
Collision Detection on the
GPU

Mike Donovan
CIS 665
Summer 2009

Overview

■ Quick Background
■ CPU Methods
■ CULLIDE
■ RCULLIDE
■ QCULLIDE
■ CUDA Methods

Background

■ Need to find collisions for lots of
reasons
⚪ Physics engines
⚪ Seeing if a projectile hits an object
⚪ Ray casting
⚪ Game engines
⚪ Etc…

Background

■ Broad phase:
⚪ Looks at entire scene
⚪ Looks at proxy geometry (bounding

shapes)
⚪ Determines if two objects may intersect
⚪ Needs to be very fast

Background

■ Narrow phase:
⚪ Looks at pairs of objects flagged by broad

phase
⚪ Looks at the actual geometry of an object
⚪ Determines if objects are truly

intersecting
⚪ Generally slower

Background

■ Resolution
⚪ Compute forces according to the contact

points returned from the narrow phase
⚪ Can be non trivial if there are multiple

contact points
⚪ Returns resulting forces to be added to

each body

CPU Methods

■ Brute Force
⚪ Check every object against every other

■ N(N-1)/2 tests O(N²)
■ Sweep and Prune

■ Average case: O(N log N)
■ Worst case: O(N²)

■ Spatial Subdivisions
■ Average case: O(N log N)
■ Worst case: O(N²)

Sweep and Prune
■ Bounding

volume is
projected onto x,
y, z axis

■ Determine
collision interval
for each object
[bi, ei]

■ Two objects
who’s collision
intervals do not
overlap can not
collide

O1

O3

O2

Sorting Axis
B1 B3 E1 B2 E3 E2

Spatial Subdivisions

1 2

3 4

5 6

7 8

Images from pg 699, 700 GPU Gems III

O1

O2

O3

O4
1 2 3 4

5 6 7 8

Example

CULLIDE

■ Came out of Dinesh’s group at UNC in
2003

■ Uses graphics hardware to do a
broad-narrow phase hybrid

■ No shader languages

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

• Overview
• Pruning Algorithm
• Implementation and Results
• Conclusions and Future Work

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

• Overview
• Pruning Algorithm
• Implementation and Results
• Conclusions and Future Work

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overview

• Potentially Colliding Set (PCS)
computation

• Exact collision tests on the PCS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Algorithm

Object
Level

Pruning

Sub-object
Level

Pruning
Exact Tests

GPU based PCS
computation

Using CPU

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Potentially Colliding Set (PCS)

PCS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Potentially Colliding Set (PCS)

PCS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

• Problem Overview
• Overview
• Pruning Algorithm
• Implementation and Results
• Conclusions and Future Work

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Algorithm

Object
Level

Pruning

Sub-object
Level

Pruning
Exact Tests

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Visibility Computations

 Lemma 1: An object O does not
collide with a set of objects S if O is
fully visible with respect to S
• Utilize visibility for PCS computation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

set S

Collision Detection using
Visibility Computations

Fully Visible
Object O

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Pruning

 Lemma 2: Given n objects
O1,O2,…,On , an object Oi does not
belong to PCS if it does not
collide with O1,…,Oi-1,Oi+1,…,On

• Prune objects that do not collide

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Pruning

O1 O2 … Oi-1 Oi Oi+1 … On-1 OnO1 O2 … Oi-1 Oi Oi+1 … On-1 OnO1 O2 … Oi-1 Oi Oi+1 … On-1 On

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Pruning

O1 O2 … Oi-1 Oi

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Pruning

 Oi Oi+1 … On-1 On

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation

• Each object tested against all
objects but itself

• Naive algorithm is O(n2)
• Linear time algorithm

• Uses two pass rendering approach
• Conservative solution

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation: First Pass

O1 O2 … Oi-1 Oi Oi+1 … On-1 On

Render

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation: First Pass

Fully Visible?

Render

O1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation: First Pass

Fully Visible?

Render

O1 O2
Yes. Does not
collide with
O1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

O1 O2 … Oi-1 Oi

PCS Computation: First Pass

Fully Visible?

Render Yes. Does not
collide with
O1,O2,…,Oi-1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation: First Pass

O1 O2 … Oi-1 Oi Oi+1 … On-1 On

Render

Fully Visible?

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation: Second Pass

O1 O2 … Oi-1 Oi Oi+1 … On-1 On

Render

 On

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation: Second Pass

Render

Fully Visible?

 On

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation: Second Pass

Render

Fully Visible?

On-1 On

Yes. Does not
collide with On

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation: Second Pass

Render

Fully Visible?

Oi Oi+1 … On-1 On

Yes. Does not
collide with
Oi+1,…,On-1,On

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation: Second Pass

Render

Fully Visible?

O1 O2 … Oi-1 Oi Oi+1 … On-1 On

Yes. Does not
collide with
O1,…,On-1,On

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation

O1 O2 … Oi-1 Oi Oi+1 … On-1 On

Fully VisibleFully Visible

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation

O1 O2 O3 … Oi-1 Oi Oi+1 … On-2 On-1 On

O1 O3 … Oi-1 Oi+1 … On-1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Example
O1

O2

O3
O4

Scene with 4 objects
O1and O2 collide
O3, O4 do not collide

Initial PCS = { O1,O2,O3,O4 }

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

O3

O1

First Pass

O2

Order of rendering: O1 O4

O3

Fully Visible

O1

Fully Visible

O4O4

Fully Visible

Not Fully Visible

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Second Pass

O1

O3

O2O2

Fully Visible

Order of rendering: O4 O1
O4O4

Fully Visible

O3

Fully Visible

Not Fully Visible

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

After two passes
O1

O2

O3
O4

Fully Visible

Fully Visible

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Potential Colliding Set
O1

O2

PCS ={O1,O2}

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Algorithm

Object
Level

Pruning

Sub-object
 Level

Pruning
Exact Tests

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overlap Localization

• Each object is composed of
sub-objects

• We are given n objects O1,…,On
• Compute sub-objects of an object Oi

that overlap with sub-objects of
other objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overlap Localization

• Our solution
• Test if each sub-object of Oi overlaps with

sub-objects of O1,..Oi-1
• Test if each sub-object of Oi overlaps with

sub-objects of Oi+1,...,On

• Linear time algorithm
• Extend the two pass approach

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overlap Localization

O1 O2 … Oi-1 Oi Oi+1 … On-1 On

PCS

Sub-objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overlap Localization: First Pass

O1 O2 … Oi-1 Oi Oi+1 … On-1 On

Render sub-objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overlap Localization: First Pass

O1 O2 … Oi-1 Oi

Rendered
sub-objects

Render sub-objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overlap Localization: First Pass

O1 O2 … Oi-1

Fully Visible?Rendered
sub-objects

Render sub-objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overlap Localization: First Pass

O1 O2 … Oi-1

Fully Visible?Rendered
sub-objects

Render sub-objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overlap Localization: First Pass

Rendered
sub-objects

O1 O2 … Oi-1

Fully Visible?

Yes. Does not
collides with
sub-objects of
O1,O2,…,Oi-1

Render sub-objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overlap Localization: First Pass

Rendered
sub-objects

O1 O2 … Oi-1

Fully Visible?

Avoids
self-collisions!

Render sub-objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overlap Localization: First Pass

O1 O2 … Oi-1 Oi

Rendered
sub-objects

Render sub-objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overlap Localization: First Pass

O1 O2 … Oi-1 Oi Oi+1 … On-1 On

Rendered
sub-objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overlap Localization: Second
Pass

O1 O2 … Oi-1 Oi Oi+1 … On-1 On

Render sub-objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overlap Localization

O1 O2 … Oi-1 Oi Oi+1 … On-1 On

Sub-objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Potential Colliding Set
O1

O2

PCS = {O1,O2}

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

O1

Sub-objects

O2

PCS = sub-objects of {O1,O2}

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

First Pass

Rendering order: Sub-objects of O1 O2

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Fully Visible
First Pass

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Fully Visible First Pass

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Fully Visible
Fully Visible

Not Fully Visible
First Pass

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Fully Visible
Fully Visible

Fully Visible

First Pass

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Fully Visible
Fully Visible

Fully Visible

First Pass

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Fully Visible
Fully Visible

Fully Visible

Fully Visible

First Pass

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Second Pass

Rendering order: Sub-objects of O2 O1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Fully Visible

Second Pass

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Fully Visible

Second Pass

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Fully Visible
Second Pass

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Not Fully Visible
Fully Visible

Fully Visible

Fully Visible

Second Pass

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Fully Visible

Fully Visible

Fully Visible

Fully Visible
Second Pass

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Fully Visible

Fully Visible

Fully Visible

After two
passes

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Algorithm

Object
Level

Pruning

Sub-object
level

Pruning
Exact Tests

Exact Overlap
tests using CPU

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Visibility Queries

• We require a query
• Tests if a primitive is fully visible or not

• Current hardware supports
occlusion queries
• Test if a primitive is visible or not

• Our solution
• Change the sign of depth function

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Visibility Queries

Depth function
GEQUAL LESS

All fragments Pass FailPass
Fail

Fail
PassFail PassFail

Query not
supported

Occlusion
query

•Examples - HP_Occlusion_test, NV_occlusion_query

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Bandwidth Analysis

• Read back only integer
identifiers
• Independent of screen resolution

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Optimizations

• First use AABBs as object
bounding volume

• Use orthographic views for
pruning

• Prune using original objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Advantages

• No coherence
• No assumptions on motion of

objects
• Works on generic models
• A fast pruning algorithm
• No frame-buffer readbacks

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Limitations

• No distance or penetration depth
information

• Resolution issues
• No self-collisions
• Culling performance varies with

relative configurations

Assumptions

■ Makes assumptions that their
algorithm will get faster as hardware
improves.

■ Luckily they were right

RCULLIDE

■ An improvement on CULLIDE in 2004
■ Resolves issue of screen resolution

precision

Overview

■ A main issue with
CULLIDE was the
fact that it wasn’t
reliable

■ Collisions could
easily be missed
due to screen
resolution

Overview

■ 3 kinds of error associated with visibility
based overlap
⚪ Perspective error

■ Strange shapes from the transformation
⚪ Sampling error

■ Pixel resolution isn’t high enough
⚪ Depth buffer precision error

■ If distance between primitives is less than the depth
buffer resolution, we will get incorrect results from our
visibility query

Reliable Queries

■ The three errors cause the following:
⚪ A fragment to not be rasterized
⚪ A fragment is generated but not sampled

where interference occurs
⚪ A fragment is generated and sampled

where the interference occurs but the
precision of the buffer is not sufficient

Reliable Queries

■ Use “fat” triangles
⚪ Generate 2 fragments for each pixel touched by

a triangle (no matter how little it is in the pixel)
⚪ For each pixel touched by the triangle, the depth

of the 2 fragments must bound the depth of all
points of the triangle in that pixel

■ Causes method to become more
conservative (read: slower) but much more
accurate

Minkowski Sum

■ Scary name…easy math

A = { (1, 0), (0, 1), (0, −1)}
B = { (0, 0), (1, 1), (1, −1)}

A + B = { (1, 0), (2, 1), (2, −1), (0, 1), (1, 2), (1, 0), (0, −1), (1, 0), (1, −2)}

Reliable Queries

■ In practice, we use the Minkowski sum of a
bounding cube B and the triangle T

■ B = max(2dx, 2dy, 2dz) where dx,y,z are
pixel dimensions

■ If uniform supersampling is known to occur
on the card, we can reduce the size of B
⚪ We need B to cover at least 1 sampling point for

the triangle it bounds

Reliable Queries

■ Cubes only work for z-axis projections so in practice
use a bounding sphere of radius sqrt(3)p/2

Bounding Offset

■ So far we’ve just
dealt with single
triangles but we
need whole objects

■ This is done using a
Union of
Object-oriented
Bounding
Boxes(UOBB)

Algorithm

Improvement over CULLIDE

Performance

■ Still runs faster than CPU
implementations

■ 3x slower than CULLIDE due to
bounding box rasterization vs triangle
rasterization

QCULLIDE

■ Extends CULLIDE to handle self
collisions in complex meshes

■ All running in real time

Self Collision Culling

■ Note that only intersecting triangles
that don’t share a vertex or edge are
considered colliding

Self Collision Culling

■ Algorithm
⚪ Include all potentially colliding primitives

and PCS where each primitive is a
triangle

⚪ Perform the visibility test to see if a
triangle is penetrating any other

⚪ If completely visible, the object is not
colliding

Q-CULLIDE

■ Sets
⚪ BFV – Objects fully visible in both passes

and are pruned from the PCS
⚪ FFV – Fully visible in only the first pass
⚪ SFV – Fully visible in only the second

pass
⚪ NFV – Not fully visible in both passes

Q-CULLIDE

■ Properties of sets
⚪ FFV and SFV are collision free

■ No object in FFV collides with any other in
FFV…same for SFV

⚪ If an object is in FFV and is fully visible in
the 2nd pass of the algorithm, we can
prune it and vice versa

Algorithm

Algorithm

What’s Happening

Improvement Over CULLIDE

Improvements Over CULLIDE

■ Sends an order of magnitude less
collisions to the CPU than CULLIDE

Spatial Subdivision
□ Partition space

into uniform grid

□ Grid cell is at least
as large as largest
object

□ Each cell contains
list of each object
whose centroid is
in the cell

□ Collision tests are
performed
between objects
who are in same
cell or adjacent
cells

1 2

3 4

5 6

7 8

Images from pg 699, 700 GPU Gems III

O1

O2

O3

O4

Implementation:
1. Create list of object IDs along

with hashing of cell IDs in which
they reside

2. Sort list by cell ID
3. Traverse swaths of identical cell

IDs
4. Perform collision tests on all

objects that share same cell ID

1 2 3 4

5 6 7 8

Example

Parallel Spatial Subdivision
□ Complications:

1. Single object can be involved in multiple
collision tests

2. Need to prevent multiple threads updating the
state of an object at the same time

Ways to solve this?

Guaranteed Individual Collision
Tests
□ Prove: No two cells updated in parallel may

contain the same object that is being updated
■ Constraints
1. Each cell is as large as the bounding volume of

the largest object
2. Each cell processed in parallel must be separated

by each other cell by at least one intervening cell
■ In 2d this takes _____ number of passes
■ In 3d this takes _____ number of passes

4

8

Example of Parallel Spatial Subdivision

O1

O2

O3

O4
1 2 1 2

3 4 3 4
O1

O2

O3

O4
1 2 1 2

3 4 3 4

Avoiding Extra Collision Testing
1. Associate each object a set of control bits to

test where its centroid resides
2. Scale the bounding sphere of each object by

sqrt(2) to ensure the grid cell is at least 1.5
times larger than the largest object

1 2 1 2

3 4 3 4

Case 1
Case 2

Implementing in CUDA
□ Store list of object IDs, cell IDs in device

memory
□ Build the list of cell IDs from object’s

bounding boxes
□ Sorting list from previous step
□ Build an index table to traverse the sorted list
□ Schedule pairs of objects for narrow phase

collision detection

Initialization
Cell ID Array

OBJ 1 Cell ID 1
OBJ 1 Cell ID 2
OBJ 1 Cell ID 3
OBJ 1 Cell ID 4
OBJ 2 Cell ID 1
OBJ 2 Cell ID 2
OBJ 2 Cell ID 3
OBJ 2 Cell ID 4
.
.
.

Object ID Array
OBJ 1 ID, Control Bits
OBJ 1 ID, Control Bits
OBJ 1 ID, Control Bits
OBJ 1 ID, Control Bits
OBJ 2 ID, Control Bits
OBJ 2 ID, Control Bits
OBJ 2 ID, Control Bits
OBJ 2 ID, Control Bits
.
.
.

Construct the Cell ID Array
Host Cells (H – Cells)

Contain the centroid of the object

Phantom Cells (P-Cells)
Overlap with bounding volume but do not contain
the centroid

H-Cell Hash = (pos.x / CELLSIZE) << XSHIFT) |
 (pos.y / CELLSIZE) << YSHIFT) |
 (pos.z / CELLSIZE) << ZSHIFT)

P P P

P H P

P P P

P-Cells – Test the 3d-1 cells surrounding the H cell
There can be as many as 2d-1 P cells

Sorting the Cell ID Array
□ What we want:

■ Sorted by Cell ID
■ H cells of an ID occur before P cells of an ID

□ Starting with a partial sort
■ H cells are before P cells, but array is not sorted by Cell

ID
□ Solution:

■ Radix Sort
■ Radix Sort ensures identical cell IDs remain in the same

order as before sorting.

Sorting Cell Array

01
0
0

01
1
1

11
1
2

10
1
3

02
1
4

02
1
n

02
0
0

11
0
2

10
0
3

01
1
4

01
1
n

01
1
0

10
0
2

02
1
n

02
1
0

00
0
2

11
1
n

00
1
2

02
2
n

10
1
201
1
2
01
0
2

...

Cell ID Array
00
0
2

01
1
n

10
1
3

00
1
2

02
0
0

10
1
2

01
0
0

02
1
4

11
0
2

01
0
2

02
1
n

11
1
2

01
1
1

02
1
0

11
1
n

01
1
0

02
2
n

11
1
n01

1
2

10
0
2

10
2
n

01
1
4

10
0
3

10
3
3

...

Sorted Cell ID Array

01
1
1
10
0
2

Invalid Cell

Home Cell

Phantom Cell
10
3
3

Object ID
Cell ID

Legend

Spatial Subdivision

1 2

3 4

5 6

7 8

Images from pg 699, 700 GPU Gems III

O1

O2

O3

O4
1 2 3 4

5 6 7 8

Example

1. Assign to each cell the list of bounding
volumes whose objects intersect with the cell

2. Perform Collision test only if both objects are
in the cell and one has a centroid in the cell

Create the Collision Cell List
□ Scan sorted cell ID array for changes of cell ID

■ Mark by end of the list of occupants of one cell and
beginning of another

1. Count number of objects each collision cell contains
and convert them into offsets using scan

2. Create entries for each collision cell in new array
1. Start
2. Number of H occupants
3. Number of P occupants

Create Collision Cell List

00
0
2

01
1
n

10
1
3

00
1
2

02
0
0

10
1
2

01
0
0

02
1
4

11
0
2

01
0
2

02
1
n

11
1
2

01
1
1

02
1
0

11
1
n

01
1
0

02
2
n

11
1
n01

1
2

10
0
2

10
2
n

01
1
4

10
0
3

10
3
3

...

Sorted Cell ID Array Cell Index & Size Array
2

1 1

4
1
4

10
2
1

...

ID
H
P

ID = Cell index in sorted Cell ID Array
H = Number of Home Cell IDs
P = Number of Phantom Cell IDs

Traverse Collision Cell List
Cell Index & Size Array

2
1 1

4
1
4

10
2
1

...
16
1
1

19
1
1

X
p
q

T
0

T
1

T
2 ...T

3
T
4

T
n

Perform
Collision

Test Per Cell

Number of Collisions / Thread Array

0 1 0 ...2 1 …

