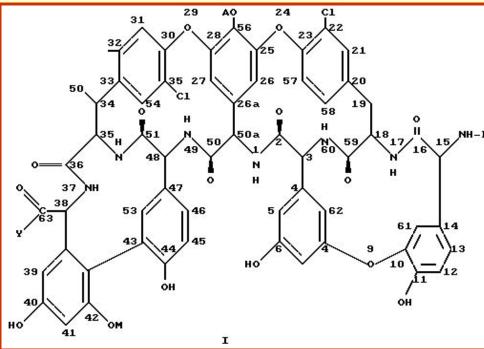
СПЕКТР ДЕЙСТВИЯ УЗКИЙ

КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ ИМЕЕТ ДЕЙСТВИЕ НА МЕТИЦИЛЛИНРЕЗИСТЕН-ТНЬЕ ШТАММЫ ЗОЛОТИСТОГО СТАФИЛОКОККА, ЭНТЕРОКОККИ И ВОЗБУДИТЕЛЯ ПСЕВДОМЕМБРАНОЗНОГО КОЛИТА CLOSTRIDIUM DIFFICILE

ВАНКОМИЦИН

ВАНКОМИЦИН (ВАНКОЦИН, ЭДИЦИН)

- Вводят в вену капельно (в течение 1 ч)
- Принимают внутрь при псевдомембранозном колите (не всасывается в кровь)
- Период полуэлиминации 4–6 ч, 75% дозы выводится почками в неизмененном виде
- Препарат 2 или 3 ряда при резистентности к β-лактамам, аминогликозидам, макролидам и при аллергии на β-лактамы
- У детей и беременных применяют только по жизненным показаниям


ВАНКОМИЦИН

ПОБОЧНЫЕ ЭФФЕКТЫ

- ТРОМБОФЛЕБИТ
- КРАПИВНИЦА, ЛИХОРАДКА
- АРТЕРИАЛЬНАЯ ГИПЕРТЕНЗИЯ
- ТАХИКАРДИЯ
- НЕОБРАТИМАЯ ГЛУХОТА
- НЕФРОТОКСИЧНОСТЬ
- ГИПЕРЕМИЯ «СИНДРОМ КРАСНОГО ЧЕЛОВЕКА»

ТЕЙКОПЛАНИН (ТАРГОЦИД)

- ОТЛИЧАЕТСЯ ОТ ВАНКОМИЦИНА БОЛЬШЕЙ ЭФФЕКТИВНОСТЬЮ И ЛУЧШЕЙ ПЕРЕНОСИМОСТЬЮ
- ПЕРИОД ПОЛУЭЛИМИНАЦИИ 40-120 ч
- ВВОДЯТ В МЫШЦЫ И ВЕНУ В ВИДЕ БОЛЮСА