Лекция 2

Модели и стандарты качества

Программа — это данные, предназначенные для управления компонентами системы обработки информации в целях реализации определённого алгоритма.

Программное средство — объект, состоящий из программ, процедур, правил, а также, если предусмотрено, сопутствующих им документации и данных, относящихся к функционированию системы обработки информации.

Программный продукт — это ПС, предназначенное для поставки, передачи, продажи пользователю.

Качество программного обеспечения — это способность программного продукта (ПП) к удовлетворению установленных или предполагаемых потребностей при использовании в заданных условиях.

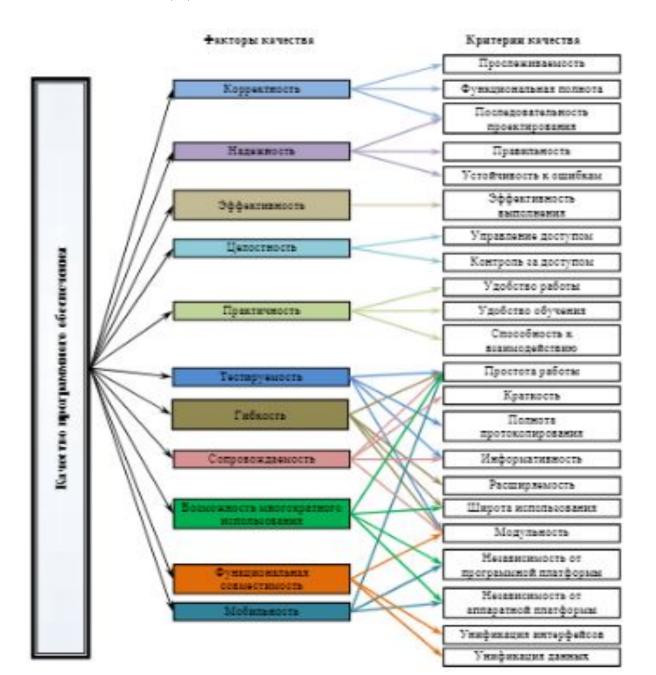
Система качества – это структурированный набор документов, регламентирующий определенные аспекты производственной деятельности предприятия.

Модель качества можно определить структурированный набор свойств, которые необходимы для удовлетворения определенных целей

Три категории моделей качества

- 1. Теоретические модели, основанные на гипотезе отношений между переменными качества.
- 2. Модели «управления данными», основанные на статистическом анализе.
- 3. Комбинированная модель

Модели качества


- 1. Модель Мак Кола
- 2. Модель Боэма
- 3. Модель FURPS/FURPS+
- 4. Модель Гецци
- 5. Модель качества Дроми
- 6. Модель качества SATC (Software Assurance Technology Center)
- 7. Модель качества ISO 9126
- 8. Модель качества QMOOD (модель качества для объектно-ориентированного проектирования)

Характеристика качества (программного средства) — это набор свойств ПС, посредством которых описывается и оценивается его качество, может быть определена путём задания иерархии её подхарактеристик.

Подхарактеристика (субхарактеристика) качества программного средства — это характеристика качества ПС, входящая в состав другой характеристики качества.

Показатель качества (программного средства) — это характеристика качества ПС, обладающая количественным значением

Модель Мак Кола

	Характеристики качества	МакКол	Боэм	FURPS+	Гецци	Дроми	Казман	Хосрави	Шармоа	ISO 9126
1.	Корректность	+			<u>+</u>					
2.	Надежность	<u>+</u>		<u>+</u>	<u>+</u>	<u>+</u>	<u>+</u>		<u>+</u>	<u>+</u>
3.	Эффективность	±	<u>+</u>	<u>+</u>	<u>+</u>	<u>+</u>	<u>+</u>		<u>+</u>	<u>+</u>
4.	Гибкость	±			<u>+</u>		<u>+</u>	<u>+</u>		
5.	Функциональность			<u>+</u>		<u>+</u>	<u>+</u>		<u>+</u>	<u>+</u>
6.	Эргономичность проектирования		<u>+</u>							
7.	,				±					
8.	Функциональная совместимость	±								
9.	Сопровождаемость	<u>+</u>	<u>+</u>	<u>+</u>	<u>+</u>	<u>+</u>	<u>+</u>		<u>+</u>	<u>+</u>
10.	Модифицируемость		<u>+</u>							
11.	Производительность			<u>+</u>						
12.	Мобильность	<u>+</u>	<u>+</u>		<u>+</u>	<u>+</u>			<u>+</u>	<u>+</u>
13	Зрелость процесса					±				
14.	Возможность многократного использования	±			±			±		
15.	Устойчивость							<u>+</u>		
16.	Масштабируемость							<u>+</u>		
17.	Безопасность			<u>+</u>			<u>+</u>			
18.	Эксплуатационная пригодность			<u>±</u>						
19.	Тестируемость	<u>+</u>	<u>+</u>				<u>+</u>			
20.	Понятность		<u>+</u>	<u>+</u>						
211	Практичность	<u>+</u>		<u>+</u>	<u>+</u>	<u>±</u>	<u>+</u>	<u>+</u>	<u>+</u>	<u>+</u>

Основой регламентирования показателей качества систем ранее являлся международный стандарт ISO 9126:1991 «Информационная технология. Оценка программного продукта. Характеристики качества и руководство по их применению»

В настоящее время стандарт ISO 9126:1991 заменен на две взаимосвязанные серии стандартов:

ISO 9126:1-4 «Характеристики и метрики качества программного обеспечения»;

ISO 14598-1-6:1998-2000 «Оценивание программного продукта».

ISO 9126-1. Часть 1: Модель качества

- Разделяет общее качество информационных систем на шесть базовых характеристик (функциональные возможности, надежность, практичность, эффективность, сопровождаемость и мобильность), и соответствующих им субхарактеристик
- Определяет требования по выбору метрик и их измерению для различных стадий ЖЦ системы.

Метрики (греч. *metrike*—мера, размер) в информационных технологиях — это совокупность принципиально важных показателей, которые определяются и используются для оценки качества программных комплексов.

ISO 9126-1. Часть 2: Внешние Метрики

- Определяются на основе поведения системы в процессе испытаний, эксплуатации или наблюдения исполняемой системы
- Обеспечивают заказчикам, пользователям, испытателям и разработчикам возможность определять качество системы в ходе испытаний или эксплуатации.

ISO 9126-1. Часть 3: Внутренние метрики

Применяются в ходе проектирования и программирования к неисполняемым компонентам системы, таким как спецификация или исходный программный текст.

Для измерения внутренних метрик используются категории, числа или характеристики элементов системы, которые, например, имеются в процедурах исходного программного текста, или потоке данных.

ISO 9126-1. Часть 4: Метрики качества в использовании

Определяет степень удовлетворения продуктом потребностей конкретных пользователей в достижении заданных целей

Метрики качества в использовании не входят в число шести базовых характеристик (функциональные возможности, надежность, практичность, эффективность, сопровождаемость и мобильность), однако они рекомендуются для интегральной оценки результатов функционирования комплексов программ.

Характеристика качества (программного средства) — это набор свойств ПС, посредством которых описывается и оценивается его качество, может быть определена путём задания иерархии её субхарактеристик.

Субхарактеристика качества программного средства — это характеристика качества ПС, входящая в состав другой характеристики качества.

Показатель качества (программного средства) — это характеристика качества ПС, обладающая количественным значением.

Характеристики объединены в три группы:

Категорийно-описательные, отражающие набор свойств и общие характеристики объекта. Могут быть представлены номинальной шкалой категорий;

Количественные, представляемые множеством упорядоченных, равноотстоящих точек. Эти показатели можно объективно измерить и численно сопоставить с требованиями;

Качественные, содержащие несколько упорядоченных или отдельных значений (категорий). Устанавливаются в значительной степени субъективно и экспертно

Стандартизированные информационных систем

юказатели	качества

Категорийно-описательные метрики					
Функциональные	Функциональная пригодность				
возможности	Корректность (правильность)				
	Способность к взаимодействию				
	Защищенность				
	Согласованность				
Количественные метрики					
Надежность	Завершенность				
	Устойчивость к дефектам				
	Восстанавливаемость				
	Доступность (готовность)				
Эффективность	Временная эффективность				
	Используемость ресурсов				

Стандартизированные информационных систем

показатели

качества

Качественные метрики					
Практичность	Понятность				
	Простота использования				
	Изучаемость				
	Привлекательность				
Сопровождаемость	Анализируемость				
	Изменяемость				
	Стабильность				
	Тестируемость				
Мобильность	Адаптируемость				
	Простота установки				
	Сосуществование (соответствие)				

Функциональные возможности – способность системы обеспечивать функции, удовлетворяющие установленным потребностям заказчиков и пользователей при применении комплекса программ в заданных условиях.

Функциональная пригодность — это набор и описания атрибутов, определяющих назначение, номенклатуру, основные, необходимые и достаточные функции системы, заданные техническим заданием и спецификациями требований заказчика или потенциального пользователя.

Корректность

Частные конструктивные показатели корректности

- Корректность структуры программ
- Корректность обработки данных
- Корректность межмодульных интерфейсов

Конструктивная корректность — соответствие структуры общим правилам структурного построения и конкретным правилам оформления и внутреннего строения программных модулей, данных и программ в данном проекте.

Функциональная корректность модулей определяется корректностью обработки исходных данных и получения результатов.

Способность к взаимодействию – свойство систем и их компонентов взаимодействовать с одной или большим числом указанных систем или компонентов.

Защищенность – способность систем защищать программы, информацию и данные.

Основное внимание сосредоточено на защите от злоумышленных разрушений, искажений и хищений программных средств и информации баз данных.

Согласованность – соответствие системы стандартам, нормативным документам, соглашениям или нормам законов и другим предписаниям, связанным с функциями, областью применения и защитой системы.

Надежность – свойство комплекса программ обеспечивать достаточно низкую вероятность отказа в процессе функционирования системы в реальном времени.

Завершенность — свойство системы не попадать в состояния отказов вследствие имеющихся ошибок и дефектов в программах и данных

Устойчивость к дефектам и ошибкам — свойство системы поддерживать заданный уровень качества функционирования в случаях проявления дефектов и ошибок или нарушений установленного интерфейса

Восстанавливаемость — свойство системы в случае отказа восстанавливать заданный уровень качества функционирования, а также поврежденные программы и данные.

Доступность (готовность) — свойство системы выполнять требуемую функцию в данный момент времени при заданных условиях использования

Готовность системы характеризуется коэффициентом готовности, который отражает вероятность иметь восстанавливаемую систему в работоспособном состоянии в произвольный момент времени.

Эффективность — свойство системы обеспечивать требуемую производительность с учетом количества используемых вычислительных ресурсов в установленных условиях.

Временная эффективность — свойство системы обеспечивать требуемое время отклика и обработки заданий, а также пропускную способность при выполнении его функций в заданных условиях.

Используемость ресурсов — свойство системы использовать доступные вычислительные ресурсы в течение заданного времени при выполнении его функций в установленных условиях.

Практичность (применимость) — свойство системы, характеризующееся сложностью ее понимания, изучения и использования, а также привлекательность для пользователя при применении в указанных условиях

Понятность – свойство системы, обеспечивающее пользователю возможность определения степени пригодности ее для конкретных задач и имеющихся условий эксплуатации. Даная характеристика определяется качеством документации и первичными впечатлениями от системы в целом

Простота использования определяется возможностью и комфортностью эксплуатации и управления системой

Изучаемость характеризуется удобством изучения системы пользователем с целью ее применения. Определяется трудоемкостью и длительностью подготовки пользователя к полноценной эксплуатации системы.

Привлекательность – субъективное свойство системы «нравиться» пользователям.

Сопровождаемость — приспособленность системы к модификации и изменению конфигурации.

Анализируемость — способность системы к диагностике ее дефектов или причин' отказов, а также к идентификации и выделению ее компонентов для модификации

Изменяемость – приспособленность системы к достаточно простой реализации специфицированных изменений и к управлению конфигурацией

Стабильность – способность системы предотвращать и минимизировать непредвиденные негативные эффекты от ее изменений.

Тестируемость – способность системы обеспечивать простоту проверки изменений и приемки модифицированных компонентов программ

Мобильность — приспособленность системы к переносу из одной аппаратно-операционной среды в другую.

Адаптируемость — способность системы к модификации для эксплуатации в различных аппаратных и операционных средах без применения других дополнительных действий или средств.

Простота установки — способность системы к простому внедрению (инсталляции) в указанной среде заказчика или пользователя.

Сосуществование (соответствие)— способность системы сосуществовать и взаимодействовать с другими независимыми системами в общей вычислительной среде, разделяя общие ресурсы.