=

N

s =

=N

=

W

I

.
w
HHEHOBHOWNNNANWOFNHFOHFOFRNOFOFRFWHORHFENRFNHWOOUFWNRFFHONW

Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug

Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:

T1
At
Ti
T1
T
T1
T1
It
At

Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:

Data from Faulting
Data from Faulting
Data from Faulting

Address controls Branch Selection starting
Address controls Branch Selection starting
Address controls Branch Selection starting

at mfc90u! ATL: :CSimpleStringT<wchar_t,1>::operaf
at MSO! MsoDwRegGe tDw+0x000000000000003c (Hash=
at WWLIB!FMain+0x000000000003bda2 (Hash=

Exploitable - Data Execution Prevention Violation starting at Unknown Symbol @ Ox00000000019al1001 called from
Exploitable - Data Execution Prevention Violation starting at Unknown Symbol @ 0x0000000004651001 called from
Exploitable - Data Execution Prevention Violation starting at Unknown Symbol @ 0x0000000004861001 called from
Exploitable - Heap Corruption starting at ntdll!RtlReportCriticalFailure+0x0000000000000057 called from ole32!
Exploitable - Read Access Violation at the Instruction Pointer starting at Unknown Symbol @ Ox0000000020534f 4
Exploitable - Read Access Violation at the Instruction Pointer starting at Unknown Symbol @ Ox00000000240a0d0c
Exploitable - Read Access Violation at the Instruction Pointer starting at Unknown Symbol @ Ox0000000044206e6¢
Exploitable - Read Access Violation at the Instruction Pointer starting at Unknown Symbol @ Ox000000006562207¢
Exploitable - Read Access Violation at the Instruction Pointer starting at Unknown Symbol @ Ox0000000069206e7-
Exploitable - Read Access Violation at the Instruction Pointer starting at Unknown Symbol @ Ox000QREQ07572206"
Exploitable - User Mode Write AV starting at ISSymbol!DLlCanUnloadNow+0x0000000000078f4d (Has

Exploitable - User Mode Write AV starting at msvcr90! wcwild+0x000000000000011c (Hash=

Exploitable - User Mode Write AV starting at msvecrt! wfindfirst64+0x0000000000000084 (Has

Exploitable - User Mode Write AV starting at ntdll!LdrpResCompareResourceNames+0x000000000800001e (Hash=
Possible Stack Corruption starting at kernel32!InterlockedDecrement+0x0000000000000002

221 Di anatchlo oKk OxC
DOOOOOOOC
ololelolelolelolt
909@9999(
Seryer+0;

wexooeﬁ
: 00(

Symbol (¢
DOOBOO0Sa
0009f7 (f

Possible Stack Corruntion startina at Unknown Svmbal @ Ox00000000017018e3 called from

Fuzzing everything in 2014:
a (mostly) director’s perspective

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
User
User

at
at
at
at
at
at
at
at
at
at
at
at
at
at

violation
Violation
Violation
Violation
Violation
Violation
Violation
Violation
Violation
Violation
Violation
Violation
Violation
Violation
Violation

AcCcess
Access
Access
Access
Access
Access
Access
Access
Access
Access
Access
Access
Access
Access
Access

near
near
near
near
near
near
near
near
near
near
near
near
near
near

starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting
starting

cryptsp! CryptRe LeaseContext+0x000000000000EO1a |
EXCEL'Ord1na140+0x0000000000277983 (Hash=
EXCEL ! Ordinal 40+0x00000000QQ
1SSymbol!DllUnregisterSer
1sSymbol!DllUnregisterSer
MSPTLS! LssbFIsSublineEmpt
MSPTLS! LssbFIsSublineEmpt
MSPTLS! LssbFIsSublineEmpty+0x0000000000045465 (Has
ole32! CExposedDocFile: : CopySStreamTol Stream0x000000000000018b (H:
WwWLIB! DL1CanUnloadNow+0x000000000023c697 (Hash=

WwLIB! Dl1CanUnloadNow+0x00000000004c7f8d (Hash=

WWLIB! Dl 1GetLCID+0x00000000001b5009 (Hash=

WWLIB! FMa1n+0x000000000006d1ee (Hash=

WWLIB! FMa1n+0x00000000000af7e2 (Hash=

near NULL starting at WWLIB!wdCommandDispatch+0x00000000002fb222 (Hash=

Access Violation near NULL starting at WWLIB!wdCommandDispatch+0x00000000002fb74f (Hash=

Access Violation starting at MSO!Ordinal2669+0x0000000000000078 (Hash=

Mode Write AV near NULL starting at kernel32!InterlockedDecrement+0x0000000000000009 (Hash=

Mode Write AV near NULL starting at ntdll!EtwEventEnabled+0x00000000000001ca (Hash=

About me

* Hacking binary since 15

e Left my first=last employer in 2004,
independent ever since

* Done: binary reversing to malware analysis to
cyber investigation, pentesting to blackbox
auditing to vulnerability discovery to
exploitation...

* Founded: Esage Lab => Neuronspace, Malwas,
TZOR

Section 1: hacker’s

A BIT AWAY FROM A 0-DAY...

Microsoft Word 2007/2010 E

lexploitable 1.6.0.9
Exploitability Classification: EXPLOITABLE

Recommended Bug Title: Exploitable - Data Execution Prevention Violation starting at Unknown Symbol

called from user32!gapfnScSendMessage+8x00000000

User mode DEP access violations are exploitable.
ANALYSIS END
quit:

9:000> kb

ChildEBP RetAddr Args to Child

WARNING: Frame IP not in any known module. Following frames may be wrong.
00230680 7606c4e7 00D4016a 0PPOO31T 00OPOOA1 Ox5701001

#023d6ac 76085b7c B5700ff0 00P4016a 000OO31f USER32!InternalCallWinProc+0x23
P023d728 76085913 00000000 B5700ff0 00R4016a USER32!UserCallDlgProcCheckWow+0x132

Orkypna B3anca appec 05700ff07

0x56f0000 - appec mannuura C:\Windows\| - ¢ .1 .mui (pa3mep 0x1000)

Ox5700Fff0 = Ox56T0000+0x1000+OxTffO
WHorpa cmeweHuwe ppyroe:
0:000> 7 Ox7370ffO-0x7350000

Evaluate expression: 135152 = 00020ff0

P01 USER32!DefDlgProcWorker+0xa8

pe@1 USER32!DefDlgProcW+0x22

P31f USER32!InternalCallWinProc+0x23

Pl6a USER32!UserCallWinProcCheckWow+0xed

H8b® USER32!DispatchMessageWorker+0x35e

H8d8 USER32!DispatchMessageW+0xf

POBO wwlib!GetAllocCounters+0x4d646

b175 wwlib!GetAllocCounters+@x4bfdb

H. Defaulted to export symbols for winword.exe -

E!

-

]

L S % | @ S 5 ||

0xDAAE3000 .

Address: 0x081D0000, Size: 1864K, Heap (Private Data)
lose

3

v1>352211 wwlib!GetAllocCounters+0x4bdb2
01382211 winword!wdGetApplicationObject+@x63a
77c¢637eb winword!wdGetApplicationObject+0xB894
00000000 kernel32!BaseThreadInitThunk+0xe
ffffffff ntdll!__RtlUserThreadStart+0x70
00000000 ntdll!_RtlUserThreadStart+0x1b

O0Z51ads0o
9023fabc
pB23fafc
9023fbo8
9023fb48
0023fb60

Z1TOT1IT00
2f@9%1ec2
7692ed5c
77c637eb
77c637be
20000000

Z1TUTJ0000
2f050000
7ffd5000
7ffd5000
21092045
2092045

JUOYY0090
20000000
9023fb48
77e3daa5
7ffd5000
7ffd5000

InternalCallWndProc Bui3wBaer agpec (6aza mui)+0x1000+0xfffo:
0d4edffO edOf loopne ©d4elddl

0d4edff2 4e dec esi

0d4edff3 0470471300 or eax,13D770h

@d4edff8 e9a6367d5e jmp (NS 'D\\UnregisterServer+0x18b]
9d4edffd 0000 add byte ptr [eax],al

0d4edfff 00 777

fd4el0Ddl 77 7?7

"loopne 0d411001" = (0d4e)dfed = yxkazartens Ha npepsayumin heap chunk

03360Ff0 c7442404b8B977200 mov
93360ff8 e%ab3backb4 jmp

dword ptr [esp+4],7297B8h
[' D1 lUnregisterServer+0x18b34 (67e246a3)

THE IDEAL FUZZER

Problems with fuzzers

1. Too specialized.

E.g. fuzz only browsers, or only files
Not suitable for fuzzing everything by design

2. Enforce unnecessary constraints.

E.g. glue mutation with automation with crash monitoring
Kills flexibility => not suitable for fuzzing everything

3. Steep learning curve.

E.g. templates & configs
Is it worthy to learn a system which is constrained anyway?

What | want (from a fuzzer)

Omnivore.

Target invariant: software type, data type, platform, architecture

Omnipresent.

Hosting platform invariant: VM/hardware/laptop/localnet/clouds...

“LEGO”

Mix & match components
Rapid support for new targets
Hot patching for tweaking

What | want, cont’d

Autonomous.

Can leave it for a week?
Just runs

Unlimited, native scaling.

Any number of fuzzers running at the same time
0 time to set up new targets

Right now.

No time for development

Key design decisions

Network client-server architecture
Build upon isolated, generic tools

Native automation
bash, cnd/PowerShell, cscript/wscript, AppleScript...

Native instrumentation
DebugAPI, CrashWrangler, cdb postmortem scripts...

Highly generic mutators

Home-made bitflipping tools, grep/sed/urandom, radamsa...

Client

Executes the target
Monitors exceptions
Analyzes crashes

Arbitrary platfrom:
Software/hardware VM
Physical network
Single laptop

Clouds

Running
in a loop

[

Server
Serves test cases

Collects crash logs
Doesn’t care about
targets

— Test cases
Crash logs

>

Scaling

addition

aware@doromozeka:~/TUzZzZ1lng-servers ./estats

9
7
107
2
256

539
2
7 ¢
14
5
2
=)
63
92
3
2
42
1
2
8
4
52
107
2
69
115
72
4
(]
1
22
68

—

N
HWUOUHFWNHEHEFONWU

—

APP: cscript.exe

APP: excel.exe

APP: viewer_.exe

APP: vilewer.exe

APP: winword.exe

R
cscript_exe/S 8 7600 16385/

cscript_exe/5 8 7601 18283/
EXCEL_EXE/12_0_6683 5002/
I1SSymbol_ocx/1201_ 1404 202 0/
kernel32 dl1/6 1 7601 18409/
mfc90u dll/9 0_ 30729 6161/
MSO_DLL/12 0 6662 5000/
MSO_DLL/12 0 6683 5000/
MSPTLS_DLL/12_0_6682;5000/
msver90_dll/9 0 30729 6161/
msvert dll/7 0_7601 17744/
NPSVG3 dll/3_0_0_94/

ntdll d11/6 1 _7600_16915/
ntdll dll/G 1_7601_18247/
ole32_d11/6_1_7601_17514/
unknown/0_0_0_0/
Viewer__exe/1201 1404 202 0/
Viewer_exe/1201 1404 202 0/
WINWORD_EXE/12_ 0 6668 5000/
WINWORD_EXE/12 0 6690 S000/
WINWORD_EXE/12_ 0 6695 5000/
WINWORD_EXE/14 0 7113 5001/
WWLIB DLL/12 O 6668 5000/
wwlib d11/12 O 6690 5000/
WWLIB_DLL/12LO_6690_5000/
WWLIB DLL/12 0 6695 5000/

Exploitability
Exploitability
Exploitability
Exploitability
Exploitability
Exploitability
Exploitability
Exploitability

Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:

Data from Faulting
Data from Faulting
Data from Faulting
Exploitable - Data
Exploitable - Data
Exploitable - Data
Exploitable - Heap
Exploitable - Read
Exploitable - Read
Exploitable - Read
Exploitable - Read
Exploitable - Read
Exploitable - Read

Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug

Classification:
Classification:
Classification:
Classification:
Classification:
Classification:
Classification:
Classification:

./resuLts

EXPLOITABLE
EXPLOITABLE
PROBABLY _EXPLOITABLE
PROBABLY _EXPLOITABLE
PROBABLY NOT _EXPLOITABLE
PROBABLY NOT _EXPLOITABLE
UNKNOWN
UNKNOWN

Results

Address controls Branch Selection starting
Address controls Branch Selection starting
Address controls Branch Selection starting
Execution Prevention Violation starting at
Execution Prevention Violation starting at
Execution Prevention Violation starting at

Corruption starting

Access
Access
Access
Access
Access
Access

Violation
Violation
Violation
Violation
Violation
Violation

at
at
at
at
at
at

the
the
the
the
the
the

Instruction
Instruction
Instruction
Instruction
Instruction
Instruction

Pointer
Pointer
Pointer
Pointer
Pointer
Pointer

at mfc90u! ATL: :CSimpleStringT<wchar_t, 1>: :operator=+0x000000
at MSO! MsoDwRegGe tDw+0x000000000000003¢c (Hash=
at WWLIB!FMaln+0x000000000003bda2 (Hash=

Unknown Symbol @ 0x00000000019al1001 called from user32!gapfn
Unknown Symbol @ 0x0000000004651001 called from user32!gapfn
Unknown Symbol @ 0x0000000004861001 called from user32!gapfn
at ntdll!RtlReportCriticalFailure+0x0000000000000057 called from ole32!CRetailMallo

starting
starting
starting
starting
starting
starting

at
at
at
at
at
at

Unknown
Unknown
Unknown
Unknown
Unknown
Unknown

Symbol @ Ox0000000020534f44
Symbol @ Ox00000000240a0d0d
Symbol @ Ox0000000044206e69
Symbol @ Ox0OOOOOO0E5622074
Symbol @ OxOOOOOOO0E9206e75
Symbol @ Ox0000000075722065

called from
called from
called from
called from

called from
called from

THE MAGIC

Fuzzing in 2014

“Shellcoder’s Handbook”: 10 years ago

“Fuzzing: Brute Force Vulnerability Discovery”: 7
years ago

Dozens of publications, hundreds of tools, thousands
of vulns found (=> code audited)

Driven by market and the competition

The beginner’s delusion

“Success in fuzzing is defined by speed & scale”
Not exactly

ClusterFuzz is still beaten by standalone
researchers

My results: ~1 night per fuzzer

Thinking

One only needs millions of test cases, if majority
of those test cases are bad

Rejected by the validator or not reaching or not
triggering vulnerable code paths

Cornerstone: bug-rich branches of code

Problem

No algorithm to discover “fresh” code paths

Code coverage can only measure the already
reached paths

Evolutionary input generation is tiny (think Word
with embeddings)

Where is the “new” code?

Code unobviously triggered or reached
Presumably effortful input generation

Presumably constrained exploit

Unobvious Examples

CVE-2013-3906: TIFF O'day

Ogl.dll=gdiplus.dll alternative only in Office 2007

CVE-2014-0315: Insecure Library Loading with
.cmd and .bat

CVE-2013-1324: Microsoft Word WPD stack
based buffer overflow

Presumably Effortful Examples

CVE-2013-1296: MS RDP ActiveX Use-after-Free

No public ActiveX tools can target UaFs

Strict syntax-based and/or layered formats

My experience: the better the generator, and the deeper the targeted data layer, the
more bugs found

Microsoft DKOM/RPC

Did you know one can send a DKOM/RPC request to the port mapper (135)
to enable RDP?

Presumably Constrained Example

Standard ActiveX in Windows

Requires user interaction in IE
But IE is not the only wide-spread software capable of loading ActiveX...

RESULTS

aware@Gromozeka:~/

- = N

w

—
w
HFNBHFONBNOFODOFODWHODHFFFN

uzzing-server$./estats
APP: winword.exe

I/

MSO_DLL/12 O 6662_S000/
MSO_DLL/12 © 6683 S000/
ole32 dll/6 1 7601 17514/
uINuORD EXE/12 0 6668 , S000/
WINWORD_EXE/12 O 6690_5000/
WINWORD_EXE/14 © 7113 S001/

R

Microsoft Word

esults/winword/

WWLIB DLL/12 O
wwlib_dll/12 0_
WWLIB DLL/12 O

Exploitability
Exploitability
Exploitability
Exploitability
Exploitability
Exploitability
Exploitability

Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:
Title:

Data
Expl
Expl
Expl
Prob
Prob
Prob
Prob
Prob
Prob
Prob
Read
Read
Read
Read
Read
Read
Read
Read
Read
User

Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
Bug
=]s}
Bug
Bug
Bug
Bug
Bug
Bug
Bug

6668_5000/
6690_5000/
6690_5S000/

Classification:
Classification:
Classification:
Classification:
Classification:
Classification:
Classification:

from Faulting
oiltable - Data
oltable - Data
oitable - Data
ably
ably
ably
ably
ably

Exploitable
Exploitable
Exploitable
Exploitable
Exploitable
ably Exploitable
ably Exploitable
Access Violatio
Access Violatio
Access Violatio
Access Violatio
Access Violatio
Access Violatio
Access Violatio
Access Violatio
Access Violatio

EXPLOITABLE

PROBABLY _EXPLOITABLE
PROBABLY _EXPLOITABLE
PROBABLY _NOT_EXPLOITABLE
PROBABLY _NOT_EXPLOITABLE
UNKNOWN

UNKNOWN

Execut;on Prevent;on V;olat;on start;ng
Execution Prevention V;olat;on starting
Execution Prevention Violation starting

n
n
n
n
n
n
n
n
n

Execution Prevention Violation
from Faulting Address controls
from Faulting Address controls
from Faulting Address controls
from Faulting Address controls
from Faulting Address controls

Data
Data
Data
Data
Data
Data
Read
near
near
near
near
near
near
near
near

near
Code
Code
Code
Code
Code

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

at
at
at
at
at
at
at
at

starting
starting
starting
starting
starting
starting
starting
starting

ole32! CExposedDocFile:
WWLIB! D11GetlLCID+0x00000000001b5009 (Hash=

WWLIB! FMaln+0x00000000000af7e2 (Hash=

WWLIB! wdCommandD1spatch+0x00000000002fb222 (Hash=
WWLIB!wdCommandD1spatch+0x00000000002fb74f (Hash=

NULL
Flow
Flow
Flow
Flow
Flow

starting
starting
starting
starting
starting
starting

! starting at MSO!Ordinal2669+0x0000000000000078 (Hash=
Mode Write AV near NULL starting at ntdll!EtwEventEnabled+0x00000000000001ca (Hash=

at
at
at
at
at
at

Address controls Branch Selection starting at MSO'MsoDwRegGetDw+0x000000000000003: (Hash=

at Unknown Symbol @ Ox00000@08019a1001 g¢alled from users2! gapfnScSendMessage+0x00
at Unknown Symbol @ 0x0000000004651001 (called from usep32! gapfnScSendMessage+0x00
at Unknown Symbol @ 0x0000008004861001 called from user32!gapfnScSendMessage+0x00

Symbol @ '©x00000000000BBE00 called from MSPTLS!Lssb
nal4480+0x0000000000@©02a8 (Hash-

WWLIB'DllCanUnloadNow+0x00000000002dc782 (Hash—
Access Violation on Control Flow starting at MSO'0rd1na14178+0x66000000000009f7 (Hash=

cryptsp!CryptReleaseContext+0x000000000000001a

MSPTLS! LssbFIsSublineEmpty+0x0000000000004ffa (Has

MSPTLS! LssbFIsSublineEmpty+0x0000000000045465 (Hash=
:CopySStreamT ol Stream-0x000000000000018b (Hash=

Microsoft XML

zeka:~/Tuzzing-server$./festats ./results/xslL-test2/
cscript.exe

cscript_exe/5 8 7600 16385/
cscript_exe/5 8 7601 18283/
ntdll_dll/6_1 7600 16915/
ntdll_dll/6_1 7601_18247/

NNSNN O

Exploitability Classification: EXPLOITABLE

Bug Title: Exploitable - Heap Corruption starting at ntdll!RtlReportCriticalFailure+0x0000000000000057
ExceptionAddress: 77ae33bb (ntdll!RtlReportCriticalFailure+0x00000057)

ExceptionAddress: 77c03873 (ntdll!RtlReportCriticalFailure+0x00000057)

LAST_CONTROL_TRANSFER: from 77aed42eb to 77ae33bb
LAST CONTROL TRANSFER: from 77c047a3 to 77c03873

Reporting & Bounty

Tag Timestamp
Case Opened 2014-02-17 14:10 GMT-6
A case has been opened and added to the queue for review.

Case Reviewed 2014-04-07 21:47 GMT-6
This case has been reviewed.

Offer Made 2014-04-09 14:42 GMT-6
An offer has been made for this case. Please see our email for further details.

Case Contracted 2014-04-10 15:13 GMT-6
This case has been officially contracted to the ZDI.

Vendor Disclosure 2014-04-24 14:39 GMT-6

The details of this case have been submitted to the vendor as ZDI-CAN-2277.

+ Money arrived: 2014-05-07 ($2000)

Microsoft Security Response Center 03.05.14

_ RE: [0day] Microsoft XML3 Double Free Bxoasuwe - Alisa

Hi Alisa, Thanks for your report. Could you tell me whether or &
not this issue is public? Mollie ----- Qriginal Message----- Fro...

Microsoft Security Response Center 03.05.14
RE: [probably exploitable] Microsoft Word 200... Bxoparwwue - Alisa

Thank you very much for your report. For the 2nd Word Crash, |
have opened case 19047 and the case manager, Tracie, will be...

Microsoft Security Response Center 03.05.14
RE: [probably exploitable] Microsoft Word 200... Bxogaume - Alisa

Thank you very much for your report. For the 3rd MS Word crash,

I have opened case 19046 and the case manager, Tracie, will b... TO d ay . 2 2 O 5 2 O 14
. [°

“Critical infrastracture attack” contest

@ PHDays: my 5 cents &>

219 //

I1SSymbol_ocx/1201_1404 202 0/

kernel32 dll/6 1 7601 18409/

mfcoou_dll/9 0 30729 6161/ e
msvcr90_dl1/9 0 30729 6161/ . —
msvcert dll/7 0 7601 17744/ A -
NPSVG3 dl1/3 0 0 94/ Yy 4

5

ntdll_dll1/6_1_7601 18247/

unknown/0_0_0_0/ I 4 o
Viewer exe/1201 1404 202 0/ Oy &
Viewer_exe/1201_1404 202 0/ f,[y
WINWORD EXE/12 0 6690 5000/) i

ou
HNNNFEFEFNNONWO

=

(o]
wowhkWu

Exploitability Classification: EXPLOITABLE _
Exploitability Classification: PROBABLY EXPLOITABLE [N " 4
Exploitability Classification: PROBABLY NOT EXPLOITABLE | N
Exploitability Classification: UNKNOWN . =

Bug Title: Data from Faulting Address controls Branch Selection starting at mfcSOu!ATL::CSimpleStringfswchar_t,1=: :operat:
Bug Title: Exploitable - Read Access Violation at the Instruction Pointer starting at Unknown Symbol @ Gx0000000020534f44
Bug Title: Exploitable - Read Access Violation at the Instruction Pointer starting at Unknown Symbol @ BX80000000240a0dod
Bug Title: Exploitable - Read Access Violation at the Instruction Pointer starting at Unknown Symbol @ Ox08R0000044206e69
Bug Title: Exploitable - Read Access Violation at the Instruction Pointer starting at Unknown Symbol @ Ox00008€QR65622074
Bug Title: Exploitable - Read Access Violation at the Instruction Pointer starting at Unknown Symbol @ Ox0000000069206e75
Bug Title: Exploitable - Read Access Violation at the Instruction Pointer starting at Unknown Symbol @ Ox0000000075722065
Bug Title: Exploitable - User Mode Write AV starting at ISSymbol!DllCanUnloadNow+0x0000000000078f4d (Hash=

Bug Title: Exploitable - User Mode Write AV starting at msvcrS0! wcwild+0x000000000000011c (Hash=

Bug Title: Exploitable - User Mode Write AV starting at msvcrt! wfindfirst64+0x0000000000000084 (Hash=

Bug Title: Exploitable - User Mode Write AV starting at ntdll!LdrpResCompareResourceNames+0x000000000000001e (Hash=

Bug Title: Possible Stack Corruption starting at kernel32!InterlockedDecrement+0x0000000000000008 (Hash=

Bug Title: Possible Stack Corruption starting at Unknown Symbol @ 0Ox00000000017018e3 called from user32!DispatchHookwW+0x0l
Bug Title: Probably Exploitable - Data from Faulting Address controls Code Flow starting at NPSVG3!DllUnregisterServer+ox
Bug Title: Probably Exploitable - Read Access Violation Near Null at the Instruction Pointer starting at Unknown Symbol @
Bug Title: Probably Exploitable - Read Access Violation on Block Data Move starting at msvcrS0!memcpy+0x000000000000005a
Bug Title: Read Access Violation near NULL starting at ISSymbol!DllUnregisterServer+0x000000000017426f (Hash=

Bug Title: Read Access Violation near NULL starting at ISSymbol!DllUnregisterServer+0x000000000022f32c (Hash=

Bug Title: User Mode Write AV near NULL starting at kernel32!InterlockedDecrement+0x0000000000000008 (Hash=

N

=
HFHEFNFNFFFEFFEFNFEFNFFOOOFEWOD

Lessons Learnt

Research! Primary target: code bases
Not data formats or data input interfaces or fuzzing automation technology
Yes: Ancient code, hidden/unobvious functionality etc.

Bet on complex data formats
For complex data, code paths exist which are not reachable automatically, which means probably never audited code base and zero competition.

Craft complex fuzzing seeds manually
The rule of “minimal size sample”, as stated in the book “Fuzzing: Brute Force Vulnerability Discovery” is obsolete 2014.

Remove 1-2 data format layers before injecting malformed data
Deep parsers are less audited (researchers are lazy?)
Deep parsers tend to contain more bugs (programmers are lazy?)

Estimate potency of a new vector by dumbest fuzzing prior to investing in smart fuzzing

Criteria: Bugs crowd

Bugs crowd in direction of “less audited” code base

Tweak a lot to get a “feeling” for the particular target

Keep the fuzzing setting dirty

Fuzzing is dirty by design

Pretty lying it into a well-designed system kills flexibility necessary for tweaking & rapid prototyping.

Research, again

Thank you!

