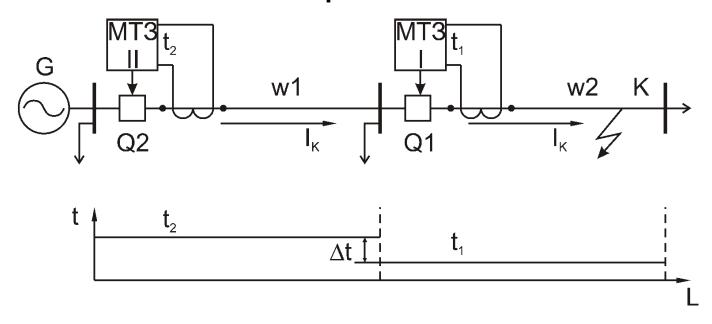

РЕЛЕЙНАЯ ЗАЩИТА И АВТОМАТИКА

TEMA 2

Максимальная токовая защита

Принцип действия токовых защит

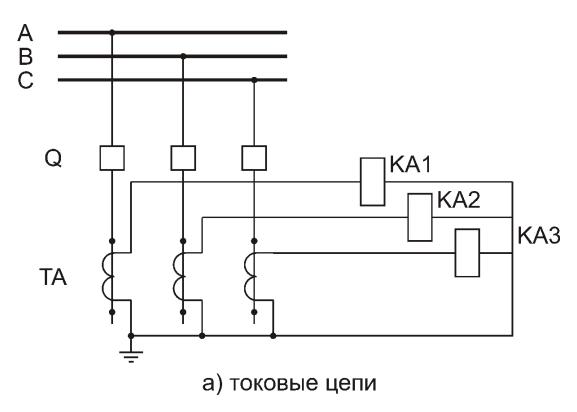


При коротком замыкании ток в линии увеличивается. Этот признак используется для выполнения токовых защит. Максимальная токовая защита (МТЗ) приходит в действие при увеличении тока в фазах линии сверх определенного значения.

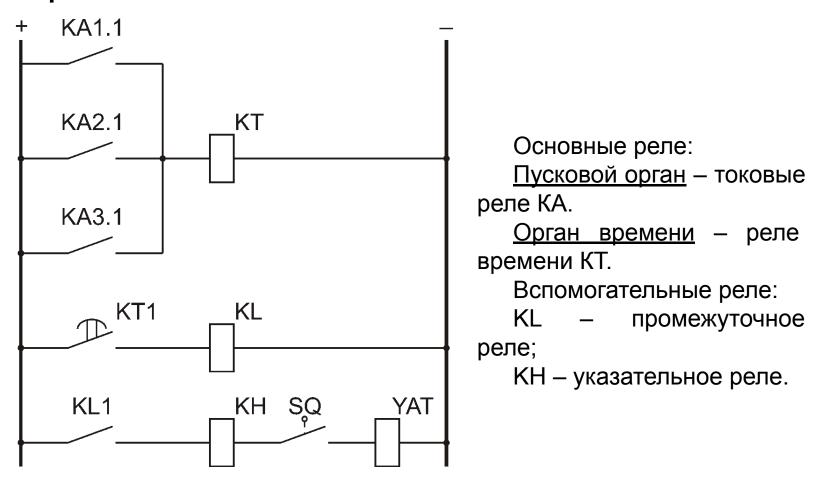
Токовые защиты подразделяются на МТЗ, в которых для обеспечения селективности используется *выдержка времени*, и *токовые отсечки*, где селективность достигается выбором тока срабатывания.

Таким образом, главное отличие между разными типами токовых защит в способе обеспечения селективности.

Защита линий с помощью MT3 с независимой выдержкой времени

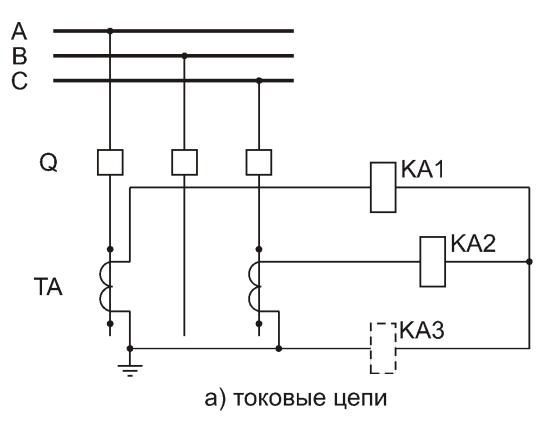


МТЗ – основная защита для воздушных линий с односторонним питанием. МТЗ оснащаются не только ЛЭП, но также и силовые трансформаторы, кабельные линии, мощные двигатели напряжением 6, 10 кВ.

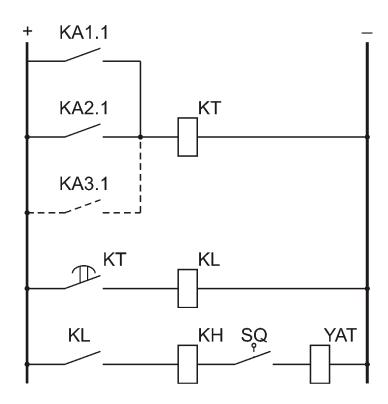

<u>Расположение защиты</u> в начале каждой линии со стороны источника питания.

Схемы защиты

1. Трехфазная схема защиты на постоянном оперативном токе

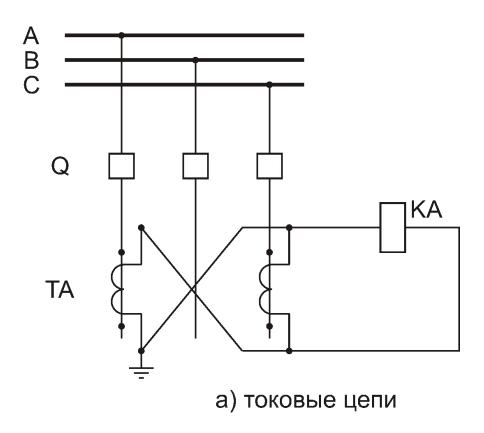


1. Трехфазная схема защиты на постоянном оперативном токе

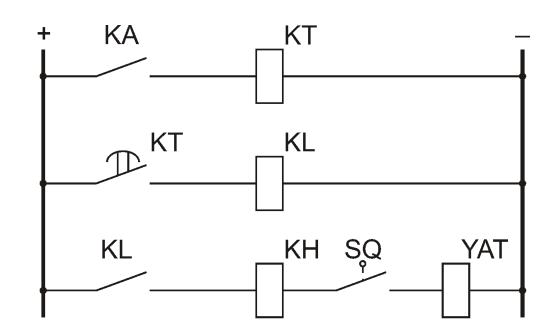


б) цепи оперативного тока

Двухрелейная схема



Двухрелейная схема



б) цепи оперативного тока

Одно-релейная схема

Одно-релейная схема

б) цепи оперативного тока

Выбор тока срабатывания

- Слишком чувствительная защита может привести к неоправданным отключениям.
- Главная задача при выборе тока срабатывания состоит в надежной отстройке защиты от токов нагрузки.

<u>Два условия</u> определения тока срабатывания защиты.

Первое условие. Токовые реле не должны приходить в действие от тока нагрузки:

 $I_{c.3} > I_{H.макс}$ где $I_{c.3}$ – ток срабатывания защиты (наименьший первичный ток в фазе линии, необходимый для действия защиты);

I_{н макс} – максимальный рабочий ток нагрузки.

<u>Второе условие.</u> Токовые реле, сработавшие при КЗ в сети, надёжно возвращаться в исходное положение должны после отключения КЗ при оставшемся в защищаемой линии рабочем токе.

Учет самозапуска двигателей U, I

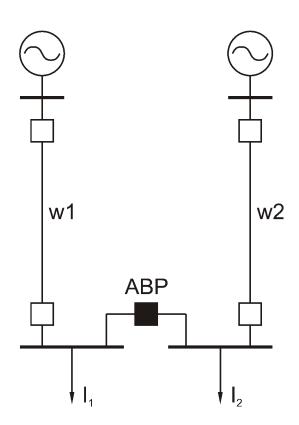
Норм. КЗ Самозапуск режим КЗ двигателей $I_{воз} > k_{_3} I_{_{H.Makc}}$

. Увеличение $\mathbf{I}_{\mathsf{н.макс}}$, вызванное самозапуском двигателей, оценивается коэффициентом запуска \mathbf{k}_{3} .

 $\mathbf{I}_{\text{воз}} = \mathbf{k}_{\text{H}} \mathbf{k}_{\text{3}} \mathbf{I}_{\text{н.макс}},$ где $\mathbf{k}_{\text{H}} - \kappa o \Rightarrow \phi \phi u u u e + m$ надежности, учитывающий возможную погрешность в величине тока возврата реле, $\mathbf{k}_{\text{H}} = 1, 1... 1, 2.$

Ток срабатывания защиты

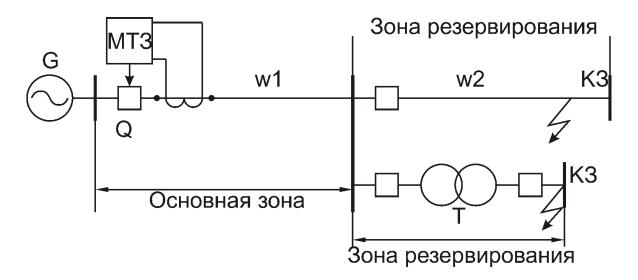
$$k_{eo3} = \frac{I_{eo3}}{I_{c.3}} \Longrightarrow I_{c.3} = \frac{k_{_H}}{k_{_{eo3}}} k_{_3} I_{_{_{H.MARC}}}$$


Вторичный ток срабатывания реле

$$\mathbf{I}_{\mathbf{c.p}} = \mathbf{k}_{\mathbf{cx}} \frac{\mathbf{I}_{\mathbf{c.3}}}{\mathbf{n}_{\mathbf{T}}}$$

Определение величины $I_{\rm H.}$

мак

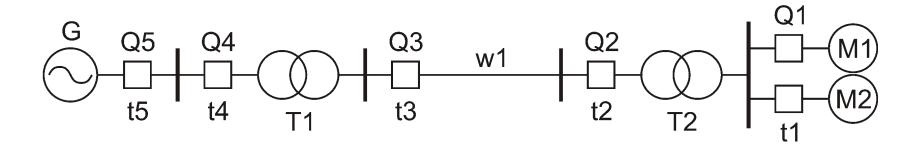


Чувствительность защиты

Ток срабатывания защиты **I**_{с.з} проверяется по *условию чувствительности* защиты:

$$\mathbf{k}_{\mathbf{q}} = \frac{\mathbf{I}_{\kappa.\text{мин}}}{\mathbf{I}_{c.3}}$$

где **І**_{к.мин} — минимальный ток КЗ при повреждении в конце <u>зоны</u> действия защиты как основной, так и резервной.


Значение ${\bf k}_{\bf q}$ для различных типов защит нормируется. В основной зоне ${\bf k}_{\bf q}$ как правило равен 1,5; в зоне резервирования допускается 1,2.

Выдержка времени

Для МТЗ с независимой выдержкой времени выдержка времени защит вычисляется по формуле

$$\mathbf{t}_{\mathrm{BB}(\mathrm{n})} = \mathbf{t}_{\mathrm{BB}(\mathrm{n-1})} + \Delta \mathbf{t}.$$

Расчет начинается от МТ3, установленных у потребителей электроэнергии

$$t_1 = 0$$
; $t_2 = 0.5c$; $t_3 = 1c$; $t_4 = 1.5c$; $t_5 = 2c$.