4.РАСЧЕТ РАБОЧИХ ОРГАНОВ ДЛЯ ВНЕСЕНИЯ УДОБРЕНИЙ

4.1. Технологический расчёт процесса внесения твёрдых органических удобрений (ТОУ)

Исходными данными технологического расчёта являются следующие величины: 1-марка машины; 2-площадь; 3-доза внесения удобрений; 4-вид удобрения.

В агротехнических требованиях к машинам для внесения твёрдых органических удобрений (ТОУ) указываются

РАСЧЁТ ОБЪЕМА УДОБРЕНИЙ В

ДЕНЬ скорость движения, а рабочая ширина разбрасывания указана в технической характеристике конкретной машины.

Рассчитывают потребность в удобрениях Q по формуле $Q = A_y S$ т, (4.1)

где Д - доза внесения удобрений, т/га;

S – площадь, удобряемого поля, га.

Дневная потребность в удобрениях Q_д определяется из соотношения

$$Q_{\partial} = Q / A \tag{4.2}$$

где АС а Ботехно Сеские сроки внесения ТОУ, А = ПР. 8 ИЗВОДИТЕМИ В ФОТИ фактическую часовую производительность агрегата из выражения

 $W_x = \frac{M_y}{t_u} \cdot \tau$

где M_у - масса удобрений в кузове, т;

t - время одного цикла, ч.

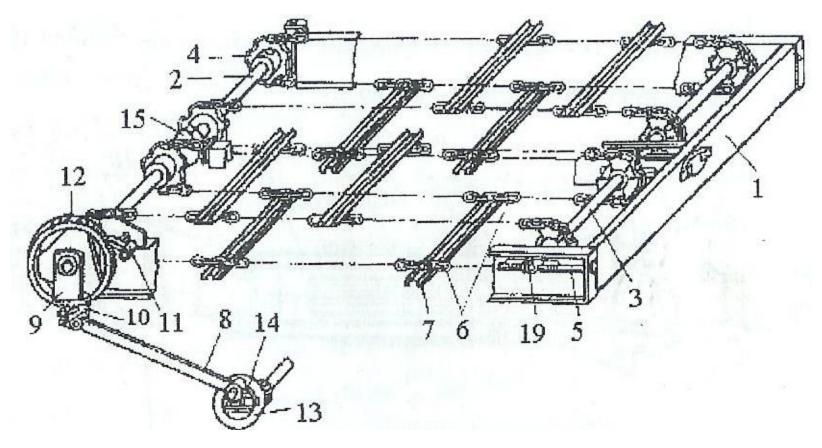
(4.3)

au - коэффициент, учитывающий использование времени на выполнение процесса разбрасывания (ТОУ).

РАСЧЁТ МАССЫ ТОУ В КУЗОВЕ

$$M_{y} = V_{k} \cdot \gamma_{H} \cdot \psi$$
где V_{κ} - объём кузова, м³; (4.4) — объёмная масса ТОУ,т/м³; γ_{κ} - коэффициент, учитывающий за γ_{κ} - объёмная удобрением, = 0,7...0,9 в зависимости от вид γ_{κ} - удобрения и его влажности.

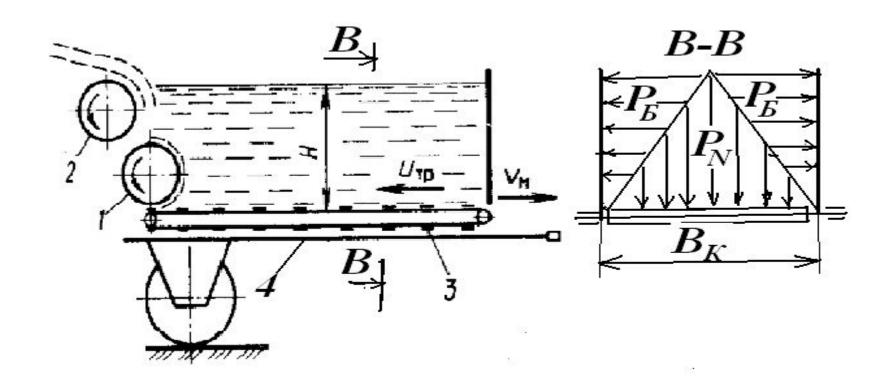
где $t_{\mathcal{U}} = t + t_{\mathcal{B}} + t_{\mathcal{B}} + t_{\mathcal{B}} + t_{\mathcal{B}}$ тде $t_{\mathcal{U}} = t_{\mathcal{B}} + t_{\mathcal{B}}$ разбрасывателя навозом , ч; - время транспортировки навоза до ПоMя, ч; t_P^{-} время разбрасывания навоза , ч ; t_P^{-} время холостого проезда агрегата к месту загрузки кузова навозом, ч.


Время загрузки кузова

 $t_{3A\Gamma} = \frac{M_{y}}{W}$ где у -производительность загрузчика, т/ч.

При использовании перегрузочной технологии определяют производительность транспортного средства по формуле

$$\Pi_{T} = \frac{\Gamma \cdot \eta_{T}}{\Gamma \cdot \eta_{T} + \frac{2L}{V_{CP}} + t_{PA3}}$$


Транспортёр навозоразбрасывателя

1 – брус рамы; 2 и 3 – ведущий и ведомый валы; 4- звёздочка ведущая; 5- болт натяжной; 6- цепь; 7- скребок; 8- шатун; 9- коромысло; 10 и 11 – ведущая и предохранительная собачки; 12- колесо храповое; 13 – корпус кривошипа; 14 – диск с пальцем кривошипа; 15- подшипник опорный.

Рисунок1.4.1-общий вид транспортёра.

СХЕМА КУЗОВНОГО РАЗБРАСЫВАТЕЛЯ ТОУ

1 и 2- нижний и верхний барабаны; 3- транспортёр; 4-кузов.

Рисунок. 3.6.- Схема к расчёту технологических и кинематических параметров рабочих органов

РАСЧЁТ СЕКУНДНОЙ ПОДАЧИ ТОУ

$$q = \rho u_{Tp} B_{\kappa} H \qquad (4.5)$$

При заданной дозе Q внесения удобрений, скорости $\upsilon_{_{\rm M}}$ движения машины и ширине разбрасывания В р секундная подача удобрений $q_{_{\rm S}}$ определяется из выражения

$$q_{3} = Q \cdot B_{p} \cdot V_{M} \tag{4.6}$$

РАСЧЁТ СКОВОСТИ Так как величины В , Н и В _{р.} для конкретного Навозорасы Батемя постоянны, то, чтобы настроить его на заданную дозу Q при определённом значении , нужно изменить и решив полученное выражение относительно $u_{_{TD}}$, найдём требуемую скорость транспортёра

$$u_{\rm Tp} = \frac{Q \cdot B_p \cdot V_{_M}}{\rho \cdot B_{_{\kappa}} \cdot H} \tag{4.7}$$

РЕЖИМ РЕГУЛИРОВАНИЯ ДВИЖЕНИЯ ТРАНСПОРТЁРА

Таким образом, при изменении значения плотности органических удобрений должна изменена настройка скорости движения транспортёра и то. Следует учесть, что транспортёр движется прерывисто. Режим регулирования движения транспортёра находится в широком пределе от 0,006 до 0,06 м/с.

СИЛОВОЙ РАСЧЁТ ТРАНСПОРТЁРА

Общее сопротивление транспортера при продольном перемещении ТОУ к разбрасывающим барабанам определяется из выражения $P_0 = P_x + P_N + P_R + P_T$, (4.8)

где P_{x} - сила сопротивления холостому ходу транспортера ,H ;

 P_N - сила сопротивления от нормального давления ТОУ на дно кузова ,H;

 $P_{\it Б}$ - сила сопротивления от бокового давления ТОУ на стенки кузова ,H;

 $P_{\it T}$ - сила натяжения транспортера ,H.

Сила сопротивления холостому ходу транспортера рассчитывается по формуле

где -Линей -Дох -Линей -Дох -Дох

- транспортера ,кг/м; f- коэффициент трения скребков, цепей и навоза о днище кузова;
- $I_{\rm O}$ общая длина транспортера (рабочая и холостая ветви),м;

g - ускорение свободного падения ,g=9, $24/c^2$

давления навоза на дно кузова определяется из выражения

$$P_{N}=f\gamma B_{K}HLg,$$
 где - плотность навоза, ; , H и L – ширина, выбета и длина кузова , м; B_{K}

Сила сопротивления движению транспортера от бокового давления навоза на стенки кузова определяется по формуле

$$P_{E} = 2f_{E} \cdot \gamma \cdot V_{H} \cdot g, \qquad (4.11)$$

где f_B - коэффициент бокового давления навоза на боковые стенки кузова;

 $V_{H^{-}}$ объём навоза, создающего давление на одну боковую стенку кузора, .

Сила натяжения цепи транспортера

$$P_T = 0.25P_x$$

Мощность ,необходимая для привода (4.12) транспортера определяется из соотношения

$$N_T \frac{k_{\Pi} \cdot P_0 \cdot u_{TP} \cdot C_0}{1000 \cdot \eta_T} \tag{4.13}$$

```
где - коэффициент, учитывающий перегрузку двигателя в момент пуска
транспортера, =1,2...1,25; - скорость пранспортера, м/с;
```

 u_{TP} - коэффициент, учитывающий жесткость цепей: =1,2....1.3 - к.п.д трансмиссии

разбрасывателя ТОУ, принимаемый в пределах 0,6...0,95

РАСЧЁТ РАЗБРАСЫВАЮЩЕГО УСТРОЙСТВА

Разбрасывающее устройство применяют двух видов: с осью вращения, параллельной направления движения и перпендикулярной ему. В первом случае основным рабочим органом при разбрасывании из куч служит ротор, а при разбрасывании из кузова прицепа – барабан. Ротор, как правило, имеет четыре лопасти, диаметром 700...1200 мм и вращается с частотой 320...500 мин⁻¹, дальность полёта удобрений до 12м.

РАСЧЁТ РАЗБРАСЫВАЮЩЕГО БАРАБАНА

Для разбрасывания органических удобрений используют роторные устройства с горизонтальной осью вращения. Технологический процесс их состоит из двух фаз: относительного перемещения частиц по лопасти ротора (барабана, битера) и свободного полёта под действием сообщенной им кинетической энергии (скорости) и силы тяжести.

Во втором случае в качестве основного рабочего органа используют барабан (битер), представляющий собой полую трубу, на которой рабочие элементы (лопатки, лента и т.п.) размещены влево и вправо от её центра по винтовой линии (рис. 4,5 и6) с левой и правой навивками.

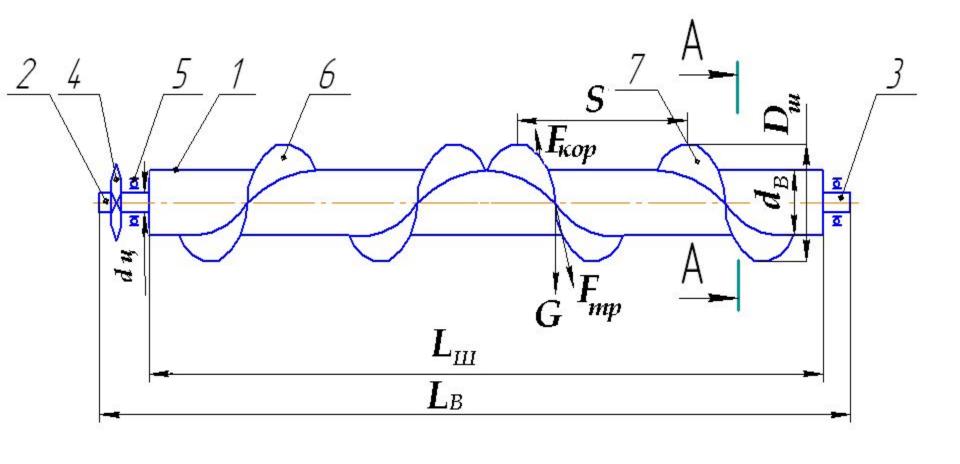


Рисунок 4.-Схема взаимодействия витков барабана с ТОУ

СЕЧЕНИЕ БАРАБАНА

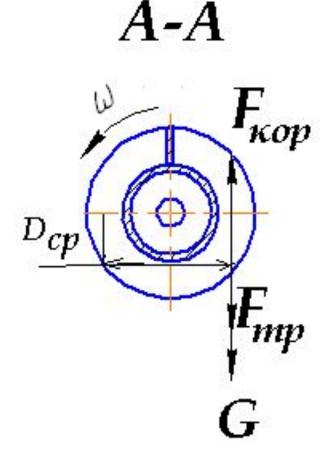
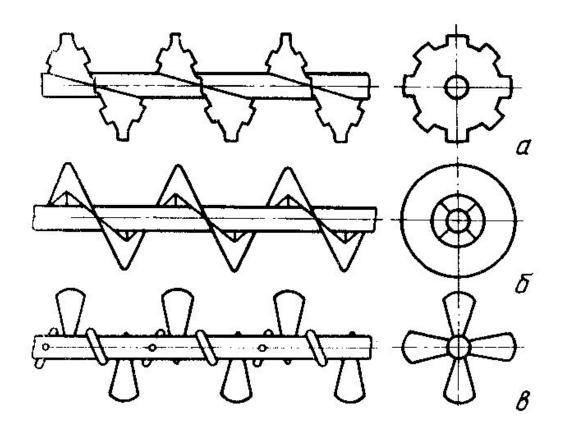
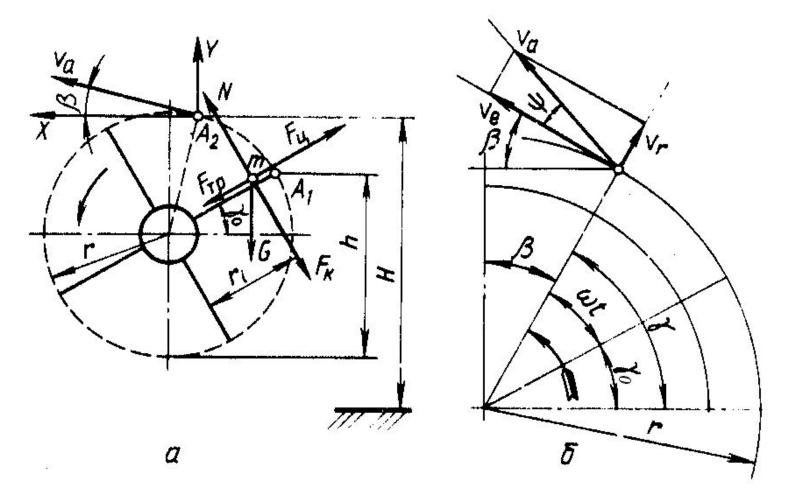



Рисунок 5.-Действие сил в вертикальной плоскости


Типы разбрасывающих барабанов

а – шнеколопастный; б- ленточный; в – лопастный. Рис. 6.- Схемы барабанов

I Іервая фаза начинается с момента выхода лобильнз дыйсувжющия Е. е. нари повородня (рис.6), и характеризуется движением частиц в вертикайыной плоскости вдоль лопасти. При этом на частицу массой т действует сила тяжести G=mg, центробежная сила инерции $F_{u}=m\omega^{2}r_{i}$ Кориолисова сила $F_{k}=2m\omega^{2}r_{i}$ голда трения о пол (3)сила трения о лопасть (4) $F_{mn} = f(mg\cos\omega t + 2m\omega r_i)$

Процесс разбрасывания органических удобрений роторным аппаратом

а- действующие силы; б- схемы движения. Рисунок 7.-Схемы к расчёту процесса разбр.

УСЛОВИЕ ДВИЖЕНИЯ ЧАСТИЦЫ В ПЕРВОМ КВАДРАНТЕ

Условие движения первой частицы в первом квадранте при $\gamma \leq \frac{\pi}{2}$ определяется выражением

$$m\omega^2 r_i - mg\sin\omega t \ge \tag{5}$$

 $\geq f(mg\cos\omega t + 2m\omega V_e)$ где f- коэффициент трения частиц ТОУ о лопасть; - угловая скорость вращения лопасти; ω -относительная скорость частицы у фобрений вдоль лопасти; - радиусы частиц. V_i

РАСЧЁТ СКОРОСТЕЙ ДВИЖЕНИЯ Изатогравнения определяют относительную скорость частицы вдоль лопасти и её конечное знач**е**ние, т.е. при . Дальность разб**р**асырвания удобрений зависит от абсолютной скорости их в момент схода с лопасти. Абсолютная окорость и равна геометрической сумме перейосной (окружной) скорости относительной скор $\psi_{\mathcal{C}}$ ти ωr вдоль лопасти, т.

У навозоразбрасывателей = 4,0-4,2м/с, $V_{\overline{e}}$ 12,0-12,5, = V_a 8-13,2 м/с.

УБРЕХЕДОПАСТИ

$$\psi = arctg \frac{V_r}{V} = 16...19^0$$
 (6) Как видим , значительно меньше и

Как видим , значительно меньше и существенн $_{p}^{k}$ не влияет на скорост $_{e}^{k}$, поэтому для упрощения расчетов можно принять . Чтобы частицы навоза отбрасывали $_{Q}^{k} = V_{e}^{k}$ дальше, они должны сходить с лопасти при условии

$$\gamma_0 = \omega t < 90^0 \,, \tag{7}$$

что зависит от толщины слоя h удобрений: чем он больше, тем больше угол ,

УСЛОВИЕ СХОДА ЧАСТИЦ С

прокастим удобрения начинают сходить с лопасти. Из-за различного расположения частиц удобрений по длине лопасти они будут сходить с неё в процессе поворота на угол которому соответствует дуга существующих конструкций $\theta = 30^{\circ}...35^{\circ}$. Вторая фаза представляет собой движение тела, брошенного со под уплом $\mathcal{B}_{\alpha} = \omega r$ СКОРОСТЬЮ горизонту, где β =90 - $\gamma_0 - \omega t$.

КООРДИНАТЫ ТОЧКИ ПАДЕНИЯ

Уромение движения частиц без учёта сопротивления воздуха в параметрической форме с началом координат в точке A_2 имеют вид $x = V_a t \cos \beta$; $y = V_a t \sin - \frac{gt^2}{2}$ (8)

Так как начало координат расположено на высоте H над поверхностью поля, то в момент падения частицы удобрения на поле ее координата y=-H. Следовательно, время полета t определится из условия:

РАСЧЁТ ВРЕМЕНИ ПОЛЁТА ЧАСТИЦ ТОУ

$$-H = V_a t \sin \beta - \frac{gt^2}{2}$$

Откуда
$$t = \frac{V_a \sin \beta + \sqrt{16 \beta^2 \sin^2 \beta + 2gH}}{t}$$

Так как ,время не может быть отрицательным, то в выражение (10) принято лишь первое значение корня, со знаком «плюс».

РАСЧЁТ ДАЛЬНОСТИ ПОЛЕТА

Нерставиры начение t из выражения (10) в первое параметрическое уравнение, определим дальность полета частицы

$$x = l = \frac{V_a^2 \sin 2\beta}{2g} + \frac{V_a \cos \beta \sqrt{V_a^2 \sin \beta + 2gH}}{g}$$
(11)

Ширина разбрасывания зависит от дальности полёта удобрений и рассчитывается из выражения

$$(12) B_p = 2l + B$$

где
$$l=V_{arepsilon}t$$

УСЛОВИЯ РАБОТЫ

РАЗБРАСЫВАЮЩЕГО УСТРОЙСТВА Навозоразбрасыватели работают надёжно (без забивания), если производительность разбрасывающего устройства превышает секундную подачу транспортёра, т. е. $q \ge q_{mp}$

тде z-число разбрасывающих ломаток; b-ширина полосы навоза, захватываемой лопаткой); h-высота захвата массы (высота лопатки, ленты и т.п.); d-диаметр барабана; n-частота вращения барабана; H-толщина слоя удобрений в кузове; u_{тр}-скорость транспортёра.

РАСЧЁТ ЧАСТОТЫ ВРАЩЕНИЯ РАЗБРАСЫВАЮЩЕГО БАРАБАНА

Из выражения (13) уточняем частоту вращения разбрасывающего барабана

$$n \ge \frac{HBu_{mp}}{zbh\pi d} \tag{14}$$

У существующих навозоразбрасывателей при H=1,6-1,7 м, tп=0,16...0,17 с, l=1,6...1,7 м, В p=5,0...6,2 м, т.е. В р примерно в 3 раза больше, чем В к.

РАСЧЕТ ОПТИМАЛЬНОЙ ЧАСТОТЫ ВРАЩЕНИЯ БАРАБАНА

Оптимальную частоту вращения разбрасывающего барабана (битера) с позиции качественного разбрасывания с учетом наименьшего уплотнения навоза на поверхности поля определяют из условия дальности полета частиц, т. е.

$$n = \frac{30}{\pi \cdot r} \sqrt{\frac{2Lg}{\sin 2\alpha}},$$

где r – радиус барабана,м;

РАСЧЕТ ДО ИЗМЕЛЬЧАЮЩЕГО БАРАБАНА

Отличительной особенностью расчета нижнего барабана состоит в определении силы резания. Нормальная сила $N=q\Delta S$ (16)

где q-удельное давление, H/м;

 ΔS -длина нагруженной части витка барабана ,м ;

Тангенциальная сила
$$T = fN$$
 (17)

Сила резания
$$P_{PE3} = (N+T)n_B$$

(18)

Момент резания
$$M_{PE3} = q \cdot L_{\scriptscriptstyle E} \cdot r$$
 (19)

Вращающий момен
$$M_{BP} = \frac{5M_{PE3}}{3}$$
 (20)

Мощность необходимая на привод до измельчающего барабана

$$N_{\mathcal{A}} = \frac{M_{BP}\pi n}{30} \tag{21}$$

РАСЧЕТ РАБОЧИХ ОРГАНОВ ВНЕСЕНИЯ МИНЕРАЛЬНЫХ

Разорасывающие диски с вертикальными осями вращения снабжены плоскими или желобообразными лопастями, расположенными радиально или с отклонением на угол ±10...15°. Рабочий процесс такого аппарата состоит из двух фаз:

Первая фаза, т.е. относительное перемещение гранулы по диску, начинается с момента его падения на диск и включает два периода: движение по диску до встречи с лопастью и движение после встречи с ней.

Уеловие движения удобрений до вертерие с люпистыю выражается неравенством

 $m \omega^2 r > f m g, или$ (1) где m –масса частицудобрений;

- угловая скорость лопасти; r-радиус Мопасти;

f-коэффициент трения частицы о лопасть.

Так как $\omega = \pi n/30$, то необходимая для соблюдения этого условия частота вращения диска

вращения диска
$$n > \frac{30\omega}{\pi} = (30\sqrt{\frac{fg}{r}}/\pi)$$
 (2)

ДВИЖЕНИЕ ГРАНУЛЫ ПО НЕКОТОРОЙ КРИВОЙ

Согласно экспериментальным данным упавшая на вращающийся диск гранула движется по некоторой кривой, близкой к логарифмической спирали, пока не встретится с лопастью(рис.1). После этого начинается второй период движения по диску – вдоль лопасти. Благодаря лопастям изменяется направление движения гранул, возрастает их скорость, увеличивается дальность полета. При движении вдоль лопасти на гранулу массой т действуют центробежная сила

$$F_u = m\omega^2 r_i \qquad (3)$$

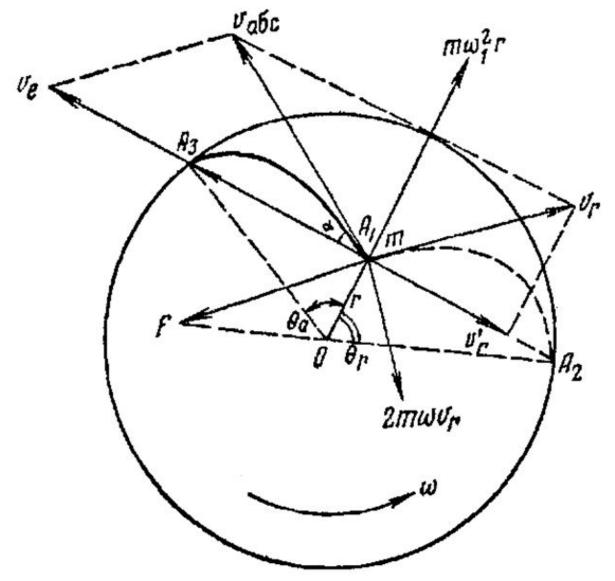


Рисунок1.- Движение частицы удобрения на диске центробежного разбрасывающего аппарата.

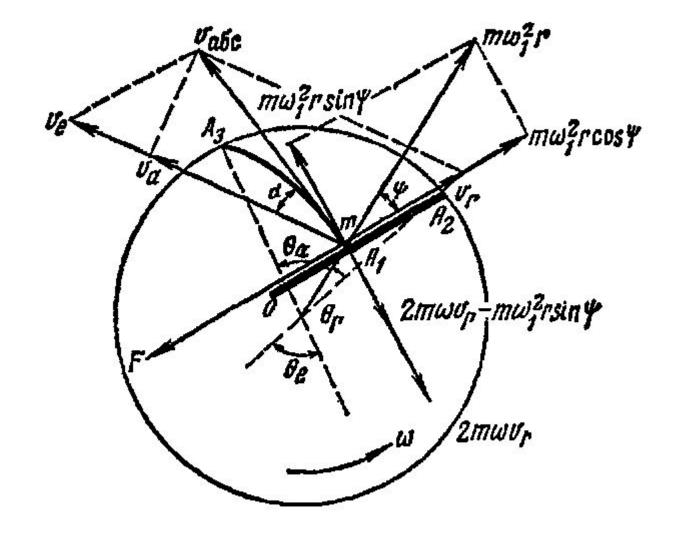
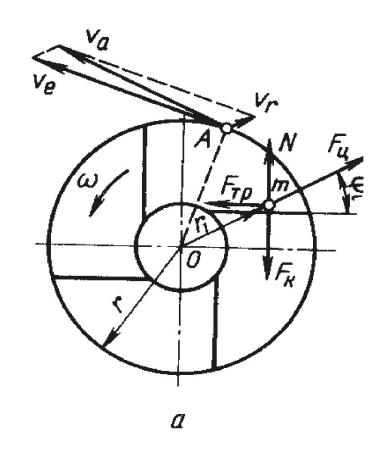



Рис. 321. Движение частицы удобрения по лопатке дискового центробежного разбрасывающего аппарата.

а – силы действующие на гранулу

Схемы к расчёту процесса рассеивания минеральных удобрений дисковым

РАСЧЁТ СИЛ, ДЕЙСТВУЮЩИХ НА ГРАНУЛУ

Сила Кориолиса

$$F_k = 2m\omega V_e \tag{4}$$

Сила трения о диск,

$$F_1 = fmg \tag{5}$$

Сила трения о лопасть

$$F_2 = f(2m\omega V_e - m\omega^2 r_i \sin \psi) \quad (6)$$

ОБОЗНАЧЕНИЕ ВЕЛИЧИН ВЪІРАЖЕНИЯ (6)

ВЫРАЖЕНИЯ (6) e- относительная скорость скольжения гранулы вдоль лопасти; f – коэффициент трения гранулы о диск и лопасть; ψ – угол отклонения лопасти от радиуса. Угол ψ ≠ const, если лопасть прямолинейна; Угол ψ = const, если лопасть очерчена по логарифмической спирали полюсом, совпадающим с осью О вращения диска. Кориолисовое ускорение 2ω перпендикулярно к переносной eнаправлено в сторону ω , а сила 2m k_{ω} обратную сторону.

АБСОЛЮТНАЯ СКОРОСТЬ ГРАНУЛЫ В МОМЕНТ СХОДА С ЛОПАСТИ

Абсолютная скорость в момент схода гранулы с лопасти

$$V_{a} = \sqrt{(V_{e} \pm V_{r} \sin \psi_{k})^{2} + (V_{r} \cos \psi_{k})^{2}}$$
 (7)

где ψ_{κ} – конечное значение угла между лопастью и радиусом

В выражении (7) перед $V_r \sin \psi_k$ знак «+», если лопасти отклонены вперёд, и «-», если отклонены назад.

При радиальном положении лопастей $\Psi_{\kappa} = 0$ и абсолютная скорость

$$V_a = \sqrt{V_e^2 + V_r^2} \tag{8}$$

Однако $V_e >> V_r$ и поэтому влияние на относительно невелико и при практических расчетах им можно пренебречь, приняв

$$V_a \approx V_e$$

СИЛЫ, ДЕЙСТВУЮЩИЕ НА ГРАНУЛУ В МОМЕНТ СХОДА С ЛОПАСТИ

Вторая фаза представляет собой движение тела, брошенного со ,направленной скоростью по горизонтали (рис.2). При этом на гранулу будут действовать сила G = mg тяжести и сопротивление воздуха, $R_{xy} = mk_n V$

где k_n – коэффициент парусности.

Силы, действующие на гранулу при сходе с лопасти

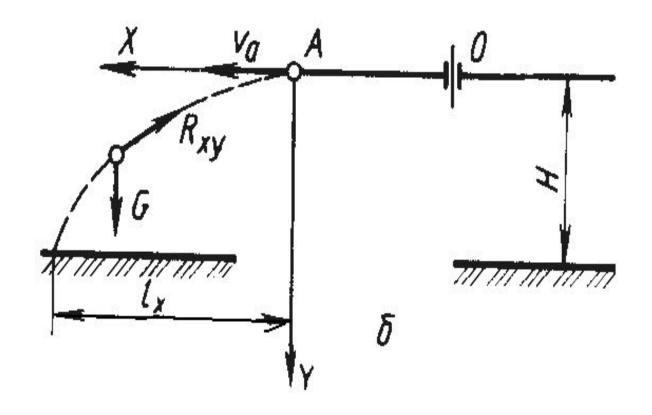


Рисунок 2.-Схема к определению дальности полёта гранулы при сходе с лопасти (вид сбоку)

РАСЧЕТ ДАЛЬНОСТИ ПОЛЕТА ГРАНУЛ

Дальность полета, следовательно и ширину захвата можно определить из уравнения траектории полета в параметрической форме $x = V_a \cdot t$ (1)

$$x = V_a \cdot t \tag{1}$$

$$y = gt^2 / 2 \tag{2}$$

Подставив во второе уравнение у=Н (рис.2.), находим время $t = \sqrt{\frac{2H}{g}}$.Подставив значение t в первое уравнение, определим дальность полета х.

$$x = l_x = \omega r \sqrt{2H/g}$$
 (3)

СПОСОБЫ УВЕЛИЧЕНИЯ ДАЛЬНОСТИ ПОЛЕТА ГРАНУЛ

Для увеличения дальности полета гранул в некоторых конструкциях применяют конические диски с углом между образующей конуса и горизонталью 3.... Так как гранулы поступают на диск потоком δ^0 пределенной ширины, то (рис. 3.) для различных гранул будет неодинаковым. Из-за разброса значений гранулы сходят с дИска на некоторой дуге а их распределение по поверхности поля фиксируется пучком траекторий. Соответствующий этой дуге центральный угол θ $= 60...150^{\circ}$.

сверху)

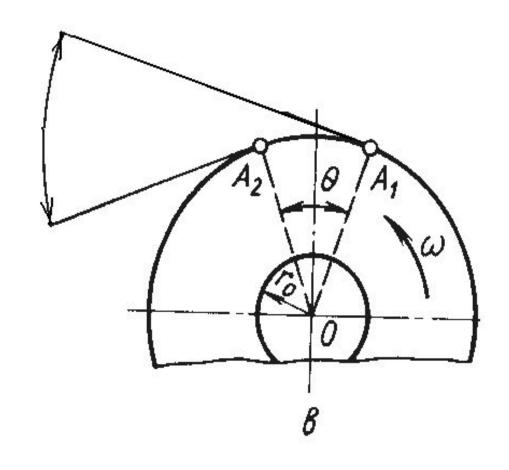


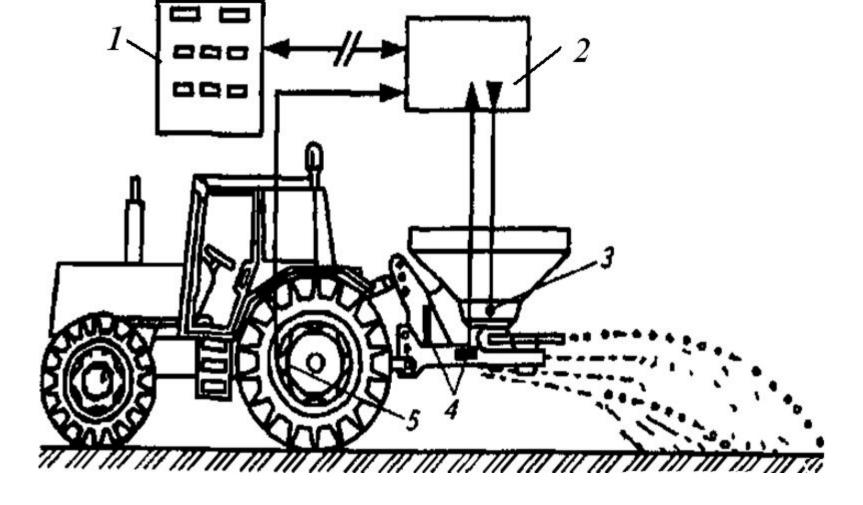
Рисунок 3.- Схема к расчёту процесса разбрасывания гранул дисковым аппаратом

РАСЧЁТ ШИРИНЫ РАССЕИВАНИЯ ГРАНУЛ 2-X ДИСК.

Для двухдискового аппарата ширина рассеивания рассчитывается из выражения

$$B_p = 2\omega r \sqrt{\frac{2H}{g}} + A \tag{4}$$

где A ≈ (2.4…2.6) r – расстояние между центрами дисков, м.


В известных машинах 2r = 0.35...0.70 м, ψ = 0...±15°, n = 400...60 Ω_{uH}^{-1} , V_e = 6...14 м/с, H = 0.45...0.65 м, l_x = 2...4 м.

ОСНОВНЫЕ ТЕНДЕНЦИИ РАЗВИТИЯ КОНСТРУКЦИЙ МАШИН ДЛЯ ВНЕСЕНИЯ УДОБРЕНИЙ

В настоящее время около 80 % твердых минеральных удобрений вносится центробежными распределительными рабочими органами, преимущественно двухдисковыми, которые обладают высокой производительностью. Наблюдается сохранение тенденции увеличения ширины их захвата, которая находится в пределах 14...48 M.

Особенностью современного периода развития этой группы машин является разработка конструкций, позволяющих вносить удобрения в соответствии с потребностями растений. Работы ве дутся в двух направлениях: локальное внесение удобрений с использованием системы координатного земледелия и внесение удобрений (на первом этапе преимущественно азотных)

в реальном масштабе времени на основе показаний оптических датчиков или специальных лазерных систем. Для точного дозирования удобрений и обеспечения оптимальной работы машин в комбинации с компьютерным управлением используются автоматические взвешивающие устройства (рис. 4).

1-компьютер; 2 – устройство распределительное; 3 - разбрасыватель удобрений; 4,5 – датчики сенсорные

Рисунок 4.-Схема разбрасывателя, оборудованного системой GPS

Наиболее простые из них регистрируют только содержание бункера разбрасывателя при остановке агрегата. Наряду с этим имеются системы, которые могут осуществлять процесс непрерывного взвешивания удобрений во время движения и рассчитывать норму внесения в текущем режиме.

В этом случае в компьютер достаточно ввести ширину захвата и требуемое количество удобрений на 1 га.

Компьютер также подает предупредительный сигнал, если заданная норма внесения недосягаема (например, при слишком высокой скорости движения или почти пустом бункере). Такие интегрированные взвешивающие системы наиболее оптимальны для локального внесения удобрений и нового развивающегося направления

 координатного земледелия с использованием спутниковых навигационных систем. Они отличаются только числом и размещением взвешивающих элементов, определяют массу загружаемых удобрений и соответственно изменение массы удобрений при их внесении.

У разбрасывателей с гидроприводом разбрасывающих дисков существует прямая связь между приводным моментом дисков и потоком удобрений, которая позволяет корректировать норму расхода удобрений, снижая давление в гидромоторе.

Для определения локальной потребности в азоте успешно применяют оптические сенсоры. Они определяют в отраженных сол нечных лучах спектральную рефлексию растений. В зависимости от результатов измерений производится настройка разбрасывателя на соответствующее дозирование. Наряду с этим предлагаются также лазерные системы, которые вызывают свечение (флюоресценцию) в листьях растений, независимо от времени суток и по годных условий определяют

содержание азота в растениях бескон тактным способом и позволяют управлять нормой внесения удобрений в реальном масштабе времени.

Для двухдисковых разбрасывателей применяются взвешивающие системы, управляющие двумя дозирующими заслонками одновременно. В последние годы стали появляться такие системы, которые позволяют измерять и подавать удобрения отдельно на каждый разбрасывающий диск.

Автоматические взвешивающие системы используются и в конструкции широкозахватных разбрасывателей минеральных удобрений, работающих по принципу принудительного дозирования. При этом объем потока устанавливается подачей транспортера и размером пропускного отверстия.

Автоматические взвешивающие системы используются и в конструкции широкозахватных разбрасывателей минеральных удобрений, работающих по принципу принудительного дозирования. При этом объем потока устанавливается подачей транспортера и размером пропускного отверстия.

Автоматические взвешивающие системы используются и в конструкции широкозахватных разбрасывателей минеральных удобрений, работающих по принципу принудительного дозирования. При этом объем потока устанавливается подачей транспортера и размером пропускного отверстия.

Разбрасыватели отличаются высокой полезной нагрузкой благодаря незначительной собственной массе;

наличием прочного бункера с боковым усилением, ленточного транспортера с автоматическим управлением, двух магистральной пневматической тормозной системы для скоростей 25, 40 и 48 км/ч; наличием тормозов и автоматики заднего хода, подрессоренной ходовой части, подрессоренных и регулируемых по высоте дышл, разнообразной номенклатурой низкого давления. Управление разбрасывателем осуществляется с помощью компьютера, который регулирует норму внесения удобрений и может использоваться

как счетчик обработанной площади. Конструктивными особенностями являются наличие двойного воронкообразного бункера с откидными решетками для отделения примесей; высокопроизводительных мешалок гидравлического дистанционного управления отдельными шиберными заслонками;

бесступенчатой регулировки норм внесения удобрений и ее контроля с помощью специального счетного диска; телескопического карданного вала; воз можности управления 4, 6 и 8-рядным устройством для точного поверхностного внесения удобрений, загрузочного шнека, разнообразных устройств для распределения удобрений на границе участков и краев