
Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 12006-05-02

Distributed Processing Environment (DPE)

1. Overview
2. Basic concepts
3. Use Cases
4. Introduction to Capsule Management
5. Introduction to Execution Management
6. Equipment Management
7. Introduction to Function Distribution Management
8. Introduction to State Register
9. Software Management

10. Introduction to Checkpointing and Activation of a Software
Configuration

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 22006-05-02

1. Overview

Distributed Processing Environment (DPE)

After the course the participant shall have
received a brief description of the
DPE used in WPP

▪ General
▪ System requirements
▪ System views
▪ Application design

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 32006-05-02

General

● developing applications for a distributed platform

● continuous, reliable, robust operation

● a generic system

● “plug and play”

What DPE is all about...

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 42006-05-02

Distributed Processing Environment - DPE

▪ DPE supports distribution of the applications on the PIUs in the node
▪ Gives support for a continues, reliable and robust service even during hardware

failures
▪ Supports ”plug-and-play” functionality
▪ Gives support for distributed applications

PEB

GPB GPB IBxx IBxx IBxx

Appl. Appl. Appl. Appl. Appl.

DPE (Distributed Processing Environment)

PEB

Solaris/OT
P

Solaris/OT
P

VxWorks VxWorks VxWorks

SPARC SPARC PPC PPC PPC

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 52006-05-02

DPE Services

▪ State register Synchronization and publication of data

▪ Software management Installation of Software

▪ Function distribution management Distribution of Software on Node Hardware

▪ Equipment management Discover, supervise and shutdown of hardware

▪ Node management Start, upgrade and shutdown of node

▪ Capsule management Creation and supervision of capsules

▪ Execution management Creation and supervision of block instances in
capsules

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 62006-05-02

A node from a DPE perspective

Sparc

Solaris

DPE

SS7, Routing, PPDC,
Node Dump, GPRS,

OMS, ...

PPC

VxWorks ...

... Hardware

Operating systems

Applications

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 72006-05-02

• High availability
• Follow evolution (HW & SW)
• Scalability
• “Plug & Play”
• Management for one
system,
not a set of boards

 System Requirements

Node

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 82006-05-02

 System views

Node

Development view

Distribution view

Function view

Management view

Computing view

Equipment view

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 92006-05-02

 Equipment view

Node

Development view

Distribution view

Function view

Management view

Computing view

Equipment view

▪ A set of Plug-in-units (boards)
▪ Each Plug-in-unit may house

several processors
▪ Plug-in-units may be

removed/inserted while the
Node is in operation

▪ Prepared & unprepared
removal

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 102006-05-02

 Function view

Node

Development view

Distribution view

Function view

Management view

Computing view

Equipment view

▪ The full Node functionality may
be broken down into smaller
pieces : Function Blocks

▪ Reasons
– Manage complexity
– Different lifecycles
– Reuse

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 112006-05-02

 Distribution view

Node

Development view

Distribution view

Function view

Management view

Computing view

Equipment view

▪ Different Function Blocks
may have different
distribution patterns

▪ Map Function on Computing
resources

▪ Distribution may change over
time, due to:

– Redundancy and
failover operations

– Equipment
administration

– SW Upgrade/Update

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 122006-05-02

 Management view

Node

Development view

Distribution view

Function view

Management view

Computing view

Equipment view

▪ One SYSTEM
▪ Node level redundancy
▪ SW installation/activation
▪ Node configuration state

– checkpoint state
– revert to known state

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 132006-05-02

 Computing view

Node

Development view

Distribution view

Function view

Management view

Computing view

Equipment view

▪ A heterogeneous set of
processors

▪ The processors are loosely
inter-connected

▪ Local Operating System on
each processor

▪ Local SW load operations -
Local/Remote data source

▪ Local encapsulation of
executing entities - Unix
processes, RTOS task
groups, ...

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 142006-05-02

 Development view

Node

Development view

Distribution view

Function view

Management view

Computing view

Equipment view

▪ Group related function blocks
into an APPLICATION

▪ Different programming
languages

▪ Integration of a set of
APPLICATIONS into a full
Node SW system

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 152006-05-02

Different OS and program languages

JAVA

Solaris

VxWorks

Other OS

C

x

x

Erlang

x

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 162006-05-02

 Development View, SW delivery example

Node

NDP

Install NDP

DPE
Time Synch
Node Dump

Link
Routing

IPSec
SS7
……

Perf. monitor
Fault mgmt
End System 4

End System 1
End System 2
End System 3End Sys ADPs

NDP Virgin

WPP ADPs

Filter

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 172006-05-02

Typical Application structure

Root Block
• Distribution of Appl. Blocks
• Activation of Appl. Blocks
• Handling of system events

• SW Upgrade
• Equipment insertion/removal
• ...

A B C D Other Blocks

Management Agent
 Block (typically SLO)

Management
 interface

IIOP/SNMP/...

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 182006-05-02

 System events

Start/Stop of system
SW Upgrade
Equipment insertion/removal
Revert to stored state

External events

Block instance Failure,
Capsule Failure & PM
Failure
Inter Appl. signals

Internal events

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 192006-05-02

 Function Distribution

Function
Distribution
Manager

Appl.

PMs

Application Directives

System events

Allocate()

Block instance
to PM mapping

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 202006-05-02

Summary

▪ Node start up/stop
▪ Distribution
▪ SW upgrade
▪ Node supervision
▪ State Register

DPE gives support for:

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 212006-05-02

▪ Processing module (PM)
▪ Application

▪ application instance, application structure tree (AST),
application instance, application root instance.

▪ Block, block template
▪ Block instance
▪ Capsule
▪ Load unit
▪ DPE architecture

Distributed Processing Environment (DPE)

2. Basic concepts

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 222006-05-02

Processing module (PM)

A PM is a hardware processor with operating system.
A PM can be used to run capsules containing block instances.

BI belonging to application
instance Application A

BI belonging to application
instance Application B

OS

PM

CPU

Block

instances

Capsule
Block

instances

Capsule

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 232006-05-02

Application

▪ Application
– A program that can be run within DPE.
– An application may be thought of as a (structured) collection of

blocks.
– All blocks in an application are organized into an Application

Structure Tree (AST).
▪ Application instance

– A program running within DPE.
– An application instance can be thought of as a collection of

block instances.
– The collection may evolve over time.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 242006-05-02

Application functionality structured into block
instances

PM2

C
apsule

C
apsule

PM1

Capsule

PM3

Capsule

PM4

Capsule

A1
:2

Root
Instan

ce
App.

A

A1
:1

Application A

Application B

B1
:1 B3

:1

B2
:1

B1
:2

B3
:3

B3
:2

Root
Instan

ce
App. B

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 252006-05-02

Application structure tree (AST)
▪ A tree that describes the relations between blocks

in an application.
▪ The root of a tree represents the total functionality

of the blocks contained in that tree.
▪ AST does not change at runtime. Root

Application B

B1 B2

B3

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 262006-05-02

Application instance descriptor
▪ Describes the relations between block instances in an application

instance.
▪ The root is called the application root instance. It is the only instance

of the block in the root of an AST.
▪ The descriptor may change

at runtime.
PM2/Root
instance-

Application B

PM3/B2:
1

PM1/B3
:3

PM3/B3
:2

PM4/B3:
1

PM2/B1
:1

PM4/B1
:2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 272006-05-02

Block and block template
▪ Block

– A functional unit within an application.
– Smallest functional part that can be instantiated to a running entity

on a particular processing module (PM).
▪ Block template

– Executable code performing the functionality of a block.
– Same block may have several block templates, each for a

different type of execution environment (Capsule).

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 282006-05-02

Implementation of a block instance in a
C-Capsule on Solaris

C-Capsule

Load unit

………..

Mandatory Operations

Handlers
Block Instance Data

…...

Block instance
 Descriptor

Pointer to Template

Pointer to Data

Block Instance Name

Function pointers to
Installed Handlers

Block Template
Descriptor

Block Name
Block Identity
Revision Name
Application Name

...

Function pointers to
Mandatory Operations

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 292006-05-02

Block Instance

▪ A block instance
– resides in a particular capsule.
– requires that the appropriate block template is

present in the capsule.
– is created based on the block template.

▪ A block instance is the executing form of a block, e.g.,
– an Erlang process.

▪ Each block instance (BI)
– belongs to a particular application instance; and
– has an unique identity (block instance name) which

is not reused.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 302006-05-02

Capsule
▪ A special protective execution environment in which block instances

can be made to run in a certain processing module (PM).
▪ Makes it possible to use uniform interfaces between DPE and

applications despite the differences in implementation languages,
operating systems etc.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 312006-05-02

Capsule types are defined by:

▪ Hardware (SPARC, PowerPC, etc.);
▪ Operating system (Solaris, VxWorks, etc.);
▪ Language (interpreted Erlang, C, Java, etc.); and
▪ Design decisions when implementing the capsule.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 322006-05-02

Load Unit

▪ An entity containing one or more block templates.
– A C load unit is a file.
– An Erlang load unit is a directory.

▪ Specific to a capsule type.
▪ When code is loaded into a capsule, it is always in the form of an

entire load unit.
▪ After a load unit is loaded into a capsule, the capsule contains copies

of the enclosed block templates.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 332006-05-02

Capsule 3 of type BCapsule 2 of type B

Capsule 1 of type A

Blocks, load units, block templates, capsules and
block instances - Relations

Root

 B2B1

Load unit Y for
capsule of type B

Load unit X
for capsule
of type A

Block instance
B1:2

Block instance
B1:3

Load unit Z for
capsule of type B

Block instance
B2:1

Block instance
B1:1

Root block
instance

Block
template

for block B2

Block
template

for block B1

Block
template

for Root block
Block

template
for block B1

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 342006-05-02

DPE architecture - overview

EQM
A

CPM
A

Capsule
EXMA

&
NCL
API

EQM
A

CPM
A

Pass
ive

NCL

Passive NCB

Capsule
EXMA

&
NCL
API

EQM
A

CPM
A

Active NCB

Capsule
EXMA

&
NCL
API

Activ
e

NCL

EXMA
&

NCL
API

EQM
A

CPM
A

Pass
ive

NCL

Activ
e

NCL

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 352006-05-02

DPE architecture - Node Control Logic (NCL)

▪ NCL is the DPE kernel.
▪ Two instances within the Node:

– Active NCL, and
– Passive NCL.

▪ The Boards where the two NCL instances reside are called Active
NCB and Passive NCB (Node Control Board).

▪ The purpose of of the Passive NCL is to track the internal states of
the Active NCL, in order to be able to take over if the Active NCL
fails.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 362006-05-02

DPE architecture - Processor related parts

▪ EQMA - Equipment Management Agent
– Located on all CPU:s
– Responsible for all local equipment management operations

▪ CPMA - Capsule Management Agent
– Located on all PM:s
– Responsible for all local capsule management operations (create,

delete, …)

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 372006-05-02

DPE architecture - Capsule related parts

▪ EXMA - Execution Management Agent
– Located in every Capsule
– Responsible for operations related to Block Instances (create,

start, stop, delete, …) within the specific Capsule.
▪ DPE API

– Located in every Capsule
– Allows Block Instances to interact with DPE (EXMA and NCL)
– Location of NCL transparent to applications
– Implementations for both C and Erlang

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 382006-05-02

DPE architecture vs. example
application instances

PM1

Capsule
A1:
2

B3:
3

EXM
A &
NCL
API

EQ
MA
CP
MA

PM4

Capsule

EXM
A &
NCL
API

EQ
MA
CP
MA

PM3

Capsule

B3:
1

B1:
2

B2:
1

B3:
2

EXM
A &
NCL
API

EQ
MA
CP
MA

PM2

C
apsule

C
apsule

B1:
1

A1:
1

Root
Instan

ce

Root
Instan

ce

EXM
A &
NCL
API

EXM
A &
NCL
API

Active
NCL

EQ
MA
CP
MA

Intra node
communication PM5

EQ
MA
CP
MA

Backup
NCL

Board 1

Board 4 (Passive NCB)

Board 3

Board 2 (Active NCB)

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 392006-05-02

▪ An example application
▪ Use cases:

– Starting an application
– Stopping an application
– Blocking of a board
– Addition of a board
– Failing boards or PMs
– Fail over
– Software upgrade

3. Use Cases
Distributed Processing Environment (DPE)

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 402006-05-02

An example application

Base Station

Base Station
Network Node to be
implemented using WPP Other Network

Nodes

Green I/F

Green I/F

Red I/F

Red I/F

Red I/F

Red I/F

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 412006-05-02

Example application (Cont.) - Logical view

▪ Four major tasks:
– handling of protocol interfacing base stations (Red I/F);
– handling of protocol interfacing other nodes (Green I/F);
– basic routing service (Routing); and
– signal path handling (SignalPath).

▪ Chosen application structure tree (AST).

RedIF GreenIF Routing Signal Path Handling

Root

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 422006-05-02

Example Application (Cont.) - Computing
resources

▪ 3 General Processing Boards
(GPB)

– 1 x UltraSparc
– Solaris

WPP
Networ
k
Node

Intra node
communicati

on

PM1 (E1)

PM2 (E1)

PM3 (E1)

PM4 (E1)

IBE1

PM1 (E1)

PM2 (E1)

PM3 (E1)

PM4 (E1)

IBE1

PM1 (E1)

PM2 (E1)

PM3 (E1)

PM4 (E1)

IBE1

PM1 (E1)

PM2 (E1)

PM3 (E1)

PM4 (E1)

IBE1

PM 2
(Sparc)

GPB

PM 2
(Sparc)

GPB

GPB

PM 2
(Sparc)

▪ 4 Interface Board E1 (IBE1)
– 4 x E1 with 2 Mbit/s
(Sends and receives packages)

– VxWorks

▪ Intra node communication
– Ethernet (2x) between

boards

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 432006-05-02

Example application (Cont.) - Mapping

WPP
Networ
k
Node

Intra node
communication

P
M

2

Board 1 (IBE1)

P
M

3

C

C

C

P
M

 4

PM 1

P
M

2

Board 5 (IBE1)

P
M

 3
P

M
4

PM 1

C

P
M

2

Board 4 (IBE1)

C

P
M

4

PM 1

PM 3

C

P
M

2

Board 7 (IBE1)

C

P
M

4

PM 1

PM 3

Active NCL

PM2

C

C root:
1

Board 2 (GPB)

Passive
NCL

PM2

Board 3 (GPB)

Board 6 (GPB)

PM 2

C

signalPa
th:1

signalPa
th:2

C = A Capsule = A block instanceblockNam
e:X

C

C

C

redIF
:1

redIF
:2

redIF
:3

redIF
:4

routin
g:1

routin
g:2

routin
g:3

routin
g:4

Gree
nIF:1

Gree
nIF:2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 442006-05-02

▪ DPE starts root.
▪ Root defines application directives.
▪ Root asks DPE

• for an allocation suggestion.
• to create block instances.
• to start block instances.

▪ Root notifies DPE when the distribution is complete

Starting an application

▪ DPE creates application root instance (root).
root:1

Board 2
PM
2

redIF:
1Board
1PM

3

..

.
greenIF:
1Board
4PM

4

..

.
routing:1
Board
1PM

2

..

.
signalPath:
1 Board

2PM
1

signalPath:
2 Board

6PM
1

root:1
Board
2PM

2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 452006-05-02

Stopping an application

▪ DPE requests the application root instance (root)
to stop the application.

▪ Root requests DPE to
• stop the block instances.
• delete the stopped block instances.

▪ Root notifies DPE when the application is stopped.
▪ DPE stops the root and assures that it is deleted.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 462006-05-02

Blocking of a board

▪ Operator requests DPE to block a board, and hence all PMs on that
particular board.

▪ DPE informs application root instance (root) about blocking request
of PMs where the application has running Block Instances (BIs).

▪ The root removes all BIs that belongs to the application from the
PMs on the affected board.

▪ DPE informs the operator when the whole board has been blocked.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 472006-05-02

Note that a blocking request can be issued by:

▪ an operator via GUI,
▪ an operator that presses the repair button on a board,
▪ an application.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 482006-05-02

An example - Blocking board 6

▪ DPE informs root about blocking request
affecting BI: signalPath:2.

▪ Root requests DPE to stop and delete
signalPath:2.

Board 6 (GPB)

PM 2

C signalPa
th:2

Board 6 (Blocked)

PM 2

Passive NCL

PM2

Board 3 (GPB)

C signalPa
th:2

▪ DPE informs operator about blocking completion.

▪ Root may reconfigure the application:
– Root asks DPE for an allocation suggestion.

▪ DPE suggest that signalPath:2 is allocated
on PM2 in board 3.

– Root asks DPE to create and start
signalPath:2.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 492006-05-02

Addition of a Plug-In-Unit (PIU)

▪ An operator inserts a PIU into an empty slot
▪ DPE notifies all application root instances (roots) that new

hardware is available
▪ The Roots investigates if the applications should reconfigure
▪ The Roots ask DPE for an allocation suggestion

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 502006-05-02

Failing boards or PMs

▪ Failures are caused by a wide variety of events
▪ The result of these failures is that one or more block

instances die.
▪ DPE detects failures and sends messages to the affected

application root instances
• the message contains a set of failed block instances

▪ These roots may then initiate application-specific recovery
actions.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 512006-05-02

An example - PM3 and PM4 on
board 1 has failed

▪ DPE detects this, and:
– notifies root:1 that the block instances
redIF:1 and redIf:2 have died.

▪ root:1 may then initiate application-specific
recovery actions.

routin
g:1

C

Board 1 (IBE1)

redIF:
1

C

redIF:
2

C

PM
2

PM
3

PM
4

PM 1

redIF:
1Board 1
PM
3Failed PM

redIF:
2Board 1
PM
4Failed PM

..

.
greenIF:1
Board 4

PM
4

greenIF:2
Board7
PM
4

routing:1
Board 1

PM
2

..

.
signalPath:1

Board 2
PM
1

signalPath:2
Board 6

PM
1

root:
1Board 2
PM
2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 522006-05-02

But .. What if the Active NCB (Board 2) fails?

▪ DPE performs a fail-over operation,
which consists of replacing the active
NCL with the passive NCL:

• All the NCL data structures are replicated;
• the replicated data is used to re-establish

the state of NCL. The operations of DPE
can continue almost without disruption.

▪ After fail-over, NCL will automatically restart all
application root instances.

Active NCL

signalPat
h:1

C
root:1

Board 2

PM2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 532006-05-02

An example: Board 2 has failed
▪ root:1, signalPath:1 and Active NCL die
▪ DPE detects this, and:

• performs a fail-over operation (active NCL is
replaced with the passive NCL);

• root:1 is restarted as root:2 on PM1
in board 3;

• root:2 quires NCL about the state of the block
instances. It finds out that signalPath:1 has died; and

• root:2 may then initiate application-specific
recovery actions.

redIF:
1Board
1PM

3

..

.
greenIF:
1Board
4PM

4

greenIF:
2Board
7PM
4

routing:1
Board
1PM

2

..

.
signalPath:
1 Board

2PM
1

signalPath:
2 Board

6PM
1

root:1
Board
2PM

2Failed board

root:2
Board
3 PM2

Active NCL

signalPat
h:1

C
root:1

Board 2

PM2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 542006-05-02

Software upgrade

▪ DPE provides support for:
• upgrading to a new software configuration;
• falling back to a previously check-pointed

software configuration;
• introducing patches.

▪ The method to activate a software configuration depends on the
circumstances.

▪ From an applications point of view, it does not matter which
activation method that is used:

• an application may either be stopped or remain running;
• in each case it has to manage its own configuration data.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 552006-05-02

▪ Capsule Management
▪ Functionality and Behavior

Distributed Processing Environment (DPE)
4. Introduction to Capsule Management

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 562006-05-02

Capsule management

▪ Capsule Management manages the creation and deletion of
capsules

▪ It is implemented by the following software entities:
– the Capsule Manager, or CPM, which is a part of NCL
– the Capsule Management Agents (or CPMAs): there is one

such agent in each active PM.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 572006-05-02

An example of CPM and CPMAs

PM1

Capsul
e

CP
MA

Intra node
communication

CP
MA

Capsul
e PM2

CP
M NC

L

PM4

Capsul
e

CP
MAPM3

Capsul
e

CP
MA

Board 3Board 2

Board 1

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 582006-05-02

Capsule

▪ Special protective environment for locating a block instance in a
certain processing module (PM)

▪ Make possible to use uniform interfaces between DPE and
applications despite the differences in implementation languages,
operating systems etc.

▪ Capsule type defined by:
– Hardware (SPARC, PowerPC, etc.)
– Operating system (Solaris, RTOS, etc.)
– Language (interpreted Erlang, C, Java, etc.)
– Design decisions when implementing the capsule

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 592006-05-02

Capsule Attributes

▪ MultipleLoadUnits
– Can the capsule contain more than one load unit?

▪ Loadable
– Is it possible to add new load units after the capsule has been

created?
▪ MultiThreaded

– Does the capsule support multiple block instances?

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 602006-05-02

Capsule attributes (cont’d)

▪ Osunloadable
– Is it possible for the OS to unload (shut down) the capsule

▪ cachedSendmsg
– Does the capsule type take advantage of the efficient protocol

for DPE_SendMessage

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 612006-05-02

Capsule types

▪ Solaris_C_Capsule
MultipleLoadUnits No
Loadable No
MultiThreaded Yes
Osunloadable Yes
cachedSendmsg Yes

▪ RTOS_C_Capsule
MultipleLoadUnits No
Loadable No
MultiThreaded Yes
Osunloadable No
cachedSendmsg Yes

▪ Erlang_Capsule
MultipleLoadUnits Yes
Loadable Yes
MultiThreaded Yes
Osunloadable Yes
cachedSendMessage No

▪ JAVA_Capsule
MultipleLoadUnits Yes
Loadable Yes
MultiThreaded Yes
Osunloadable Yes
cachedSendmsg No

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 622006-05-02

New RTOS C-capsule types

▪ Using WPP5.0 it is possible to further specify the processor, an
RTOS capsule may execute on.

– RTOS_C_Capsule_*
▪ Where * is the type of board, f.I: Ibxx, Ibxx_860, Ibxx_craneboard,

PEB, etc.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 632006-05-02

Implementation of a C-Capsule on Solaris

Function pointer
to
Create function

Capsule
Handlers

CPMA

P
M

Capsule
Descriptor

Id of Capsule Process

Capsule
Name

Pointer to
Capsule
Handlers

Capsule State

Pointer to next
Capsule

…
.

Function pointer
to
Load functionFunction pointer
to
Unload function

Load
unit
………..

Handlers

nul
l

nul
l

nul
l

Solaris
process
(The
C-Capsule)

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 642006-05-02

Functionality and Behavior

▪ Capsule management provides operations that
– create, delete, and monitors capsules
– loads load units into the capsule (only for Erlang and JAVA)

– unloads load units from the capsule (only for Erlang and JAVA)

– enable communication with entities inside the capsule

▪ The block instance management uses these functions to ensure :
– that a capsule will exist in the correct location
– that the capsule is loaded with the block templates that are

needed to create a given set of block instances

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 652006-05-02

Distributed Processing Environment (DPE)

▪ Block instance management
▪ Description of block, block template, load unit,

block instance and capsule
▪ Functionality and behavior
▪ Operations available to applications

5. Introduction to Execution Management

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 662006-05-02

Block instance management

▪ Execution Management manages block instances.

– A block instance is the basic functioning unit of an application.

▪ It is implemented by the following software entities:

– the Execution Manager, or EXM, which is a part of NCL;
– the Execution Management Agents (or EXMAs): there is one

such agent in each existing capsule.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 672006-05-02

An example of EXM and EXMAs

Intra node
communication

PM2

EX
M NC

L

Capsul
e

EX
MA

B
I

B
I

PM1

Capsul
e

EX
MA

B
I

PM3

Capsul
e

EX
MA

B
I

PM4

Capsul
e

EX
MA

B
I

B
I

Board 3Board 2

Board 1

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 682006-05-02

Description of block, block template, load unit,
block instance and capsule

Root
block

 Block
B2

Block
B1

Block instance
B2:1

Load
unit

Block
template

for block B2

Capsul
e

Applicatio
n

An application is a collection of blocks.
A block template is the executable code
performing the functionality of a block.
A load unit is an entity containing one or
more block templates.
A block instance is the executing form of
a block.
A capsule is a special execution
environment for block instances.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 692006-05-02

Block and block template

▪ Block
– A functional unit within an application.
– Smallest functional part that can be instantiated to a running

entity on a particular processing module (PM).
▪ Block template

– Executable code performing the functionality of a block.
– Same block may have several block templates, each for a

different type of execution environment (Capsule).

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 702006-05-02

Block Instance
▪ A block instance:

– resides in a particular capsule;
– requires that the appropriate block template is present in the

capsule; and
– is created based on the block template.

▪ A block instance is the executing form of a block, e.g.,
– an Erlang process.

▪ Each block instance (BI):
– belongs to a particular application instance; and
– has an unique identity (block instance name) which is not

reused.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 712006-05-02

Load Unit

▪ An entity containing one or more block templates.
– A C load unit is a file.
– An Erlang load unit is a directory.

▪ Specific to a capsule type.
▪ When code is loaded into a capsule, it is always in the form of an

entire load unit.
▪ After a load unit is loaded into a capsule, the capsule contains copies

of the enclosed block templates.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 722006-05-02

Summary of relation between block, load unit,
block template, capsule and block instance

Root

 B2B1

Load unit Y for
capsule of type B

Load unit X
for capsule
of type A

Block
template

for
RootblockBlock

template
for block B1

Block
template

for block B1

Block instance
B1:2

Block instance
B1:3

Block instance
B2:1

Capsule 2 of type B

Load unit Z for
capsule of type B

Block
template

for block B2

Capsule 3 of type B

Block instance
B1:1

Rootblock
instance
Capsule 1 of type A

Application
Structure Tree

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 732006-05-02

The internals of a C-Capsule on Solaris

DPE Engine

Activity queues

Input
thread

Output
thread

Main thread

Incoming
messages

Outgoing
messages

Solaris
process
(The
C-Capsule)

EXMA

DPE Engine

Block instance
B1:3

Block instance
B1:2

A C-Capsule on Solaris is
just a process executing a
process image constructed
from a load unit.
The EXMA maintains a list of
block instance descriptors.
The EXMA executes on top
of the DPE Engine.

Note that the DPE Engine
only can be used by DPE.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 742006-05-02

Implementation of a block instance in a
C-Capsule on Solaris

Block Name
Block Identity
Revision Name
Application Name

Pointer to Data

Function pointers to
Mandatory
Operations

Function pointers to
Installed Handlers

Block
Template
Descriptor

Load
unit

………..

Mandatory Operations

Handlers

Block Template Data

…...

Block Instance Data

…...

EXMA

C-Capsul
e

Block
instance
 Descriptor

Pointer to Template

Pointer to Data

Block Instance
Name

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 752006-05-02

Functionality and behavior

▪ Block instance management provides operations that:
– create, start, stop, delete, and kill block instances;
– enable communication between block instances; and
– monitors block instances.

▪ Application request to DPE for block instance management is:
� directed to EXM, which carries out the request by means of the

various local EXMAs.

▪ What type of interface does DPE provide?

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 762006-05-02

Asynchronous vs. synchronous interface

Processin
g

request

EXMA NCL

Reques
t

Repl
y

Reques
t

Callbac
k

Where did I come
from
and

where am I going?

Synchronou
s

interface
Reques
t

Repl
y

B
l
o
c
k
e
d

Asynchronou
s

interface

Tp

Which outstanding
invocation caused the

activation of this
callback?

Tb

Block
instanc

e

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 772006-05-02

Asynchronous vs. synchronous interface (cont.)

Asynchronous
☺ Pros

● Enables quick response to
various events

● A capsule with an
asynchronous interface is easy
to implement

☹ Cons
− Requires great care from the

application programmers
− Difficult to provide a structured

application program

Synchronous
☺ Pros

● Enables structured sequential
application programs

☹ Cons
− A call is blocked during the

time (Tb) DPE processes the
request

− A capsule with a synchronous
interface is more complex to
implement

An useful interface should provide both asynchronous and synchronous
operations!

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 782006-05-02

The main states of a block instance

Ready

Running

creat
e

star
t

kil
l

delet
e

sto
p

kil
l

Mappedallocat
e

kil
l

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 792006-05-02

Creating a block instance

BI_
1

BI_
2

NC
L

CPM
A EXM

A
DPE_Create(BI_
2) CPM_CPMA_CREA

TE
CREATE_REPLY
OK EXM_EXMA_CREA

TE
CREATE_REPLY
OK

Creat
e

CreateHandler OK

CreationRe
quested

Mapped

Ready

1

2

1

2

Block instance BI_2 must be in state Mapped.

NCL sets the transient state CreationRequested on BI_2.

NCL sets the state of BI_2 to Ready.

1

2

O
K

State
of

BI_2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 802006-05-02

Starting a block instance

BI_
1

NCL EXMA

DPE_Start(B1_2)

EXM_EXMA_START

START_REPLY
OK

StartHandler OK

StartReque
sted

Ready

Running

3

4

3

4

Block instance BI_2 must be in state Ready.

NCL sets the transient state StartRequested on BI_2.

NCL sets the state of BI_2 to Running.

3

4

State
of

BI_2

Star
t

BI_
2

DPE_StartCompleted
()

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 812006-05-02

Sto
p

BI_
2

DPE_StopCompleted
()

Stopping a block instance

BI_
1

NCL EXMA

DPE_Stop(B1_2)

EXM_EXMA_STOP

STOP_REPLY
OK

StopHandler OK

StopReque
sted

Running

Ready

5

6

5

6

Block instance BI_2 must be in state Running.

NCL sets the transient state StopRequested on BI_2.

NCL sets the state of BI_2 to Ready.

5

6

State
of

BI_2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 822006-05-02

Deleting a block instance

BI_
1

BI_
2

NCL EXMA

DPE_Delete(B1_2)

EXM_EXMA_DELETE

DELETE _REPLY
OK

Delet
e

DeleteHandler OK

DeletionRe
quested

Ready

7

8

7

8

Block instance BI_2 must be in state Ready.

NCL sets the transient state DeletionRequested on BI_2.

NCL removes the block instance BI_2 from its register.

7

8

State
of

BI_2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 832006-05-02

Killing a block instance

BI_
1

BI_
2

NCL EXMA

DPE_Kill(B1_2)

EXM_EXMA_KILL

KILL_REPLY
OK

Kil
l

KillHandler OK

KillRequest
ed

“Any
state”

9

1
0

9

Block instance BI_2 can be in any state.

NCL sets the transient state KillRequested on BI_2.

NCL removes the block instance of BI_2 from its register.

9

1
0

1
0

State
of

BI_2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 842006-05-02

All states of a block instance

CreationReq
uested

Ready

Running

Mappedallocat
e

StopRequ
ested

StartRequ
ested

KillRequ
ested

DeletionReq
uested

9

1
0

1

4

2

5

3
6

7

8

“Any
state”

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 852006-05-02

Communication between block instances

▪ Messages can be sent between block instances via:
– DPE_SendMessage in C; and
– send_message in Erlang.

▪ No automatic confirmation is provided to the sender.
⇒ An application is free to define its own protocol.

▪ Provides an easy way of using block instance names for
addressing recipients of communication.

– Note that a restarted block instance will get a
new block instance name.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 862006-05-02

Monitoring of block instances

▪ Every block instance in a capsule is monitored by the EXMA in
that capsule:

– The Monitor() function is called;
– The block instance is expected to invoke
DPE_BlockInstanceAlive(); and

– If this is not done, within a certain amount of time, EXMA
will inform NCL that the block instance has died.

▪ NCL informs the application root instance that the block instance
has died.

– A failed application root instance will not be notified. Instead
it is restarted by NCL.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 872006-05-02

Operations available to applications

▪ create Creates a set of block instances.
▪ start Starts a set of block instances.
▪ stop Stops a set of block instances.
▪ delete Deletes a set of block instance.
▪ kill Kills a set of block instances.
▪ sendMessage Sends a message to a block instance.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 882006-05-02

▪ Part of Node Control Logic (NCL)
▪ Map of hardware (HW)
▪ Used by Function Distribution Manager (FDM)
▪ Crane Board Dictionary (CBD)
▪ HW supervision
▪ HW control
▪ Auxiliary services

6. Equipment Management

Distributed Processing Environment (DPE)

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 892006-05-02

Node Hardware

▪ Magazine
▪ Plug-In-Units (PIUs)

General Interface Carrier board

Power
PCPAM

PMC PMC
▪ Subboards

• Processing Module (PM)
• IO card

▪ Function Elements (FE)

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 902006-05-02

Equipment ID

▪ Specifies location of equipment
▪ Magazines, PIUs, subboards, FEs are numbered
▪ Form is Mag.Slot.SubPos.ElemPos
▪ PIU located by Mag.Slot
▪ PM located by Mag.Slot.SubPos.ElemPos
▪ Empty equipment ID denotes the entire node

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 912006-05-02

Equipment ID - examples

▪ { 1.5 } - PIU inserted in slot 5 of magazine 1
▪ { 2.4.2.1 } - PM located in position 1 on subboard position 2 on PIU

inserted in slot 4 of magazine 2
▪ { } - The entire node

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 922006-05-02

Node hierarchy visualized

M3
PEB

SB_PEB_1

3.1

PowerPC 3.1.2.1

3.1.2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 932006-05-02

PEB
SB_PEB_1

PowerPC

Node hierarchy visualized

M3
GPB

SB_Sparc_1

3.3

Sparc 3.3.2.1

3.3.2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 942006-05-02

Equipment Products Table File

▪ .ept is delivered in NDP Core
▪ Defines all types of PIUs

• Including subboards and FEs for PIU-types respectively
▪ Used by EQM to initialize Table of Equipment Products (TEP)
▪ Must NOT be modified by application developers

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 952006-05-02

Crane Board Dictionary (CBD)

▪ Dynamic map maintained by DPE
▪ Associates logical names (named sets) with PIU locations

• End-system applications can distribute functions over various
sets PIUs without modifications in the source code

▪ Specified in a configuration file with extension .cbd
• Specified as a named set of PIU selection criteria
• PIU Location Criteria
• PIU Type Criteria

▪ Logical names may occur in Application directives

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 962006-05-02

CBD configuration file examples

▪ Location criteria:
• location(AllowedNCBs 1.20)
• location(AllowedNCBs 2.20)

▪ Type criteria:
• type (TS_Solaris GPB)
• type (TS_VxWorks PEB)
• type (TS_VxWorks IBE1)
• type (TS_VxWorks IBEN)
• type (TS_VxWorks IBAM)

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 972006-05-02

EQM, EQMA and EQSA
▪ A DPE slave process called EQMA (Equipment Management

Agent) runs on every PM
▪ EQM detects remote hardware by catching broadcast messages

emitted by EQMAs
▪ EQM monitors remote processors by sending poll messages to

EQMAs. If an EQMA sends timely poll replies, EQM believes its
processor is alive

▪ If EQM believes a remote processor is down, it does not send
poll messages to its EQMA

▪ EQMAs use poll messages to maintain watchdogs
▪ EQSAs (EQM Sub-Agents) handle HW specific operations

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 982006-05-02

TEIE and TCIE

▪ Table of Expected Installed
Equipment

• Describes the “ideal” state of
all the equipment in the
node.

• A piece of equipment not
listed in TCIE is called
Foregin and will not be
available for use be DPE
applications.

• TEIE is loaded from the
file gsn.teie and only
changed when an
operator invokes the CLI
command scale_up.

▪ Table of Currently Installed
Equipment

• Describes the current state of
all the equipment in the node
(as known to NCL).

• Updated by EQM.
• Can be queried by application

instances, as well as by the
various DPE services.

• CLI command list_eq.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 992006-05-02

AEA (All Equipment Available)
▪ Start-up HW detection process takes time
▪ How does EQM know when all hardware has been found?

• NDM waits for AEA to be set, or for timeout
• EQM enters information about detected hardware into TCIE
• AEA is set by EQM when contents of TCIE = contents of

TEIE
• Applications started when all equipment present in last

hardware snapshot has been found

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1002006-05-02

Equipment State

▪ Operational (up or down)
▪ Administrative (deblocked, blocked, foreign)
▪ A PM which is up and deblocked can be used by applications
▪ A PM which is foreign is not part of the current node size and thus

not available for use by applications.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1012006-05-02

Administrative State

▪ Deblocked (can be used), blocked (can not
be used)

▪ Administrative State of PMs and PIUs can be
set by applications

▪ Operators can block PIUs via GUI or the
Repair Request button

▪ Applications must be prepared to clear BIs
from PM that are to be blocked

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1022006-05-02

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1032006-05-02

Equipment supervision

▪ When EQM detects that a PM has gone down it informs all
applications that had BIs running on that PM. Applications may
reallocate these BIs to other PMs

▪ When EQM detects new PMs, application root instances are
informed

▪ Applications may request to be informed when operational or
administrative state of a particular PM changes

▪ A state register variable is set every time the set of PIUs associated
with a logical name changes

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1042006-05-02

Auxiliary services

▪ These services can be used by applications that need more
detailed information about the hardware in a node

▪ Think twice about using these services – using them is against
the spirit of DPE

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1052006-05-02

Auxiliary services... Hardware information

▪ List equipment
▪ Get equipment attributes (operational state, administrative state,

etc)
▪ Get IP address of a processor

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1062006-05-02

Auxiliary Services... Crane Board Dictionary

▪ Get PIUs associated with CBD logical name
▪ Add or Remove

• Type Criteria
• Location Criteria
to a Logical Name

▪ Run-time changes of CBD are not persistent

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1072006-05-02

Auxiliary services... Control Equipment

▪ Block or Deblock a PIU
▪ Restart Function Elements such as processors
▪ Reset the whole node
▪ Remove entry for equipment that is known to be down

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1082006-05-02

Auxiliary Services... Active and Backup NCL

▪ CBD logical name – Active NCB
▪ CBD logical name – Backup NCB
▪ State Register Variable – Backup Available

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1092006-05-02

Summary

▪ EQM maps available hardware
• State, Availability, Supervision

▪ Function Elements = Processors and IO cards
▪ Equipment ID = Mag.Slot.SubPos.ElemPos
▪ EQMAs run on every processor
▪ Avoid having applications using Auxiliary services

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1102006-05-02

Distributed Processing Environment (DPE)

▪ Purpose of FDM
▪ Services provided by FDM
▪ Principles of FDM

7. Introduction to Function Distribution Management

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1112006-05-02

Purpose of FDM
▪ To support applications in distributing their block instances, so that:

1) required functionality is provided;
2) fault tolerance is guaranteed;
3) available resources are utilized to meet capacity

requirements.
▪ This typically means:

1)distribution of block instances to certain, dedicated PMs;
2)distribution of ”hot stand-by” instances of blocks;
3.1) distribution of block instances to each board of a certain

type;
3.2) sharing of ”heavy” capsules, e.g., Erlang capsules.

! The same application code must be executable on several different
node configurations!

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1122006-05-02

Services provided by FDM

▪ FDM provides an API for applications to:

• specify adequate distributions of block instances;

• generate adequate distributions of block instances.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1132006-05-02

Some Properties of Block Instance Names

A block instance name includes information about:
• the position of its PM;
• the name of the capsule in which it resides.

 → The name of a block instance determines its location.

PM
Capsule

B
I

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1142006-05-02

Textual representation of a block instance name

(LinkCPGpppSLO::Link:0-134@1.20.2.1)[Link:0]pppSLOBlock-R7C06:10
9

PM name

Capsule name
Block name

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1152006-05-02

Definitions

● Distribution
● a set of block instance names.

● Current distribution
● the set of names of block instances which are in any state

except for “Mapped” (i.e., which “exist”).
● Adequate distribution

● a distribution (i.e., a set of block instance names).
● Distribution difference

● two sets of names of block instances that must be created and
deleted, respectively, in order for the current distribution to
become an adequate distribution.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1162006-05-02

Example

PM1

C1
B
1

PM3 PM4

Current distribution

PM1

Adequate distributions (two)

PM2 PM4

Distribution difference (one of two possible)

one of

PM1

C1
B
1

PM2

C2
B
2

PM2

C2
B
2

PM3

C3
B
3

PM4

C4
B
4

PM3

C3
B
3

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1172006-05-02

Services Provided by FDM (again)

▪ Declaration of application directives
• application directives specify adequate distributions.

▪ Allocation
• allocation generates a distribution difference as result.

! The distribution difference should be considered a suggestion: DPE
does not create a block instance until requested.

! No capsule is created until creation of a block instance in that
capsule is requested.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1182006-05-02

FDM – Basic Principles

▪ Three types of application directives
• PM Group (PMG) → constraint on PMs;
• Capsule Group (CPG) → constraint on capsules;
• Block Instance Group (BIG) → constraint on block instances.

▪ A combination of groups → adequate distributions.
▪ Allocation → infers current and generates predicted content: PMG →

content = set of PM names;
CPG → content = set of capsule names;
BIG→ content = set of block Instance names;

▪ Distribution difference = predicted ”–” current content of BIG.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1192006-05-02

Current and Predicted Content of a BIG

Predicted Current

In state Mapped → to be created In a state ≠ Mapped → to be deleted

In a state ≠ Mapped → to be kept (no action required)

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1202006-05-02

Some Properties of Board and PM Positions

▪ The position of a board is specified by two numbers.
▪ The position of a PM is specified by four numbers.

A . B . C . D

Board position

PM position

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1212006-05-02

Crane Board Dictionary (CBD) in a Nutshell

▪ CBD maps logical names to sets of board positions.
▪ Each set of board positions is either defined by:

• an explicit enumeration of positions, or;
• a board type.

▪ Only positions of detected boards are included.
▪ CBD is initialized from a configuration file.
▪ There is an API for dynamically updating CBD.
▪ Predefined logical names: ”AllCraneBoards”

”ActiveNCB”
”BackupNCB”

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1222006-05-02

PM Groups (PMG)

▪ Two criteria for including a PM in the PMG’s content:
• Supported capsule types;
• Allowed PM positions (four types):

▪ (basic) Explicit enumeration of PM positions;
▪ (basic) All PMs in boards of a logical name;
▪ (basic) Relative positions in boards of a logical name:

▪ (included) PM positions to which capsules of a CPG are allocated.

Logical name (in CBD): { 1.1, 1.2 }
Relative positions: { 3.1, 4.2 }

 → PM positions = { 1.1.3.1, 1.1.4.2,
 1.2.3.1, 1.2.4.2 }

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1232006-05-02

PMG Selection Criteria - Illustration
PMs that support specified
capsule types

PMs that are up and deblocked

= PMs that Allocate includes in the predicted content of a PMG

PMs that reside in specified
positions

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1242006-05-02

Example – PMG1

PMG1 will contain all PMs that support Erlang capsules.

Name: PMG1
Capsule types: { Erlang_Capsule }
Type: All PMs in boards
Logical name: AllCraneBoards

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1252006-05-02

Example - PMG2

PMG2 will contain all PMs that:
1) support C and Erlang capsules, and;
2) are in relative position 2.1 of;
3) boards associated with the logical name MyBoards.

Name: PMG2
Capsule types: { Solaris_C_Capsule,

 Erlang_Capsule }
Type: Selected PMs in boards
Logical name: MyBoards
Relative positions: { 2.1 }

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1262006-05-02

Capsule Groups (CPG)

▪ Two types of CPGs
• Basic: PMG + capsule type + a size N

should contain N capsules of the specified type.
At most one capsule per PM in the specified PMG.

• Included: another CPG + PMG + a size N
should contain N of the capsules included in the other CPG.
Each capsule must reside on some PM in the specified PMG.

! N < 0 means ”all”.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1272006-05-02

CPG Selection Criteria (Basic) - Illustration

CPG

PMG

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1282006-05-02

CPG Selection Criteria (Included) - Illustration

CPG
(super)

PMG PMG
(filter)

CPG

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1292006-05-02

Example – CPG1

The Capsule Group CPG1 should contain one Erlang capsule on
each PM in PMG1.

Name: CPG1
Type: Basic
PM Group PMG1
Capsule type: Erlang_Capsule
Size: -1 (i.e., all PMs)

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1302006-05-02

Example – CPG2

The Capsule Group CPG2 should contain two of the capsules in
CPG1 that reside on PMs in PMG2.

Name: CPG2
Type: Included
CPG (super group):CPG1
PMG (filter): PMG2
Size: 2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1312006-05-02

Block Instance Groups (BIG)

▪ Only one type of BIG
• Block name + CPG + weight

should contain exactly one instance of the block in each capsule
of the CPG.

! The weight is used for rudimentary, static load balancing. It must be
within the range 1 - 1000.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1322006-05-02

BIG Selection Criterion - Illustration

BIG

CPG

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1332006-05-02

Example – BIG1 and BIG2

The Block Instance Group BIG1 should contain one instance of the
block E1 in each capsule in CPG2
The Block Instance Group BIG2 should contain one instance of the
block E2 in the same two capsules.

Name: BIG1
Block name: E1
CPG: CPG2
Weight: 500

Name: BIG2
Block name: E2
CPG: CPG2
Weight: 500

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1342006-05-02

Example – Summary of Application Directives

PMG1 PMG
2

CPG1

CPG2

≥

BIG2BIG1

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1352006-05-02

Example – Predicted Contents

CPG1

PMG1 PMG2

CPG2

BIG2BIG1

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1362006-05-02

Example – Adequate Distributions

▪ PM1, PM2, PM3, and PM4 belong to PMG1
▪ PM2, PM3, PM4 belong to PMG2
→ adequate distributions:

PM1 PM4 PM3 PM2
1)

2)

3)

C1
B
1

B
2

PM1 PM4 PM3 PM2

PM1 PM4 PM3 PM2

C2B
1
’

B
2
’

C1
B
1

B
2

C2B
1
’

B
2
’

C2B
1
’

B
2
’

C1
B
1

B
2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1372006-05-02

Example – PMG3

PMG3 will contain exactly those PMs on which some capsule in
CPG2 resides.

Name: PMG3
Type: Included
CPG indicator: CPG2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1382006-05-02

Allocation

▪ Input: a set of BIG names
▪ Output: a distribution difference for each BIG

{ BIG1 , . . . , BIGN }

Create Delete Create Delete

! Possible to specify the set of all BIGs of an application as input

{ BIG1 , . . . , BIGN }→

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1392006-05-02

Load Balancing

▪ Static balancing of predicted load
▪ Based on weights specified for BIGs
▪ Applicable only when there is a choice
Example

CPG

PMG

BIG

size = 2

> 2 PMs in predicted content
?

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1402006-05-02

Priorities

Priorities applied by Allocate (decreasing order):

1) Satisfaction of application directives;
2) Minimize modification of current distribution;
3) Uniform load balancing.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1412006-05-02

Scopes of Group Names

▪ Each group name (of PMG, CPG, BIG) has a scope
• NCL Group ”belongs” to NCL;
• Global Group has no specific ”owner”;
• Application Group ”belongs” to one application.

▪ Purpose
• To avoid name conflicts;
• To indicate which entities may use the group.

▪ Example

LinkBIGpppSLO::Link:0

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1422006-05-02

Predefined Capsule Groups

▪ For each capsule type, that:
• is loadable;
• has a name of the form ”Name_Capsule”

there is a CPG called Name with global scope.
▪ The CPG contains one capsule per PM that supports the type.

Example:
”Erlang_Capsule” → ”Erlang”
”Java_Capsule” → ”Java”

cf. The example definition of CPG1

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1432006-05-02

Error situations

▪ Errors when declaring a PMG, CPG or BIG
• name is already in use;
• group depends on undeclared entity;
• incompatibilities (e.g., mismatching capsule types).

▪ Errors during allocation
• insufficient number of PMs.

! The application directives of an application exist until the application
has been stopped.

! Application directives cannot be modified.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1442006-05-02

8. Introduction to State Register
Distributed Processing Environment (DPE)

▪ The Purpose of the State Register
▪ Operations available to applications

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1452006-05-02

The Purpose of the State Register

The purpose of the State Register is to provide a general and
extensible mechanism for:

▪ Synchronisation
– Applications may need to synchronise their activities with

other applications.
▪ Publication of information

– Applications may wish to publish data that is visible to other
applications.

▪ Safe storage of data
– Applications may want stored data to be maintained even in

the case of SW or HW failure.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1462006-05-02

The State Register

▪ A set of State Variables.

▪ Managed by NCL.

▪ Applications are able to publish and modify a State Variable.

▪ Applications are able to subscribe to modifications of a State
Variable.

▪ All modifications of the State Register are replicated to the
Backup NCL.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1472006-05-02

The State Variable

Each entry in the State Register has the following properties:
▪ the name of a state variable.
▪ the status of the state variable: TRUE or FALSE.
▪ the value of the state variable, only defined if Status =TRUE.
▪ a set of block instance names, called the subscribers to the state

variable.
▪ a set of block instance names, called the providers of the service

represented by the state variable.
▪ a set of block instance names, called the acknowledgement

requesters of the state variable.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1482006-05-02

An example of the State Register

Name
(string)

Status
(boolea

n)

Value
(byte
array)

Providers
(set of BI:s)

Subscriber
s

 (set of BI:s)
“APPL_A

” TRUE “Name”
Root

instance
of A

B1, C2

“SS#7” TRUE NULL

B_STATE FALSE

A_PARA
M TRUE “Value” A0 A1,A2,A3

DPE_SR_Node
Up TRUE NULL

All root
instances

X,Y,Z

C3

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1492006-05-02

Name
(string)

Status
(boolea

n)

Value
(byte
array)

Providers
(set of BI:s)

Subscribers
 (set of
BI:s)

“APPL_A
” TRUE “Name”

Root
instance

of A
B1, C2

“SS#7” TRUE NULL

B_STATE FALSE ... B0

A_PARA
M TRUE “Value” A0 A1,A2,A3

...

C3

Subscribers, an example

NC
L

A
1

A
2

A
3

A
0

A_PARAM, TRUE,
...

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1502006-05-02

Providers, an example

Name
(string)

Status
(boolea

n)

Value
(byte
array)

Providers
(set of BI:s)

Subscribers
 (set of
BI:s)

“APPL_A
” TRUE “Name”

Root
instance

of A
B1, C2

“SS#7” TRUE NULL

B_STATE FALSE

A_PARA
M FALSE “Value” ... A1,A2,A3

...

C3

NC
L

A
1

A
2

A
3

A
0

A_PARAM, FALSE,
...

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1512006-05-02

Operations available to applications

▪ Subscribe to a State Variable
▪ Unsubscribe to a State Variable
▪ (Re)initialise a State Variable, with or without acknowledgement

request
▪ Set the value of a State Variable
▪ Reset a State Variable
▪ Request information about the subscribers
▪ Request information about the providers

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1522006-05-02

Subscribe to a State Variable

B
I

NCL

1

2

NCL adds BI to the set of subscribers to StateVariable

NCL responds to BI with information about the State Variable

1

2

DPE_SubscribeToSR(StateVariable, BI)

ChangeSRHandler

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1532006-05-02

Unsubscribe from a State Variable

NCL removes BI from the set of subscribers to StateVariable

No notification is expected

1

B
I

NCL

1

DPE_UnsubscribeFromSR(StateVariable, BI)

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1542006-05-02

(Re)initialize a State Variable

B
I

NCL

1

DPE_SetSR(StateVariable, Providers, Value)

NCL will set the value of StateVariable together with its set of
Providers

NCL will notify all subscribers to StateVariable

1

Subscribe
r

ChangeSRHandler2

2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1552006-05-02

(Re)initialize a State Variable with
acknowledgements
B
I

NCL

1

DPE_SetSRWithAck(StateVariable, Providers,
 Value)

NCL will set the value of StateVariable together with its set of
Providers
NCL will notify all subscribers to StateVariable
The subscribers will acknowledge the change
NCL will notify the modifying block instance when all subscribers
have acknowledged

1

Subsc
riber
s

ChangeSRHandler
2

DPE_AckSRChange(StateVariable,
 Value)3

4

AckSRHandler

3

4

2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1562006-05-02

Set the value of a State Variable

B
I

NCL

1

DPE_SetValueOfSR(StateVariable, Value)

NCL will set the value of StateVariable

NCL will notify all subscribers to StateVariable

1

Subscribe
r

ChangeSRHandler2

2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1572006-05-02

Reset a State Variable

B
I

NCL

DPE_ResetSR(StateVariable)

1

NCL will set the status of StateVariable to FALSE

NCL will notify all subscribers to StateVariable2

Subscribe
r

ChangeSRHandler2

1

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1582006-05-02

Request information about the subscribers

B
I

NCL

DPE_SubscribersOfSR(StateVariable)

SubscribersOfSRHandler OK

1

2

NCL will retrieve the set of subscribers to StateVariable from the
State Register.

NCL responds to BI with the set of subscribers.

1

2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1592006-05-02

Request information about the providers

BI_
1

NCL

DPE_ProvidersOfSR(StateVariable)

ProvidersOfSRHandler OK

1

NCL will retrieve the set of providers to StateVariable from the State
Register.

NCL responds to BI with the set of providers.

1

2

2

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1602006-05-02

State Variables owned by NCL

▪ APPL_<X>
▪ DPE_ SR_NodeUp
▪ DPE_SR_DpeRoot

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1612006-05-02

State Variables owned by NCL, continued

▪ DPE_SR_CurrentSC
▪ DPE_SR_NextSC
▪ DPE_SR_PreviousSC

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1622006-05-02

State Variables owned by NCL, continued

▪ DPE_SR_BackupNCLAvailable
▪ DPE_SR_ActiveNCLAvailable
▪ DPE_SR_NewPMsAvailable
▪ DPE_SR_CBDChanged
▪ DPE_SR_StoppingAllApplications

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1632006-05-02

Distributed Processing Environment (DPE)

▪ Software Management Services
▪ Delivery Packages

– ADP
– NDP
– DDP

▪ NDP installation
▪ Structure of the file system
▪ Software Configurations

9. Software Management

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1642006-05-02

Software Management Services

▪ Installation of software
▪ Removal of installed software
▪ Management of software configurations

– Activation of a SC
– Checkpoint of a SC
– Verify consistency of a SC
– Set a SC to be used for next restart
– Set a SC to be used as default

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1652006-05-02

Delivery Packages

▪ A compressed archive file (tar-file)
▪ Three types of delivery packages:

– Application Delivery Package (ADP)
– Node Delivery Package (NDP)
– Development Delivery Package (DDP)

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1662006-05-02

Application Delivery Package (ADP)

▪ Mandatory files:
– Load units
– Application structure tree file
– Block to load unit map file
– Upgrade action file

▪ Optional files:
– Boot files
– Application specific configuration data
– Application specific web server data

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1672006-05-02

Application Delivery Package (ADP), cont’d

ApplicationName

BootFiles LoadUnits ApplicationData Webbase

ApplicationStructureTree.ast

BlockToLoadUnitMap.blu

UpgradeActionFile.uac

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1682006-05-02

Node Delivery Package (NDP)

▪ Mandatory files:
– Boot files
– NCL load units
– ADPs
– Crane Board dictionary definitions file
– Capsule attributes file
– Node attributes file
– Product definition file
– Persistent Application file
– Scripts
– Dynamic link libraries

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1692006-05-02

Node Delivery Package (NDP), cont’d

NDPName

BootFiles NCL ADPs Scripts

ADPName_1.tar.Z

[revision_of_DPs]

PersistentApplications.pap

ADPName_2.tar.Z

LibConfig

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1702006-05-02

The process of building a final NDP

DDP:sADP:sNDP Virgin

Final NDP

End-system ADP:sOptional ADP:sNDP Core CBD file

Installation NDP “Original” NDP

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1712006-05-02

Installation NDP vs “Original” NDP

Installation
scripts

“Original”
NDP

Installation
NDP

Initial Node
Installation

NDP
installation for
SW Upgrade

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1722006-05-02

Initial Node installation

▪ An external installation server is needed
▪ Connected to the internal node network via the PEB
▪ The installation server is a Dynamic Host Configuration Protocol

(DHCP) and FTP server

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1732006-05-02

Initial Node installation, cont’d

▪ SW installed from external server

N
C
B

P
E
B

I
B
x
x

G
P
B

N
C
B

I
B
x
x

I
B
x
x

G
P
B

P
E
B

Installation server Partition 7

NDP GPB
OS

DHCP

DHCP

FTP OS

FTP NDP

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1742006-05-02

IBxx installation

▪ The active NCB acts as installation server
▪ IBxx boards get their SW from the active NCB

N
C
B

P
E
B

I
B
x
x

G
P
B

N
C
B

I
B
x
x

I
B
x
x

G
P
B

P
E
B

DHCP

rsh SW

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1752006-05-02

NDP installation for SW Upgrade

▪ The node SW remains running
▪ Operator installs new NDP via the GUI

N
C
B

P
E
B

I
B
x
x

G
P
B

N
C
B

I
B
x
x

I
B
x
x

G
P
B

P
E
B

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1762006-05-02

Structure of the file system N
C
B

Delivery
Packages

Stored
Scripts

SiteSpecific
Data

Stored
LoadUnits

StoredNCL
Data

Software
Configurations

DPE_ROOT

NextSoftwareConfiguration
PermanentSoftwareConfiguration
LastActivatedSoftwareConfiguration
LastBootedSoftwareConfiguration
[PreviousSoftwareConfiguration]

SC_1

Config WebbaseScripts LoadUnits NCLData Application
Data

Lib App_1NCL App_NBootFiles

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1772006-05-02

Software Configuration (SC)

Stored
LoadUnits

SoftwareConfigurations

DPE_ROOT

SC_1

Config WebbaseScripts LoadUnits NCLData Application
Data

Lib App_1NCL App_NBootFiles

Lib App_1NCL App_NBootFiles

Lib-r1a.so

File-r3a

Lib.so
File

StateOfSoftwareConfiguration
PersistentApplications.pap
[revision_of_DPs]

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1782006-05-02

Software Configuration (SC), cont’d

Stored
LoadUnits

SoftwareConfigurations

DPE_ROOT

SC_1

LoadUnits

Lib

Lib

Lib-r1a.so

File-r3a

Lib.so
File

SC_1_cp

LoadUnits

Lib

Lib.so
File

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1792006-05-02

Software Configurations (SCs)

Software
Configurations

DPE_ROOT

NextSoftwareConfiguration
PermanentSoftwareConfiguration
LastActivatedSoftwareConfiguration
LastBootedSoftwareConfiguration
[PreviousSoftwareConfiguration]

SC_1 SC_2SC_1_cp

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1802006-05-02

Distributed Processing Environment (DPE)

▪ Activation of a software configuration
▪ Check pointing
▪ An application perspective of upgrade

10. Introduction to Checkpointing and Activation of
a Software Configuration

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1812006-05-02

Type of software configuration

▪ Installed
– The software configuration was unpacked from a Node Delivery

Package (NDP).

▪ Patched
– The software configuration was generated by applying a patch

(SuperCP) to another software configuration.

▪ Checkpointed
– The software configuration was generated by checkpointing

another software configuration while it was active.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1822006-05-02

Software Configuration Activation Methods

▪ RebootNode:
– The entire node is rebooted, starts up on the new SC.

▪ RestartDPE:
– DPE (NCL, agents, all DPE applications), and VxWorks PMs are

restarted.
▪ RestartApplications:

– VxWorks PMs and DPE applications are restarted (smooth restart).
▪ RestartPatched:

– Block instances with patched load units are restarted (smooth restart).
▪ ManualStart:

– Only change the current SC, restarts nothing.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1832006-05-02

Checkpointing

TimeSynch
config data

Filter
config data

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1842006-05-02

Dedicated place for configuration data

DPE_root

SoftwareConfigurations

SC_1

ApplicationData

Filter Link

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1852006-05-02

The relation between loading, updating and
check-pointing configuration data

Software configuration 2
 (Checkpointed)

Software configuration 1
(Checkpointed)

Software configuration 0
(Installed)

Loaded configuration 2

Load

Update Update Update

Checkpoint Checkpoint

Loaded configuration 1Loaded configuration 0

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1862006-05-02

Storing of configuration data = checkpointing

Software Management
SLO

Root Block Instance
of MyApp

DP
E

DPE_SubscribeToSR(SWCM_SR_NextSC,
 “RBI_MyApp”)

DPE_SubscribeToSR(

APPL_SR_CheckpointOk,
 “SWM_SLO”)
DPE_SetValueOfSR(

SWCM_SR_NextSC,
 Value)

DPE_SetValueOfSR(APPL_SR_CheckpointOk,
 Value)

ChangeSRHandler(.
.)

ChangeSRHandler(.
.)

Store configuration
data

MyApp is supposed to store its configuration data to the directory:

<DPE_Root>/SoftwareConfigurations/<SC>/ApplicationData/MyAp
p

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1872006-05-02

An application perspective on upgrade / update

▪ With activation method RebootNode, RestartDPE, an application will
be:

– stopped with reason Upgrade
– restarted with reason Upgrade or InitialStart

▪ The application must properly manage its configuration data.
▪ For activation methods RestartApplications, RestartPatched, a

stopped application will allways be restarted with reason
InitialStart.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1882006-05-02

Loading of configuration data

Ye
s

N
o

Use State variable
DPE_SR_CurrentSC

Is the start reason
InitialStart?

Load configuration
data

Is the start reason
Upgrade?

Ye
s

N
o

Use State variable

DPE_SR_PreviousS
C

Load (and convert)
data
from previous
software
configuration

Load data from
current

(or last activated)
software

configuration

Failure

2

1

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1892006-05-02

Upgrading

SC_old SC_new

Upgrade

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1902006-05-02

The upgrade action file

▪ NCL uses this file to determine the revision of an application.

▪ The following is an example of the content of a valid upgrade action
file:

Upgrade action file for Application App.

This: PA2 . # The current revision of App is PA2.

PA1 RestartMe . # Upgrading from PA1 to PA2 should be
done using action “RestartMe”

PA2 Internal . # Upgrading from PA2 to PA2 should be
done using action “Internal”

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1912006-05-02

Upgrading from SC1 to SC2: Example 1 (App1)

Software configuration 1
SC1 (Checkpointed)

Software configuration 2
SC2 (Installed)

#Upgrade actions for App1
This: PA2 .
PA1: RestartMe .
PA2: RestartMe .Activation method:

RestartDPE

Upgrade of App1
Stopped with reason Upgrade.
Started on SC2 with reason Upgrade.
Loads configuration data from SC1.
Reports DistributionComplete to NCL when App1 is properly started.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1922006-05-02

Upgrading from SC1 to SC2: Example 2 (App1)

Activation method:
RestartDPE

Upgrade of App1
Stopped with reason Upgrade.
Started on SC2 with reason InitialStart.
Loads configuration data from SC2.
Reports DistributionComplete to NCL when App1 is properly started.

Software configuration 1
SC1 (Checkpointed)

Software configuration 2
SC2 (Patched)

#Upgrade actions for App1
This: PA2 .
PA1: RestartMe .
PA2: RestartMe .

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1932006-05-02

Monitoring of the upgrade process

▪ Timeouts used to monitor the upgrade process:
– PrepareForStopTimeout
– StopApplicationsTimeout
– ShutDownSmoothUpdateableTimeout
– InitialDistributionTimeout
– SoftwareUpgradeTimeout

▪ If any of these timeouts expire, DPE is restarted on the permanent
software configuration (fallback).

– Applications are then started with start reason InitialStart.

Copyright © 2006 TietoEnator CorporationSS7 in SGSN, TPL-06:0022 1942006-05-02

State registers updated by DPE during upgrade
▪ ‘‘DPE_SR_CurrentSC’’

▪ ‘‘DPE_SR_PreviousSC’’

▪ “DPE_SR_TypeOfCurrentSC’’

▪ “DPE_SR_PrepareForStop’’

– An application must acknowledge this SR when it is ready to

stop. E.g., when charging data have been saved to disk.

