
Fuzzing everything in 2014:
a (mostly) director’s perspective

Alisa Esage



About me

• Hacking binary since 15
• Left my first=last employer in 2004, 

independent ever since
• Done: binary reversing to malware analysis to 

cyber investigation, pentesting to blackbox 
auditing to vulnerability discovery to 
exploitation… 

• Founded: Esage Lab => Neuronspace, Malwas, 
TZOR



A BIT AWAY FROM A 0-DAY…
Section 1: hacker’s



Microsoft Word 2007/2010 E



THE IDEAL FUZZER
Section 2: engineer’s



Problems with fuzzers

1. Too specialized.
E.g. fuzz only browsers, or only files

Not suitable for fuzzing everything by design

2. Enforce unnecessary constraints.
E.g. glue mutation with automation with crash monitoring

Kills flexibility => not suitable for fuzzing everything

3. Steep learning curve.
E.g. templates & configs

Is it worthy to learn a system which is constrained anyway?



What I want (from a fuzzer)

Omnivore.
Target invariant: software type, data type, platform, architecture

Omnipresent.
Hosting platform invariant: VM/hardware/laptop/localnet/clouds...

“LEGO”
Mix & match components

Rapid support for new targets

Hot patching for tweaking



What I want, cont’d

Autonomous.
Can leave it for a week?

Just runs

Unlimited, native scaling.
Any number of fuzzers running at the same time

0 time to set up new targets

Right now.
No time for development



Key design decisions

Network client-server architecture
Build upon isolated, generic tools

Native automation
bash, cmd/PowerShell, cscript/wscript, AppleScript…

Native instrumentation
DebugAPI, CrashWrangler, cdb postmortem scripts…

Highly generic mutators
Home-made bitflipping tools, grep/sed/urandom, radamsa…



Done



Results



THE MAGIC
Section 3: director’s



Fuzzing in 2014

“Shellcoder’s Handbook”: 10 years ago

“Fuzzing: Brute Force Vulnerability Discovery”: 7 
years ago

Dozens of publications, hundreds of tools, thousands 
of vulns found (=> code audited)

Driven by market and the competition



The beginner’s delusion

“Success in fuzzing is defined by speed & scale” 

Not exactly

ClusterFuzz is still beaten by standalone 
researchers

My results: ~1 night per fuzzer



Thinking

One only needs millions of test cases, if majority 
of those test cases are bad

Rejected by the validator or not reaching or not 
triggering vulnerable code paths

Cornerstone: bug-rich branches of code



Problem

No algorithm to discover “fresh” code paths

Code coverage can only measure the already 
reached paths

Evolutionary input generation is tiny (think Word 
with embeddings)



Where is the “new” code?

Code unobviously triggered or reached

Presumably effortful input generation

Presumably constrained exploit



Unobvious Examples

CVE-2013-3906: TIFF 0’day
Ogl.dll=gdiplus.dll alternative only in Office 2007

CVE-2014-0315: Insecure Library Loading with 
.cmd and .bat

CVE-2013-1324: Microsoft Word WPD stack 
based buffer overflow



Presumably Effortful Examples

CVE-2013-1296: MS RDP ActiveX Use-after-Free
No public ActiveX tools can target UaFs

Strict syntax-based and/or layered formats
My experience: the better the generator, and the deeper the targeted data layer, the 

more bugs found

Microsoft DKOM/RPC
Did you know one can send a DKOM/RPC request to the port mapper (135) 

to enable RDP?



Presumably Constrained Example

Standard ActiveX in Windows
Requires user interaction in IE

But IE is not the only wide-spread software capable of loading ActiveX…



RESULTS
Section 4: sponsor’s ☺



Microsoft Word



Microsoft XML



Reporting & Bounty

Today: 22.05.2014

+ Money arrived: 2014-05-07 ($2000)



“Critical infrastracture attack” contest 
@ PHDays: my 5 cents ☺



Lessons Learnt
Research! Primary target: code bases
Not data formats or data input interfaces or fuzzing automation technology
Yes: Ancient code, hidden/unobvious functionality etc.

Bet on complex data formats
For complex data, code paths exist which are not reachable automatically, which means probably never audited code base and zero competition.

Craft complex fuzzing seeds manually 
The rule of “minimal size sample”, as stated in the book “Fuzzing: Brute Force Vulnerability Discovery” is obsolete 2014.

Remove 1-2 data format layers before injecting malformed data
Deep parsers are less audited (researchers are lazy?)
Deep parsers tend to contain more bugs (programmers are lazy?)

Estimate potency of a new vector by dumbest fuzzing prior to investing in smart fuzzing
Criteria: Bugs crowd 
Bugs crowd in direction of “less audited” code base

Tweak a lot to get a “feeling” for the particular target

Keep the fuzzing setting dirty
Fuzzing is dirty by design
Pretty lying it into a well-designed system kills flexibility necessary for tweaking & rapid prototyping.

Research, again



Thank you!


