ЛЕКЦИЯ 3

Динамика

План лекции

- 1. Динамика вращательного движения твердого тела
- 2. Закон сохранения момента импульса
- 3. Неинерциальные системы отсчета. Силы инерции
- 4. Кинетическая энергия, работа, мощность
- 5. Потенциальная энергия
- 6. Закон сохранения механической энергии

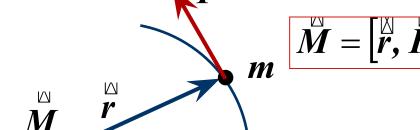
Момент силы, момент импульса

<u>Твердое тело</u> - совокупность точек, расстояние между которыми не меняется.

Важные динамические характеристики вращательного движения:

момент силы M, момент импульса L.

Различают момент силы и момент импульса относительно центра (точки) и относительно оси.



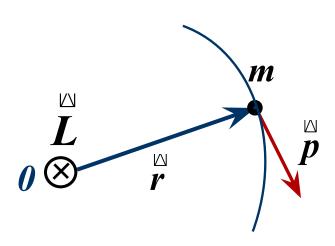
Моментом силы \vec{F} относительно центра «0» называется векторная величина $M = \begin{bmatrix} \bowtie & \bowtie \\ r, F \end{bmatrix}$, где r - радиус-вектор точки приложения сил, проведенный из центра.

Момент силы характеризует способность силы вызывать вращение тела и изменять угловую скорость.

Общая физика. Раздел "Основы классической механики"

Момент силы, момент импульса

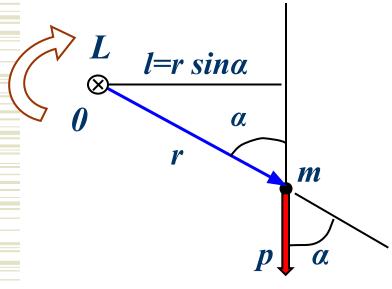
Момент импульса L относительно центра « θ » - это векторная величина $L = \begin{bmatrix} \mathbb{Z} & \mathbb{Z} \\ r, p \end{bmatrix}$.



$$L = \begin{bmatrix} \mathbb{N} & \mathbb{N} \\ r, p \end{bmatrix}$$

Момент импульса в динамике играет ту же роль, что и импульс в поступательном движении.

Плечо импульса и силы относительно точки



 $l = r \sin \alpha$ - плечо импульса относительно точки « θ ».

Модуль вектора момента импульса частицы относительно точки « $\boldsymbol{\theta}$ » равен:

$$L = p r \sin \alpha = pl$$

По аналогии модуль вектора момента силы частицы относительно точки « $\boldsymbol{\theta}$ » равен:

$$M = F r \sin \alpha = Fl$$

ДИНАМИКА ВРАЩАТЕЛЬНОГО движения твердого тела

Вращение твердого тела относительно оси

Момент инерции

Момент импульса тела относительно оси $\bar{\boldsymbol{L}}_z = \boldsymbol{J}_z \boldsymbol{\omega}$

$$\overset{\scriptscriptstyle{ ext{D}}}{L}_{z}=J_{z}\overset{\scriptscriptstyle{ ext{D}}}{oldsymbol{\omega}}$$

$$oldsymbol{J_z}$$
 - момент инерции тела относительно оси (аналог массы).

Момент инерции материальной точки массой *т*, вращающейся относительно оси вращения окружности радиуса R, равен

$$J_z = mR^2$$

Момент инерции тела массой *т*, вращающейся относительно оси вращения по окружности радиуса R, равен

$$J_z = \sum_{i=1}^n m_i R_i^2 \qquad m = \sum_{i=1}^n m_i$$

Момент инерции

Формулы для вычисления моментов инерции для стандартных тел

рассмотреть самостоятельно

Тело	Ориентация оси	Момент инерции
Полый тонкостенный цилиндр с радиусом \mathbf{R} и массой \mathbf{m}	По оси цилиндра	mR^2
Сплошной цилиндр с радиусом \mathbf{R} и массой \mathbf{m}	По оси цилиндра	$\frac{m}{2}R^2$
Полый тонкостенный цилиндр с радиусом с внутренним радиусом $R_{1,}$ внешним радиусом R_{2} и массой m	По оси цилиндра	$\frac{m}{2}\left(R_1^2+R_2^2\right)$
Диск с радиусом R и массой m	По оси диска	$\frac{m}{2}R^2$

Момент инерции. Теорема Штейнера.

Момент инерции тела относительно произвольной оси. Теорема Штейнера –

изучить самостоятельно

ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА

Суммарный момент импұльса \vec{L}_{Σ} системы частиц связан с суммарным моментом M_{Σ} внёшних сил, действующих на систему, уравнением моментов:

$$d\stackrel{\Sigma}{L}_{\Sigma}/dt=\stackrel{\Sigma}{M}_{\Sigma}$$

 $d \stackrel{\square}{L}_{\Sigma} / dt = \stackrel{\square}{M}_{\Sigma}$ второй закон Ньютона, записанный для моментов импульсов и сил.

$$M_{\Sigma} = M_{1} + M_{2} + \mathbb{I} + M_{i} = \sum_{i} M_{i}$$

$$L_{\Sigma} = L_{1} + L_{2} + \mathbb{I} + L_{i} = \sum_{i} L_{i}$$

$$i = 1, 2, \mathbb{I} \quad n$$

ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА

Если в

$$d\stackrel{\bowtie}{L}_{\Sigma} / dt = \stackrel{\bowtie}{M}_{\Sigma}$$

 $d\stackrel{.}{L}_{\Sigma}/dt=\stackrel{.}{M}_{\Sigma}$ положить $\stackrel{.}{M}_{\Sigma}$ равным нулю, получим:

$$\frac{dL_{\Sigma}}{dt} = 0$$

Момент импульса замкнутой системы материальных точек остается постоянным

НЕИНЕРЦИАЛЬНЫЕ СИСТЕМЫ ОТСЧЕТА

Силы инерции. Центробежные силы инерции. Сила Кориолиса. Примеры проявления центробежных сил инерции - ___

самостоятельн

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

Запишем уравнение движения (второй закон Ньютона) для механической системы из одной частицы

$$m\frac{dv}{dt} = F$$

 $ar{F}$ - результирующая сил, действующих на частицу.

Умножим уравнение движения на перемещение частицы $\overset{\bowtie}{v}dt = d\overset{\bowtie}{s}$:

$$m(v\frac{\boxtimes dv}{dt})dt = (Fds) \qquad \qquad m(vdv) = (Fds)$$

Внесем скорость под знак дифференциала, получим:

$$md\left(\frac{\mathbb{N}_2}{2}\right)$$

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

Если система замкнута, т.е. $\stackrel{\bowtie}{F} = 0$ \longrightarrow $d\left(\frac{mv^2}{2}\right) = 0$

следовательно

$$\left(\frac{mv^{2}}{2}\right) = const = T$$

Эта величина называется кинетической энергией частицы.

РАБОТА

Если на частицу действует сила F, кинетическая энергия частицы изменяется:

$$d\left(\frac{mv^{2}}{2}\right) = (Fds)$$

В этом случае приращение кинетической энергии частицы за время dt равно скалярному произведению (Fds).

Величина dA = (FdS) называется работой, совершаемой силой F на пути dS. Следовательно, раскрыв скалярное произведение, можно записать $dA = F_S dS$

Работа — это физическая величина, равная произведению силы на путь, пройденный телом под действием этой силы.

Работа характеризует изменение энергии, обусловленное действием силы на движущуюся частицу. Иначе, *работу совершает только сила*.

МОЩНОСТЬ

Мощность – это работа, совершаемая в единицу времени.

$$P = \frac{dA}{dt}$$

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ

Силовые поля делятся на потенциальные и непотенциальные

Потенциальным называется такое силовое поле, которое может быть выражено через некоторую скалярную функцию П (x, y, z, t), называемую потенциальной, по следующему правилу:

$$\vec{F} = -\left(\frac{d\Pi}{dx} \stackrel{\boxtimes}{e}_{x} + \frac{d\Pi}{dy} \stackrel{\boxtimes}{e}_{y} + \frac{d\Pi}{dz} \stackrel{\boxtimes}{e}_{z}\right)$$

 \overrightarrow{F} - сила, действующая на частицу в потенциальном поле

Используем векторную дифференциальную операцию, называемую градиентом:

$$qrad\Pi = \frac{d\Pi}{dx} \stackrel{\boxtimes}{e}_{x} + \frac{d\Pi}{dy} \stackrel{\boxtimes}{e}_{y} + \frac{d\Pi}{dz} \stackrel{\boxtimes}{e}_{z}$$

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ

Таким образом, потенциальная сила записывается в виде:

$$\vec{F} = -qrad\Pi$$

Консервативными являются такие потенциальные силовые поля, которые явно не зависят от времени.

Потенциальная функция Π в таком случае называется **потенциальной энергией** частицы во внешнем консервативном поле.

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ

Пусть W_p потенциальная функция. Тогда

$$\stackrel{\boxtimes}{F} = -qrad W_p(x, y, z) = -\left(\frac{dW_p}{dx}e_x + \frac{dW_p}{dy}e_y + \frac{dW_p}{dz}e_z\right)$$

Сила, действующая на движущуюся частицу, совершает работу.

Несложно показать, что для конечных перемещений из точки 1 в точку 2

$$A_{12} = W_{p1} - W_{p2}$$

Работа консервативной силы A_{12} равна изменению потенциальной энергии частицы, взятому с обратным знаком.

Работа консервативной силы не зависит от того, по какой траектории перемещается частица из начальной точки в конечную.

ЗАКОН СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ

Рассмотрим систему, состоящую из N не взаимодействующих между собой частиц, находящихся в поле консервативных сил.

Кинетическая и потенциальная энергии і -ой частицы:

$$K_i = m_i v_i^2 / 2,$$

$$W_i = W_i(x_i, y_i, z_i)$$

Полная энергия частицы:

$$E_i = K_i + W_i = const$$

$$E = \sum_{i=1}^{N} E_i = \sum_{i=1}^{N} K_i + \sum_{i=1}^{N} W_i = const$$

Полная механическая энергия системы невзаимодействующих частиц, на которые действуют только консервативные силы, остается постоянной.

ЗАКОНЫ СОХРАНЕНИЯ. Пример практического применения

Абсолютно упругий удар

Абсолютно упругим называется такой удар, при котором механическая энергия тел не переходит в другие, немеханические, виды энергии.

Рассмотреть абсолютно упругий удар двух однородных частиц, образующих замкнутую систему -

самостоятельно