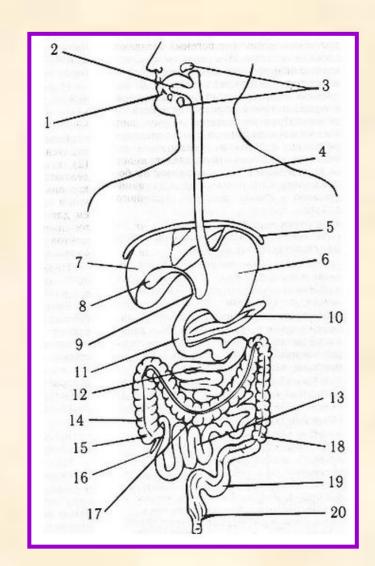
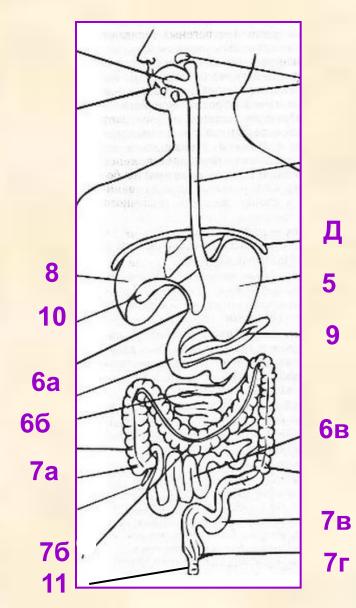
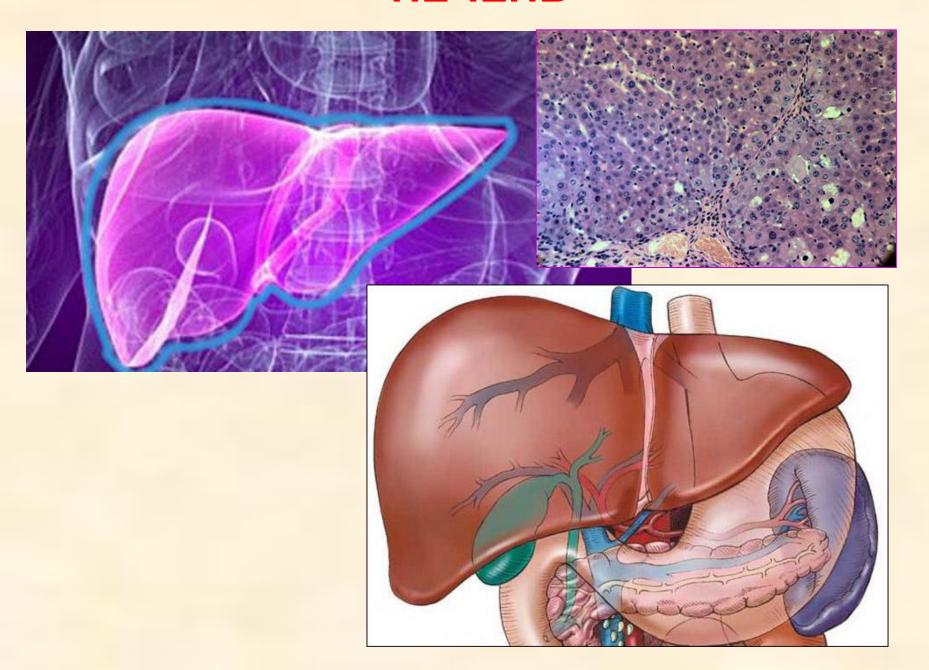
Кафедра гистологии, эмбриологии и цитологии


СТРОЕНИЕ ПЕЧЕНИ И ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

Ст.преп., к.м.н. Гринева Мария Рафаиловна


ОРГАНЫ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ

- 1) Желудочно-кишечный тракт (ЖКТ)
- 2) Большие пищеварительные железы
 - большие СЛЮННЫЕ железы
 - печень
 - ПОДЖЕЛУДОЧНАЯ железа



ОТДЕЛЫ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ

- **Средний отдел** химическая обработка пищи, всасывание и формирование каловых масс
 - 5) Желудок
 - 6) Тонкий кишечник
 - а) 12-перстная кишка
 - б) Тощая кишка
 - в) Подвздошная кишка
 - 7) Толстый кишечник
 - а) Слепая кишка
 - б) Ободочная кишка
 - в) Сигмовидная кишка
 - г) Прямая кишка
 - Тазовый отдел
 - 8) ПЕЧЕНЬ
 - 9) ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА
 - 10) ЖЕЛЧНЫЙ ПУЗЫРЬ

ПЕЧЕНЬ

ФУНКЦИИ ПЕЧЕНИ

- 1) Секреторная
 - Секреция компонентов желчи (экзокринная)
 - Секреция БАВ (эндокринная)
- 2) Синтетическая
 - 1. Синтез белков ПЛАЗМЫ Крови
 - альбумины
 - глобулины
 - факторы свертывания крови (фибриноген, протромбин и др.)
 - 2. Синтез гликогена
 - 3. Синтез холестерина
 - 4. Синтез билирубина
- 4) Метаболическая участие в реакциях
 - углеводного обмена,
 - белкового обмена,
 - липидного обмена
- 5) Дезинтоксикационная инактивация продуктов белкового обмена, гормонов, БАВ, лекарственных препаратов, токсинов)
- 6) Депонирующая накопление
 - 1. Жирорастворимых витаминов (К, Е, Д, А), витаминов группы В и др.)
 - 2. Микроэлементы (Fe, Cu, Zn и др.)
 - 3. Гликоген, жиры, белки

ФУНКЦИИ ПЕЧЕНИ (продолжение)

- 6) Экскреторная выведение с желчью продуктов метаболизма
- 7) Гомеостатическая поддержание постоянного состава крови (гомеостаза)
- 8) Барьерная предотвращает попадание компонентов желчи в кровь
- 9) Защитная
 - 1. Антитоксическая
 - 2. Иммунная
 - 3. Бактерицидная (желчь)
- 10) Кроветворная (в эмбриональном периоде)
- 11) Элиминация (разрушение) стареющих форм эритроцитов
 - Разрушение гемоглобина с освобождением Fe²⁺ и образованием желчных пигментов (билирубина и др.)
 - Поставщик железа в красный костный мозг
- 13) Депонирование крови
- 14) Терморегуляция

ЖЕЛЧЬ

ЖЕЛЧЬ – жидкий секрет клеток печени.

Процесс ЖелчеОБРАЗОВАНИЕ происходит непрерывно, а <u>поступление</u> желчи в 12-перстную кишку происходит периодически, в основном в связи с приемом пищи.

Натощак желчь в кишечник почти не поступает, она направляется в желчный пузырь, где она депонируется и концентрируется, к ней добавляется муцин.

Поэтому принято говорить о двух видах желчи

- Печеночной
- Пузырной

В сутки у человека образуется 500-1000 мл желчи.

ФУНКЦИИ ЖЕЛЧИ

- 1) эмульгирует жиры;
- 2) способствует всасыванию продуктов расщепления липидов, белков и углеводов в тонком кишечнике;
- 3) повышает активность ферментов поджелудочной железы и кишечника.
- 4) желчь усиливает гидролиз и всасывание.
- 5) усиливает работу тонкого кишечника,
- 6) прекращает действие желудочного сока,
 - снижает кислотность желудочного содержимого, поступившего в 12-перстную кишку,
 - инактивирует пепсин.
- 7) обладает бактериостатическими свойствами.

ОСНОВНЫЕ КОМПОНЕНТЫ ПЕЧЕНОЧНОЙ ЖЕЛЧЬ

- 1. Вода 97%
- 2. Желчные КИСЛОТЫ
- 3. Желчные ПИГМЕНТЫ (билирубин)
- 4. Холестерин
- 5. Жирные КИСЛОТЫ
- 6. Липиды
- 7. Муцин
- 8. Неорганические СОЛИ

ОБЩИЙ ПЛАН СТРОЕНИЯ ПЕЧЕНИ

ПЕЧЕНЬ – паренхиматозный орган.

			ТКАНИ		происхождение
СТРОМА					
1.	Висцеральный листок	1.	Мезотелий	1.	Висцеральный листок
	БРЮШИНЫ				спланхнотома
	C T		Прист		(вентральной МезоДЕРМЫ)
2.	СоединительноТканная		ПВНСТ	2.	Зародышевая МЕЗЕНХИМА
	КАПСУЛА	3.	Сосуды	3.	Зародышевая МЕЗЕНХИМА
		4.	Нервы	4.	НейроЭКТОДЕРМА
3.	Тонкие МежДольковые	5.	PBCT	5.	Зародышевая МЕЗЕНХИМА
	ПРОСЛОЙКИ	6.	Сосуды	6.	Зародышевая <mark>МЕЗЕНХИМА</mark>
		7.	Нервы	7.	НейроЭКТОДЕРМА
			(Желчные протоки)		
П	АРЕНХИМА	1.	Эпителиальная	1.	Кишечная ЭнтоДЕРМА
	• Печеночные дольки		ткань		
	• ЖелчеВЫВОД. пути				
4					

Междольковая соединительная ткань развита слабо и дольки печени плохо отграничены друг от друга. <u>Более выраженное развитие</u> соединительной ткани в печени приводит к развитию тяжелого заболевания — цирроза печени.

КРОВОСНАБЖЕНИЕ ПЕЧЕНИ

Микроскопическая структура печени во многом обусловлена особенностями ее кровоснабжения.

СИСТЕМА ПРИТОКА:

- 1) Воротная ВЕНА несёт венозную кровь из кишечника и селезёнки
 - 2/3 объема крови (<u>Функциональная</u> система),
- 2) Печёночная АРТЕРИЯ обеспечивает поступление артериальной крови
 - 1/3 объема крови (Трофическая система).

ОТТОК крови из печени происходит по венозным сосудам, формирующим **ПЕЧЕНОЧНЫЕ** вены, которые впадают в нижнюю **ПОЛУЮ** вену.

Кровоснабжение Печеночной ДОЛЬКИ

- 1) Воротная ВЕНА
- 2) Печеночная АРТЕРИЯ
-) Сегментная

ВЕНА и АРТЕРИЯ

- 4) МежДОЛЬКовые **ВЕНА** и **АРТЕРИЯ**
- 5) ВокругДольковые **ВЕНА** и **АРТЕРИЯ**
- 6) Радиальные **ВЕНУЛА** и **АРТЕРИОЛА**
 - ☐ ВнутриДОЛЬКовые ГемоКАПИЛЛЯРЫ
- /) Классическая ПЕЧЕНОЧНАЯ ЛОЛЬКА
- 8) Центральная ВЕНА
- 9) ПодДОЛЬКОВая (Собирательная) ВЕНА


СТРОЕНИЕ КЛАССИЧЕСКОЙ ПЕЧЕНОЧНОЙ ДОЛЬКИ

ФОРМА – 6-гранная призма с плоским основанием диаметром около 1,5 мм и высотой до 2 мм.

Количество до 500 тысяч

ТКАНЕВОЙ СОСТАВ

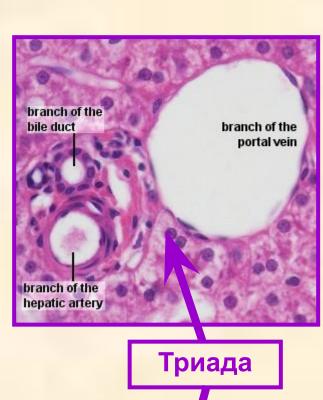
- 1) Эпителиальная ткань (ГепатоЦИТЫ)
- 2) Тончайшие прослойки РВСТ
 - Ретикуллярные волокна
 - <u>отсутствуют</u> КОЛЛАГЕНОВЫЕ волокна

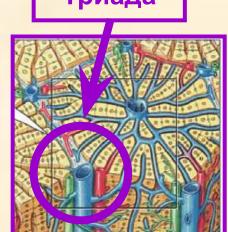
Морфологические ориентиры КЛАССИЧЕСКОЙ ПЕЧЕНОЧНОЙ ДОЛЬКИ

В углах основания находятся ТРИАДЫ

- 1) МежДОЛЬКовая АРТЕРИЯ
- 2) МежДОЛЬКовая ВЕНА
- 3) МежДОЛЬКовый Желчный ПРОТОК

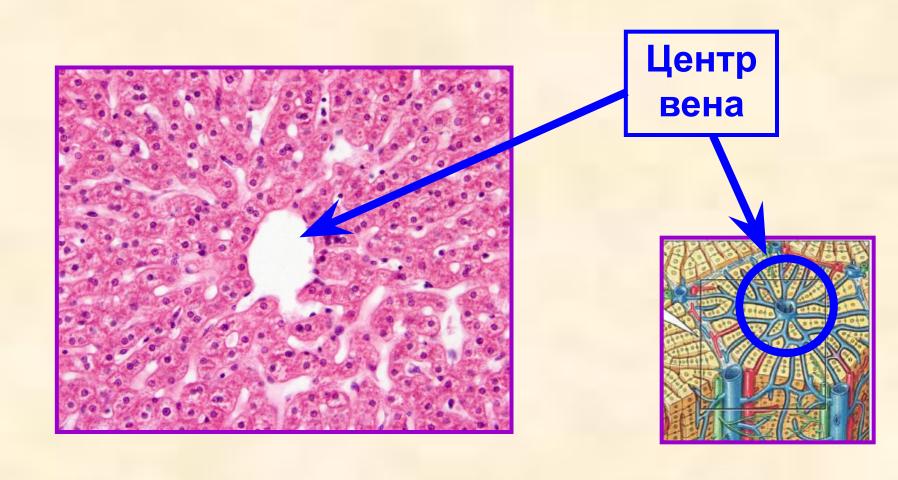
В центре – Центральная ВЕНА


Триада

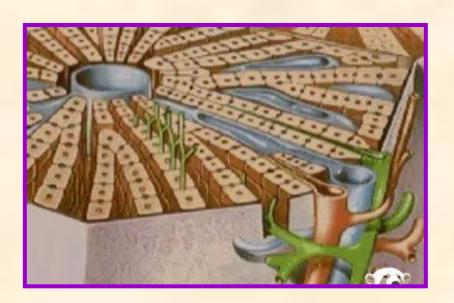


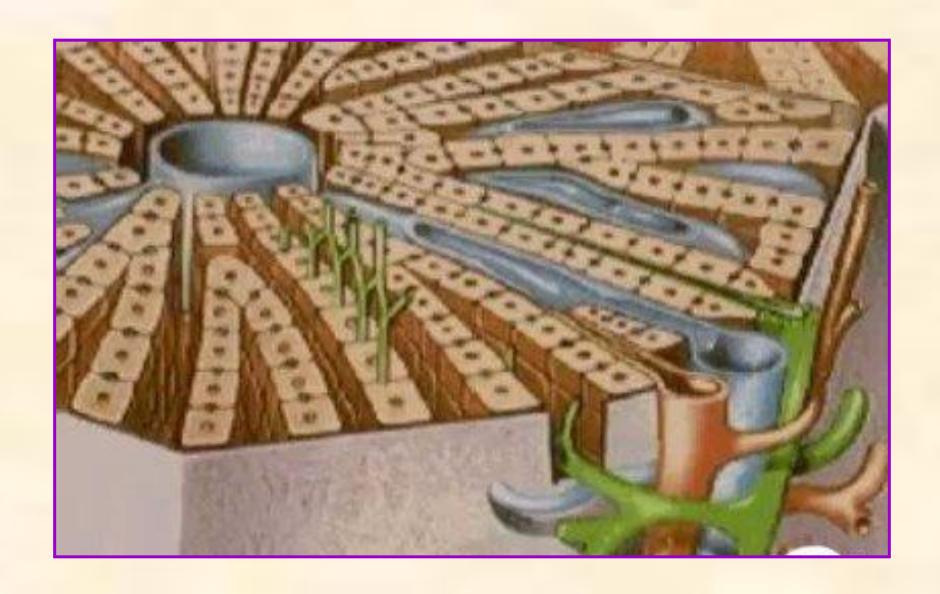
Морфологические ориентиры ТРИАДА

- 1) МежДОЛЬКовая АРТЕРИЯ (1-слойный <u>ПЛОСКИЙ</u> эпителий)
- 2) МежДОЛЬКовая ВЕНА
- 3) МежДОЛЬКовый Желчный ПРОТОК (1-слойный <u>КУБИЧЕСКИЙ</u> эпителий)



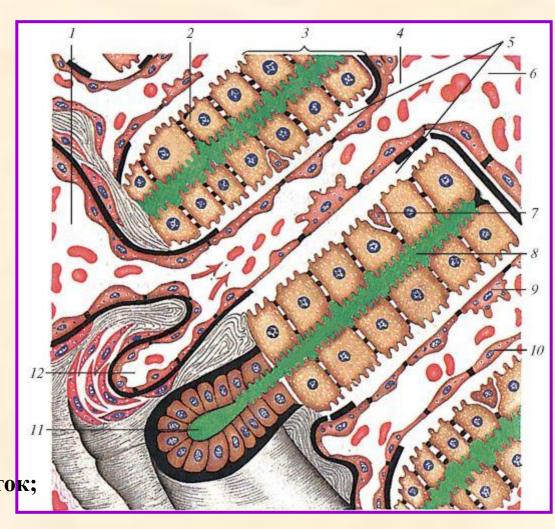
Морфологические ориентиры Центральная ВЕНА


В центре ДОЛЬКИ – Центральная ВЕНА (безмышечного типа)


СТРОЕНИЕ КЛАССИЧЕСКОЙ ПЕЧЕНОЧНОЙ ДОЛЬКИ

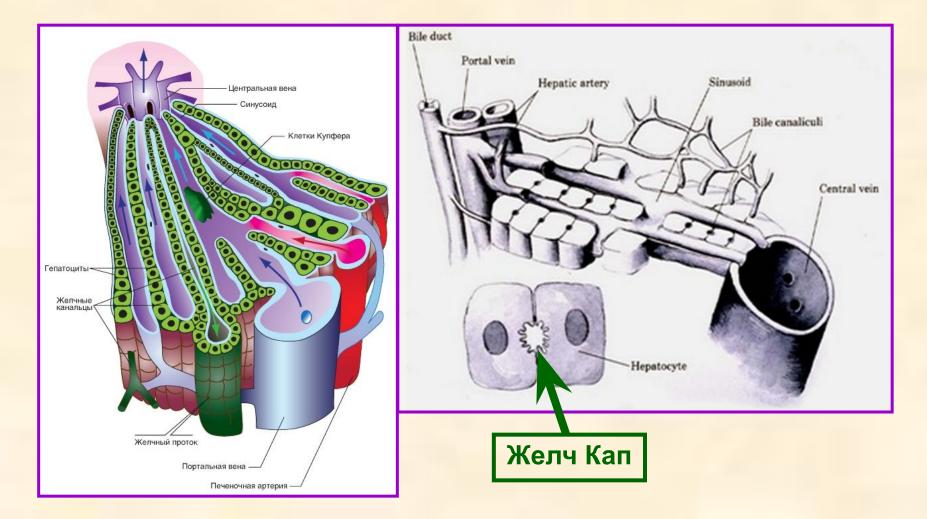
СТРУКТУРНЫЕ КОМПОНЕНТЫ

- 1. Печеночные БАЛКИ (пластины)
- 2. Желчные КАПИЛЛЯРЫ
- 3. Холангиолы
- 4. ВнутриДОЛЬКОВые Синусоидные ГемоКАПИЛЛЯРЫ
- 5. ПериСИНУСОИДальное ПРОСТРАНСТВО Диссе
- 6. Центральная ВЕНА

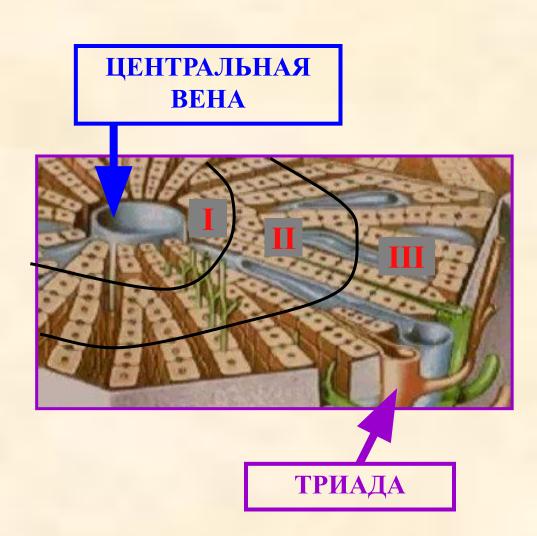


Структурные компоненты КЛАССИЧЕСКОЙ ПЕЧЕНОЧНОЙ ДОЛЬКИ

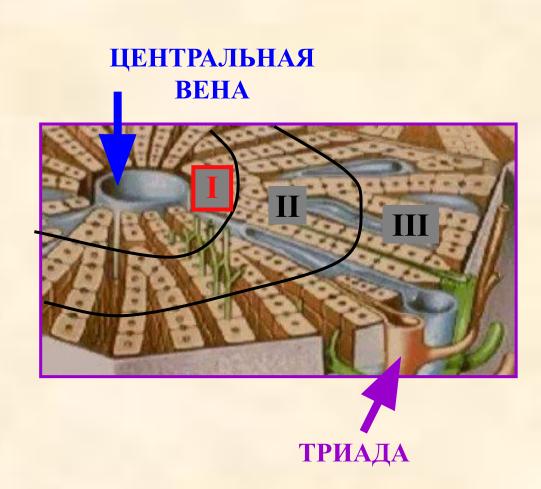
СТРОЕНИЕ КЛАССИЧЕСКОЙ ПЕЧЕНОЧНОЙ ДОЛЬКИ


- 1. Вокругдольковая вена;
- 2. Гепатоцит;
- 3. Печеночная балка;
- 4. Синусоидный гемокапилляр;
- **5.** <u>Перисинусоидное пространство</u> (пространство Диссе);
- 6. Центральная вена;
- 7. Перисинусоидный липоцит;
- 8. <u>Желчный капилляр</u>;
- 9. Звездчатый макрофагоцит;
- 10. Эндотелиальная клетка;
- 11. Вокругдольковый желчный проток;
- 12. Вокругдольковая артерия

СТРОЕНИЕ ПЕЧЕНОЧНОЙ БАЛКИ

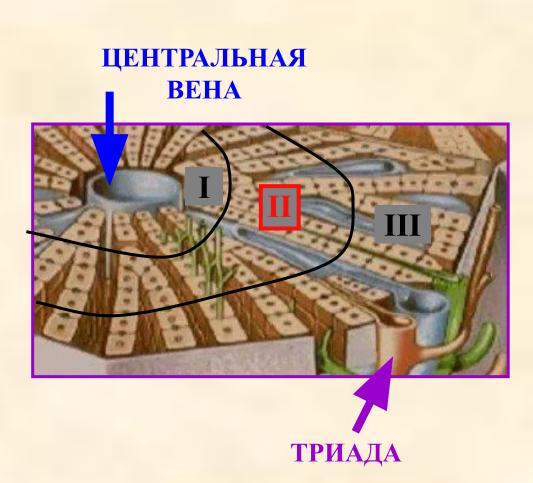

Печеночная БАЛКА — радиальный ТЯЖ ГепатоЦИТОВ, внутри него полость — Желчный КАПИЛЛЯР.

Стенка Желчного КАПИЛЛЯРа образована ГепатоЦИТами
Печеночные БАЛКИ ветвятся и анастомозируют друг с другом


30НЫ

- І. ЦЕНТРАЛЬНАЯ
- **II.** ПРОМЕЖУТОЧНАЯ
- **III.** ПЕРИФЕРИЧЕСКАЯ

I. ЦЕНТРАЛЬНАЯ ЗОНА (перивенозная)


- •мало O₂
- •много продуктов МЕТАБОЛИЗМА
- •много ВысокоДифференцированных КЛЕТОК
- •<u>начинаются</u> процессы желчеобразования
- •подвергаются АПОПТОЗУ

(продолжение)

I. ПРОМЕЖУТОЧНАЯ ЗОНА


- <u>много</u> ВысокоДифференц. клеток
- активно функционируют

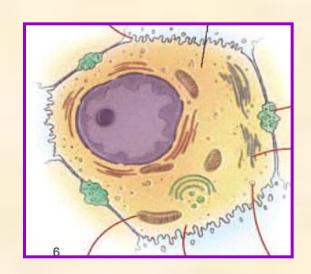
(продолжение)

III. ПЕРИФЕРИЧЕСКАЯ ЗОНА

- наиболее высокие концентрации О₂ и питательных веществ
- <u>много</u> НизкоДифференц. клеток
- часто вступают в митоз
- <u>мало</u> ВысокоДифференц. клеток

ГЕПАТОЦИТ

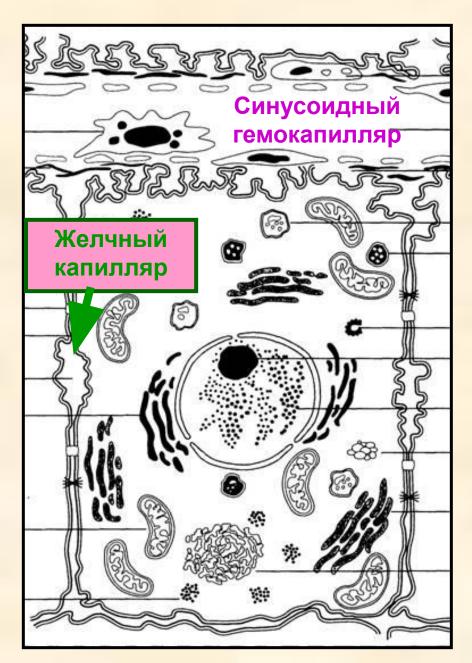
Функции


- 1) Секреция <u>компонентов желчи</u> в Желчный КАПИЛЛЯР
- 2) Секреция <u>компонентов плазмы</u> в **КРОВЬ** и лимфу
- 3) <u>отграничение</u> Желчного КАПИЛЛЯРА

Размеры – 20-25 мкм (для сравнения, эритроцит – 7 мкм)

Форма – полигональная

Виды клеток


- 1-ядерные клетки 75-80%
- 2- или многоядерные 25-20% (зависит от функционального состояния)

СТРОЕНИЕ ГЕПАТОЦИТА

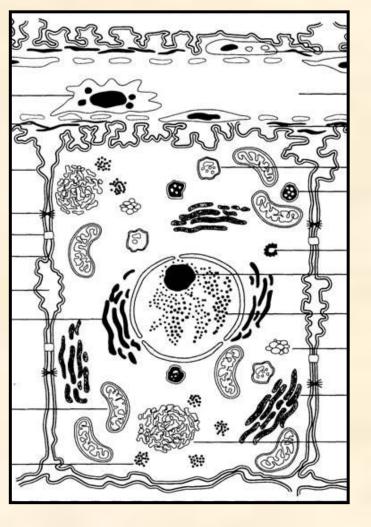
Рабочие поверхности

- 1. **БИЛИАРНАЯ** обращена к желчному капилляру
- 2. **ВАСКУЛЯРНАЯ** обращена к кровеносному капилляру
- 3. МежКЛЕТочная (Контактная)
- 2. <u>МикроВОРСИНКИ</u> на Билиарной и Васкулярной поверхностях
- 3. <u>МежКЛЕТочные КОНТАКТЫ</u> на <u>МежКЛЕТочных</u> поверхностях
 - десмосомы
 - замыкательные пластинки
- 4. Ядро
 - деспирализованный хроматин
 - ядрышки
- 5. Цитоплазма
 - Органеллы
 - Включения

СТРОЕНИЕ ГЕПАТОЦИТА (продолжение)

1. <u>ОРГАНЕЛЛЫ</u>

- 1) Гладкая ЭПС
 - синтез липидов
 - синтез углеводов (в т.ч. гликогена)
 - детоксикация (обезвреживание токсинов, лекарственных препаратов)
- 2) Шероховатая ЭПС
 - синтез альбуминов, глобулинов
 - синтез протромбина, фибриногена
- 3) Комплекс Гольджи
 - завершение синтетических процессов,
 - синтез сложных веществ (например, липопротеинов)
- 4) Митохондрии
- 5) Лизосомы
- 6) Пероксисомы
 - обезвреживание метаболизма

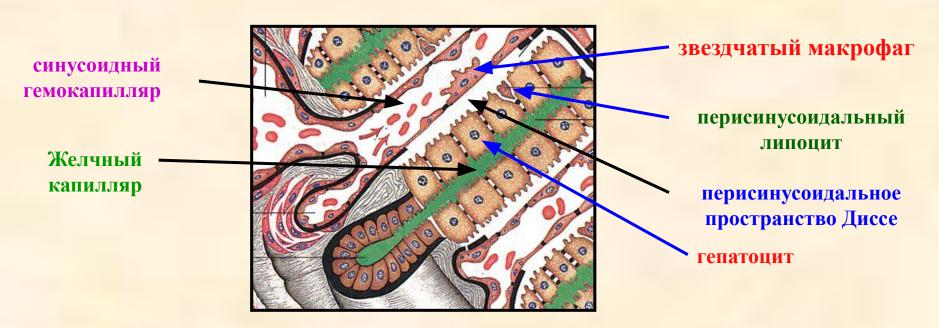

продуктов

- 7) Свободные рибосомы, полирибосомы
- 8) Цитоскелет

2. <u>ВКЛЮЧЕНИЯ</u>

- 1. Трофические
 - Гликоген
 - Липиды

- 2. Пигментные (липофусцин)
- 3. Секреторные
- 4. Экскреторные



ПРОСТРАНСТВО Диссе

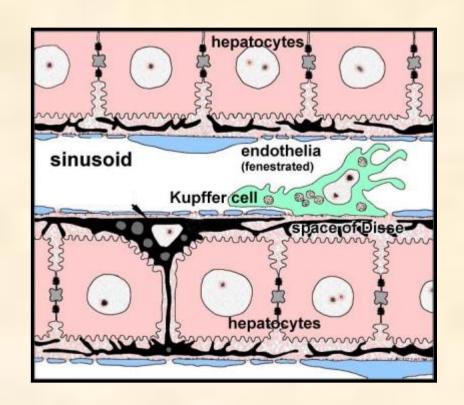
Перисинусоидальное пространство Диссе — щелевидное пространство между стенкой синусоидного капилляра и клеточной оболочкой гепатоцитов

В нем расположены

- 1) Фильтрат ПЛАЗМЫ крови
- 2) МикроВОРСИНКИ ГепатоЦИТОВ
- 3) Ретикулярные ВОЛОКНА
- 4) отростки Звездчатых МакроФАГОВ (клеток Купфера)
- 5) ПериСИНУСОИДальные ЛипоЦИТЫ (клетки Ито)
- 6) Ріt-клетки (ЛимфоЦИТЫ NK натуральные киллеры)

ЭНДОТЕЛИОЦИТЫ

ЛОКАЛИЗАЦИЯ


• стенка синусоидного порозного гемокапилляра

ОСОБЕННОСТИ СТРОЕНИЯ

- плоские
- наличие отверстий (пор) в клетках
- большое количество пиноцитозных пузырьков
- мало органелл
- наличие пор в базальной мембране

ФУНКЦИИ

- транспорт веществ из крови к гепатоцитам
- 3. синтез паракринных БАВ (факторов роста, оксида азота и др. вазоактивных веществ), необходимых для регуляции кровотока и регенерации повреждённых тканей

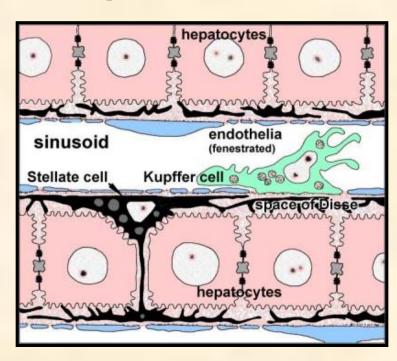
СТРОЕНИЕ КЛЕТКИ Купфера

НАЗВАНИЯ

- звездчатый макрофаг,
- фиксированный макрофаг,
- или клетка Купфера

ФУНКЦИИ

- 1. Фагоцитоз микроорганизмов, опухолевых клеток
- 2. Фагоцитоз поврежденных эритроцитов
- 3. Разрушение гемоглобина фагоцитированных эритроцитов
 - образование билирубина
 - депонирование и транспортировка Fe^{2+} в красный костный мозг


ЛОКАЛИЗАЦИЯ – просвет гемокапилляра

- между эндотелиоцитами капилляра
- фиксированы к эндотелиоцитам
- большая часть поверхности клетки контактирует с кровью

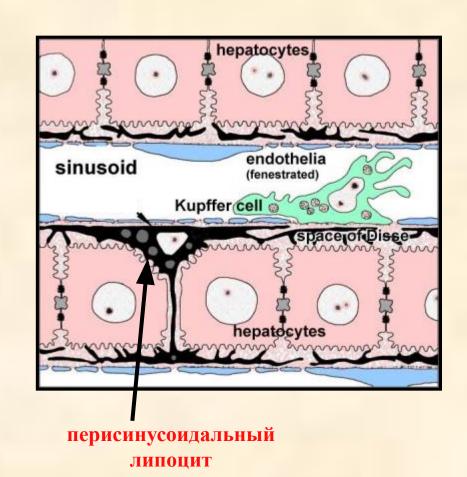
ФОРМА – отростчатая

ОРГАНЕЛЛЫ

- 1) Лизосомы, пероксисомы
- 2) Шероховатая ЭПС
- 3) Комплекс Гольджи
- 4) Эндоцитозные пузырьки
- 5) Митохондрии
- 6) Цитоскелет

ПериСИНУСОИДАЛЬНЫЕ ЛИПОЦИТЫ

НАЗВАНИЯ


- ПериСинусоидальные липоциты,
- клетка Ито

ЛОКАЛИЗАЦИЯ

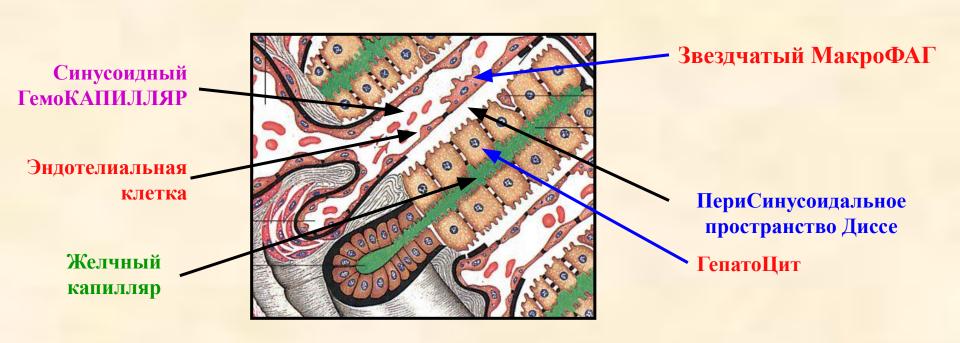
• ПериСИНУСОИДальное пространство Диссе

ФУНКЦИИ

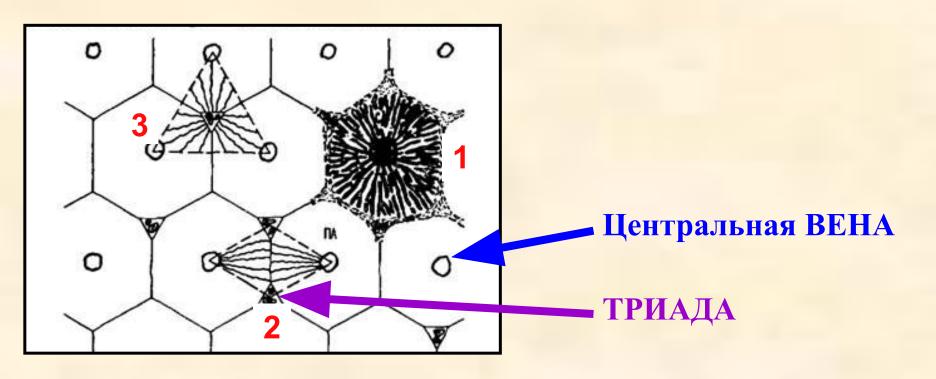
- 2. Депонирование жиров
- 3. Депонирование жирорастворимых веществ и витаминов
- 4. При повреждении гепатоцитов и гипоксии
 - утрачивают жировые капли
 - пролиферируют
 - синтезируют коллаген → цирроз печени

СТРОЕНИЕ ГЕМАТО-БИЛИАРНОГО БАРЬЕРА

ФУНКЦИИ


• <u>предотвращает</u> смешивание КРОВИ и ЖЕЛЧИ

ВЕКТОР ПРОНИЦАЕМОСТИ

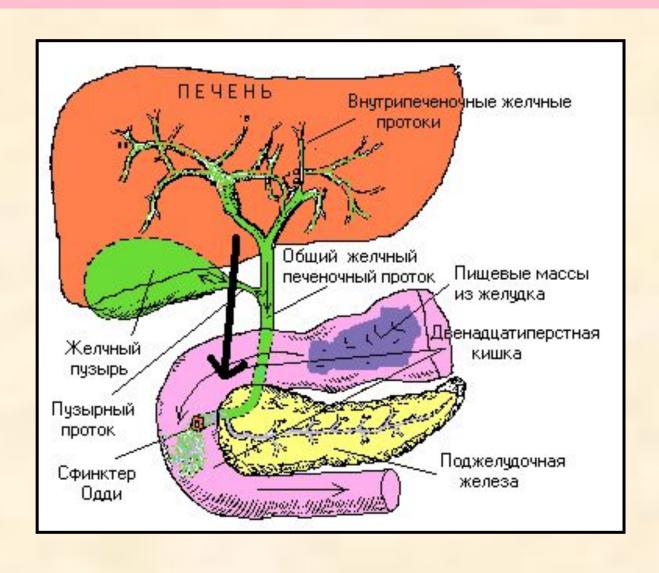

ТОЛЬКО Кровь → Желчь

компоненты

- 1) Стенка ГемоКАПИЛЛЯРА
- 2) Звездчатые МакроФАГИ (кл. Купфера)
- 3) ПериСинусоидальное простр-во Диссе
 - Pit-клетки (натурал. киллеры)
- 4) ГепатоЦИТЫ

Виды ДОЛЕК печени

- 1) Классическая Печеночная ДОЛЬКА
 - Шестигранная ПРИЗМА
- 2) Печеночный АЦИНУС
 - форма РОМБА
- 3) Портальная ДОЛЬКА
 - Треугольной ФОРМЫ

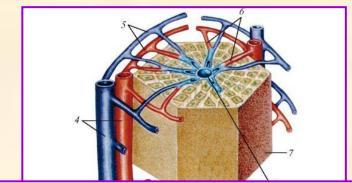

МЕХАНИЗМЫ РЕГЕНЕРАЦИИ ПЕЧЕНИ

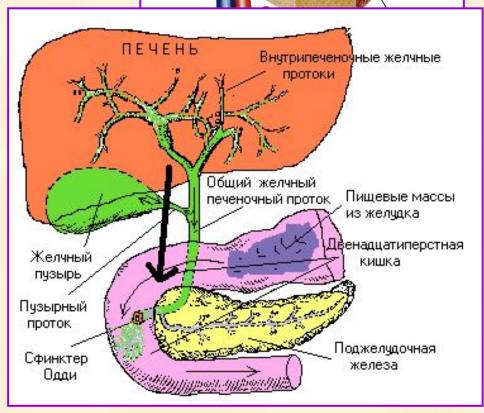
В печеночной дольке постоянно происходят процессы <u>ФИЗИОЛОГИЧЕСКОЙ</u> <u>РЕГЕНЕРАЦИИ</u>. Гибнущие в ходе апоптоза гепатоциты замещаются соседними делящимися клетками и архитектоника дольки не нарушается.

Механизмы РЕПАРАТИВНОЙ РЕГЕНЕРАЦИИ при повреждении печени

- 1) **ВНУТРИКЛЕТОЧНЫЙ** за счет увеличения числа полиплоидных клеток с гиперплазией внутриклеточных органелл, образующихся в результате эндомитоза и амитоза.
- 2) КЛЕТОЧНЫЙ за счет пролиферации (размножения) гепатоцитов митозом.
- 3) СМЕШАННЫЙ чередование этих двух механизмов.

ЖЕЛЧЕВЫВОДЯЩИЕ ПУТИ


ЖЕЛЧЕВЫВОДЯЩИЕ ПУТИ

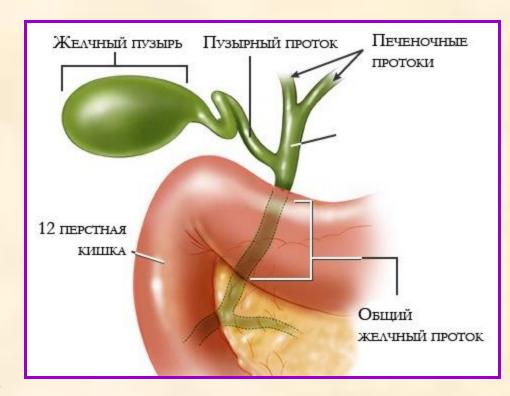

І. ВНУТРИПЕЧЕНОЧНЫЕ

- 1. Желчные капилляры
- 2. Холангиолы
- 3. Междольковые желчные протоки

II. ВНЕПЕЧЕНОЧНЫЕ

- 1. Печеночные протоки (левый и правый)
- 2. Общий печеночный проток
- 3. Пузырный проток
- 4. Желчный пузырь
- 5. Общий желчный проток

СТРОЕНИЕ ЖЕЛЧНОГО ПУЗЫРЯ


ЖЕЛЧНЫЙ ПУЗЫРЬ – полый орган объемом 50-70 мл.

ЛОКАЛИЗАЦИЯ – на нижней поверхности печени.

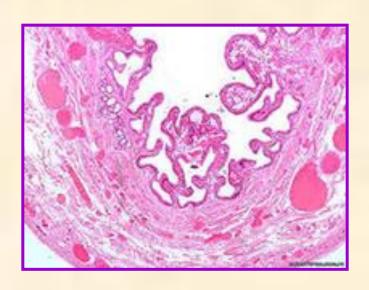
ОТДЕЛЫ

- 1) Дно
- 2) Тело
- 3) Шейка.

Пузырь соединяется с общим желчным протоком с помощью пузырного протока, по которому желчь движется в обоих направлениях.

ФУНКЦИИ ЖЕЛЧНОГО ПУЗЫРЯ

- 1) Накопление ЖЕЛЧИ между приемами пищи
- 2) Концентрация ЖЕЛЧИ в 10-20 и более раз (всасывание воды и солей)
- 3) Выделение ЖЕЛЧИ

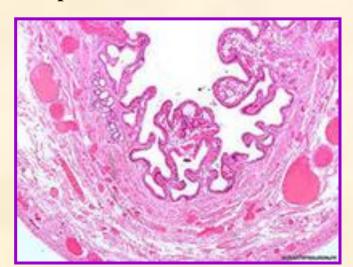

СТРОЕНИЕ ЖЕЛЧНОГО ПУЗЫРЯ

Желчный пузырь – полый орган.

Толщина стенки 1,5-2 мм

Стенка состоит из ОБОЛОЧЕК:

- 1) Слизистая оболочка
 - 1. Эпителиальная пластинка
 - 2. Собственная пластинка
- 2) Мышечная оболочка
- 3) Наружная оболочка
 - Серозная оболочка
 - в участках, покрытых брюшиной
 - Адвентициальная оболочка
 - на печеночной поверхности

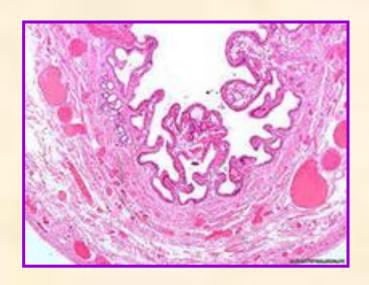


СТРОЕНИЕ СТЕНКИ ЖЕЛЧНОГО ПУЗЫРЯ

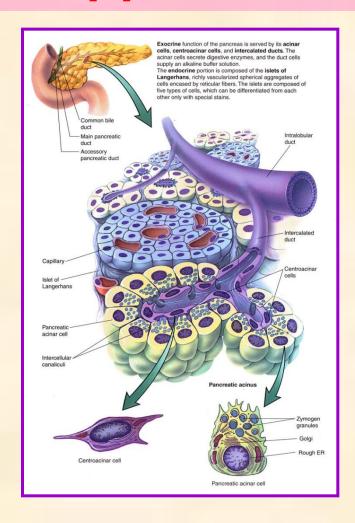
РЕЛЬЕФ – многочисленные складки слизистой оболочки

I. СЛИЗИСТАЯ ОБОЛОЧКА

- 1. Эпителиальная пластинка
 - 1-слойный высокопризматический каемчатый эпителий
 - □ Всасывание воды и солей
 - □ Секреция СЛИЗИ
 - единичные бокаловидные клетки
 - Секреция СЛИЗИ
- 2. Собственная пластинка
 - РВСТ (много эластических волокон)
 - альвеолярно-трубчатые слизистые железы
 - □ Секреция СЛИЗИ


СТРОЕНИЕ СТЕНКИ ЖЕЛЧНОГО ПУЗЫРЯ

II. МЫШЕЧНАЯ ОБОЛОЧКА


- сеть циркулярно расположенных ГЛАДКИХ миоцитов
- прослойки РВСТ, сосуды, нервы
- сфинктр (в устье шейки)

III. НАРУЖНАЯ ОБОЛОЧКА

- Адвентициальная оболочка на печеночной поверхности
 - РВСТ, сосуды, нервы
- Серозная оболочка в участках, покрытых брюшиной
 - Мезотелий (1-слойный плоский ЭПИТЕЛИЙ)
 - □ РВСТ, сосуды, нервы

СТРОЕНИЕ И ФУНКЦИИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

ФУНКЦИИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

І. СЕКРЕТОРНАЯ

- 1) Экзокринная секреция панкреатического сока (в течение суток вырабатывается 500-700 мл)
 - 1. Пищеварительные ферменты для пищеварения в тонком кишечнике (полостной и пристеночный этапы)
 - белков (трипсин, химотрипсин, пептидазы, эластаза, эрепсин)
 - нуклеопротеидов (нуклеаза, рибонуклеаза РНКаза, дезоксирибонуклеаза ДНКаза)
 - липидов (липаза, фосфолипазы, лецитиназа)
 - углеводов (амилаза, лактаза, мальтаза)

2. Активаторы ферментов

- бикарбонаты
- цитокиназа
- 2) Эндокринная секреция гормонов
 - инсулин
 - глюкогон
 - соматостатин
 - ВИП (вазоинтестинальный пептид)
 - панкреатический полипептид

ОБЩИЙ ПЛАН СТРОЕНИЯ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

Поджелудочная железа – паренхиматозный орган. Располагается забрюшинно. Состоит из СТРОМЫ и ПАРЕНХИМЫ

		Ткани		Происхождение	
CT	POMA				
1.	Передн. поверх-ть	1.	Мезотелий	1.	Висцеральный листок
	покрыта				спланхнотома
	висцеральным				(вентральной мезодермы)
	листком брюшины				
2.	Капсула	2.	ПВНСТ	2.	Зародышевая мезенхима
		3.	Сосуды	3.	Зародышевая мезенхима
		4.	Нервы	4.	Нейроэктодерма
3.	Междольковые				
	перегородки	5.	PBCT	5.	Зародышевая мезенхима
		6.	Сосуды	6.	Зародышевая мезенхима
		7.	Нервы	7.	Нейроэктодерма
4.	Внутридольковые	8.	Нервные ганглии		
	прослойки				

ОБЩИЙ ПЛАН СТРОЕНИЯ

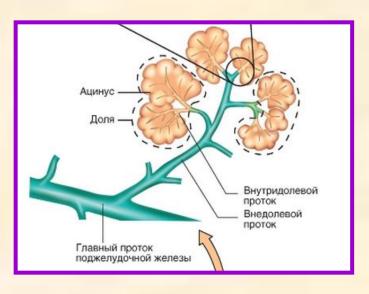
(продолжение)

	Ткани	Происхождение					
ПАРЕНХИМА (дольчатая) • ЭкзоКринная часть — 97% (Ацинусы)	Эпителиал. ткань	Кишечная Энтодерма					
•ЭндоКринная часть – 3%							
(Эндокринные Островки)							
• АЦИНО-ИНСУЛЯРНЫЕ							
<i>клетки</i> (камбиальные)							

Классификационная характеристика ЭКзокринной ЧАСТИ Поджелуд. ЖЕЛЕЗЫ

- 1) Экзокринная секрет выводится по системе выводных протоков в полость 12-перстной кишки
- 2) Сложная имеет сложную систему выводных протоков:
 - внутридольковые выводные протоки,
 - междольковые выводные протоки,
 - общий выводной проток.
- 3) Разветвленная имеет разветвленные секреторные отделы
- 4) Смешанная имеет два типа секреторных отделов:
 - 1) Альвеолярные (ацинусы І типа)
 - 2) Смешанные (ацинусы II типа)
- 6) Белково-слизистая
- 7) Мерокриновая выведение секреты происходит путем экзоцитоза без разрушения секреторных клеток

СТРОЕНИЕ ЭКЗОКРИННОЙ ЧАСТИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ


ЭКЗОКРИННАЯ ЧАСТЬ поджелудочной железы включает

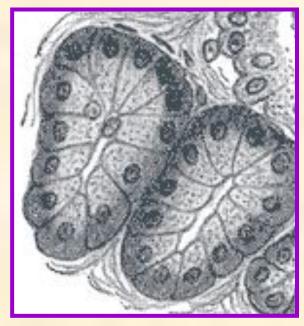
1. Секреторные отделы

- Ацинусы І типа,
- Ацинусы ІІ типа

2. Систему выводных протоков

- ВнутриДОЛЬКОВые
- МежДОЛЬКОВые
- ОБЩИЙ

Структурно-функциональная единица экзокринная часть – АЦИНУС

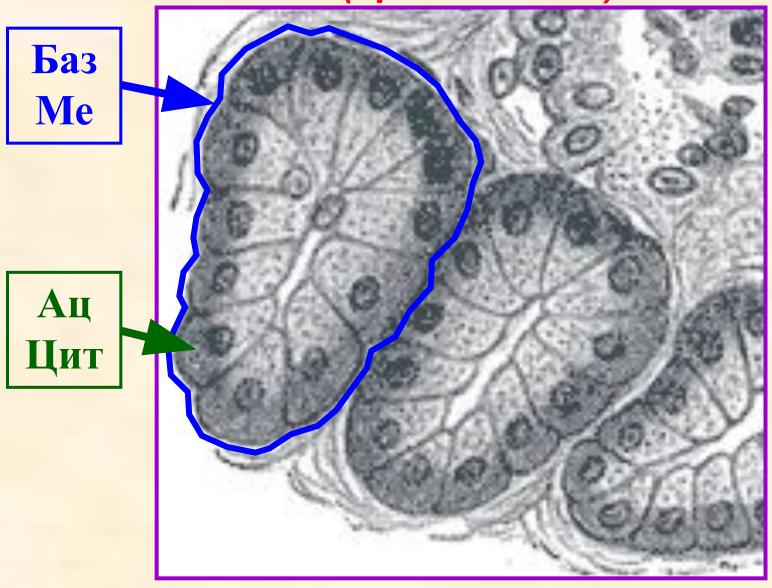

ТИПЫ ацинусов:

- ацинусы І типа
- ацинусы II типа

СТРОЕНИЕ АЦИНУСОВ І типа

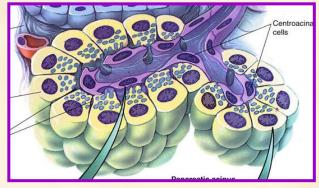
ФОРМА – шаровидная (альвеолярная)

PA3MEP – 100-150 MKM



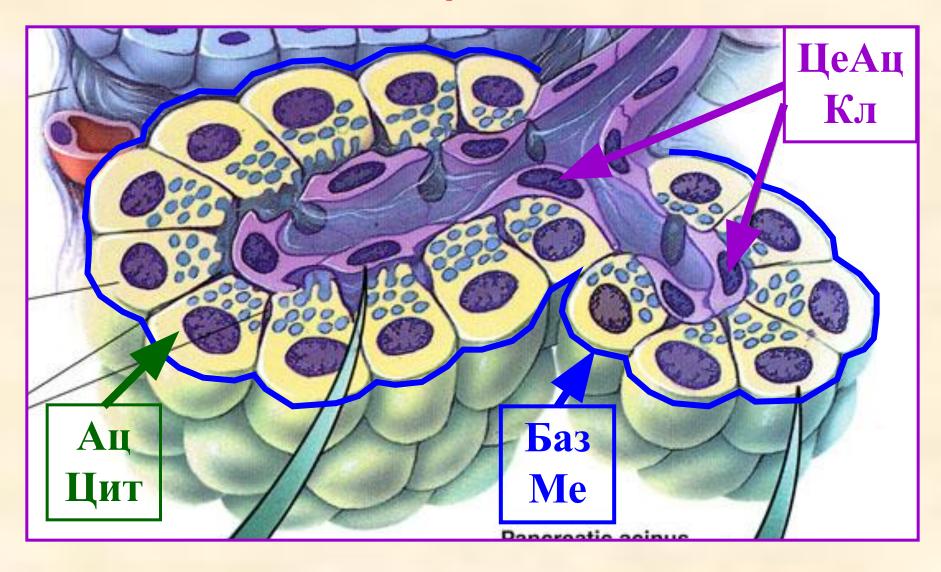
COCTAB:

- 1) АциноЦИТЫ 10-12 штук секреция неактивных форм ферментов (проферментов или зимогенов)
- 2) Базальная МЕМБРАНА


СТРОЕНИЕ АЦИНУСОВ І типа

(продолжение)

СТРОЕНИЕ АЦИНУСОВ ІІ типа

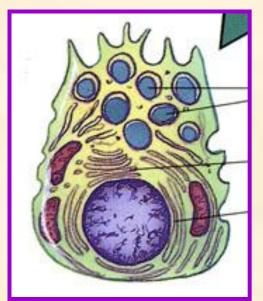

ФОРМА – смешанная

COCTAB:

- 1) АциноЦИТЫ секреция неактивных форм ферментов (проферментов или зимогенов)
- 2) ЦентроАЦИНОЗНЫЕ клетки секреция:
 - бикарбонатов
 - ЦитоКИНАЗЫ активатора проферментов
- 3) Базальная мембрана

СТРОЕНИЕ АЦИНУСОВ ІІ типа

СТРОЕНИЕ АЦИНОЦИТОВ

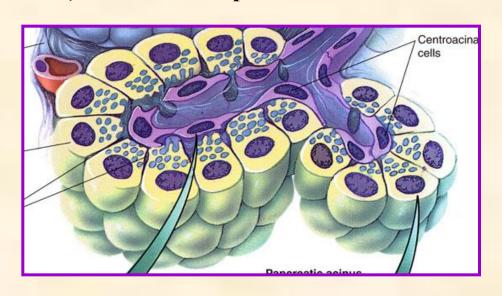

ФОРМА – коническая

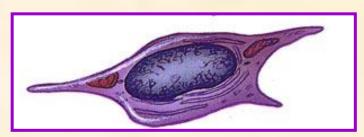
- суженная верхушка
- широкое основание

ФУНКЦИЯ – секреция неактивных форм панкреатических ферментов (проферментов или зимогенов)

СТРОЕНИЕ:

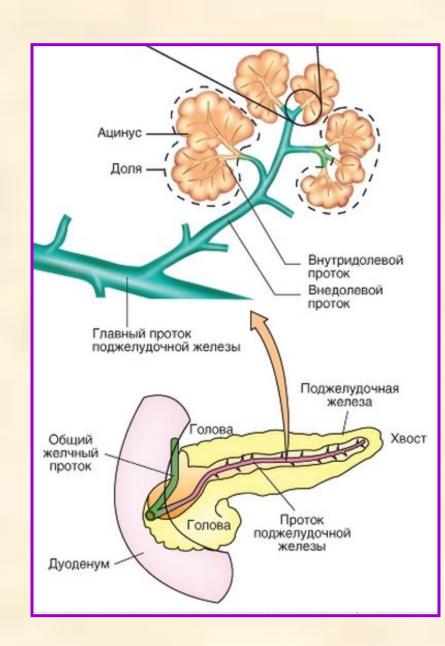
- 1. Апикальный полюс (зимогенный)
 - микроворсинки
 - *оксифильная зернистость* секреторные гранулы (включения) с неактивными формами ферментов (зимогенами)
- 2. Базальный полюс (гомогенный нет секреторных включений)
 - ядро с деспирализованным хроматином и
 1-2 ядрышками
 - гранулярная ЭПС (обилие рибос секреторных отделов ом придают базофилию)
 - комплекс Гольджи в надъядерной зоне
 - митохондрии
- 3. Боковые поверхности сложные межклеточные контакты
 - десмосомы, замыкательные пластины


СТРОЕНИЕ ЦентроАЦИНОЗН. клеток

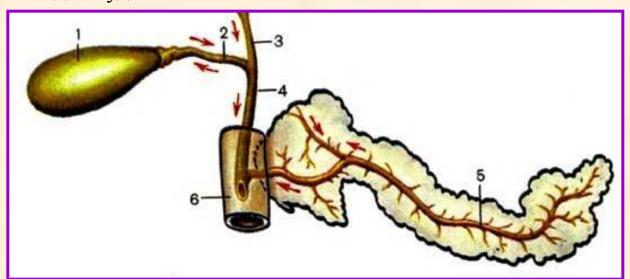

ФОРМА – уплощенная

ФУНКЦИЯ – секреция активаторов неактивных форм панкреатических ферментов (бикарбонатов и цитокиназы)

СТРОЕНИЕ:


- 1) располагаются на апикальных полюсах АциноЦИТОВ
- 2) лишены собственной базальной мембраны
- 3) имеют небольшое количество органелл общего назначения белкового и небелкового синтеза
- 4) соединены простыми межклеточными контактами

СИСТЕМА ВЫВОДНЫХ ПРОТОКОВ


- 1. Внутридольковые выводные протоки секреция воды и бикарбонатов
 - вставочные протоки выстланы 1-слойным плоским эпителием
 - межацинозные протоки 1-слойным низкопризматическим эпителием
 - внутридольковые 1-слойным кубическим эпителием,
- 2. Междольковые выводные протоки
 - выстланы 1-слойным высокопризматическим эпителием,
- 3. Общий выводной проток
 - выстлан 1-слойным высокопризматическим эпителием

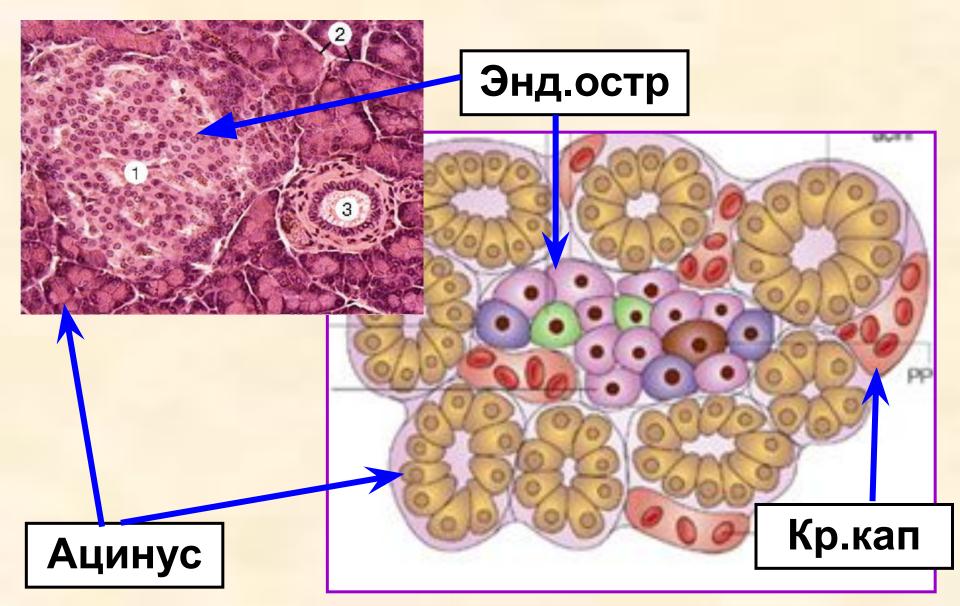
СИСТЕМА ВЫВОДНЫХ ПРОТОКОВ

3. ОБЩИЙ ВЫВОДНОЙ ПРОТОК –

- *начинается* в области хвоста поджелудочной железы, проходит через тело и головку, *соединяется* с *общим желчным протоком* и *впадает* в 12-перстную кишку.
- выстлан 1-слойным высокопризматическим эпителием,
- по мере увеличения диаметра протока
 - 1. появляются бокаловидные секреция слизи
 - 2. появляются эндокринные клетки секреция БАВ
 - 3. появляется собственная пластинка слизистой оболочки
 - 4. появляется мышечная пластинка слизистой оболочки
 - 5. в конечном отделе протока имеется **сфинктер** протока поджелудочной железы

ЭНДОКРИННАЯ ЧАСТЬ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

Структурно-функциональная единица эндокринной части поджелудочной железы ЭНДОКРИННЫЕ ОСТРОВКИ (островки Лангерганса, <u>insulae pancreatici</u>)

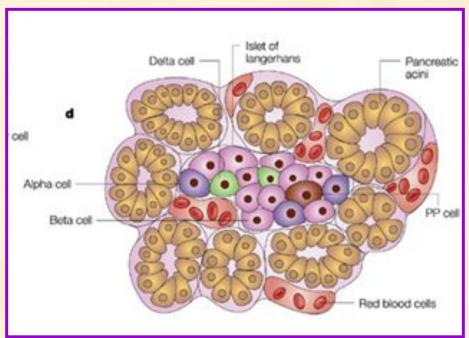

Общее количество островков колеблется в пределах от 1-2 млн.

Диаметр островка — 100-300 мкм (для сравнения — размер эритроцита 7 мкм).

Локализация — среди ацинусов (секреторных отделов) экзокринной части и отделенными от них тонкой прослойкой соединительной ткани.

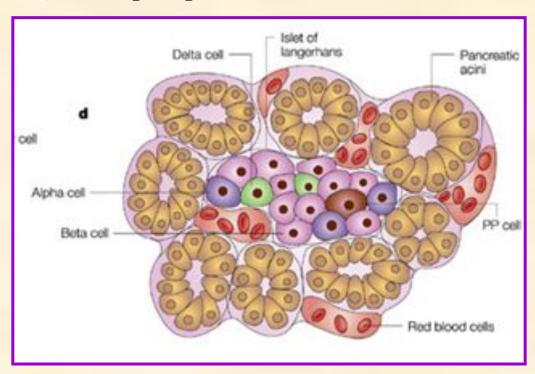
Наибольшее количество островков локализуется в <u>хвостовой</u> <u>части железы</u>.

ЭНДОКРИННАЯ ЧАСТЬ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

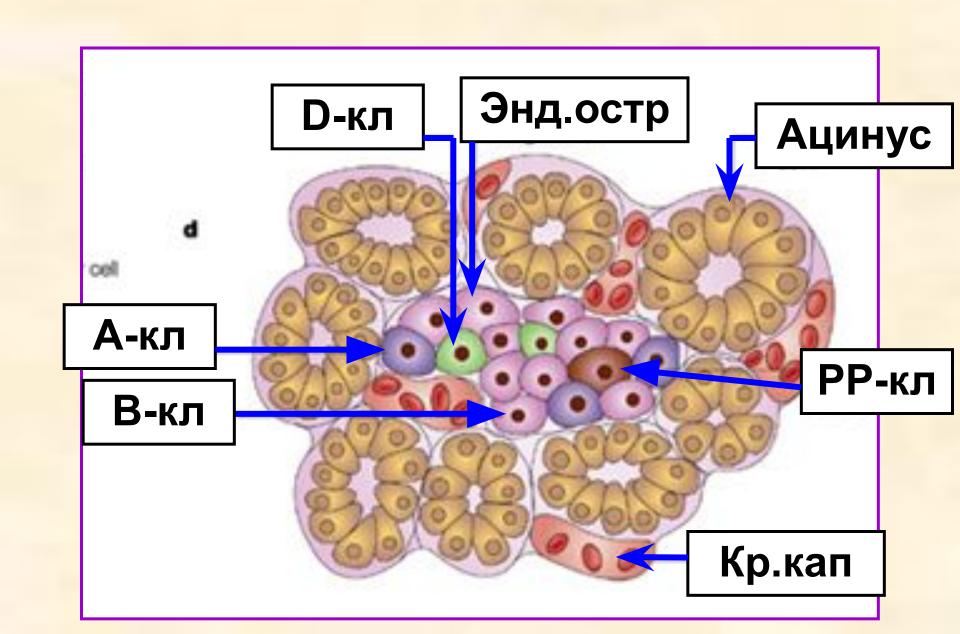

СТРОЕНИЕ ЭНДОКРИННОГО ОСТРОВКА

СТРОЕНИЕ – паренхиматозный план

I. CTPOMA

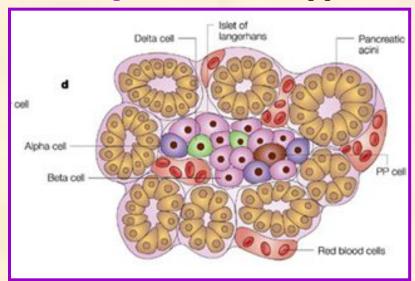

- 1) тонкая соединительно-тканная оболочка РВСТ
- 2) тонкие прослойки РВСТ
- 3) сосуды
 - капилляры фенестрированного типа
- 4) нервы

II. ПАРЕНХИМА – эндокринные клетки (ИнсулоЦИТЫ)



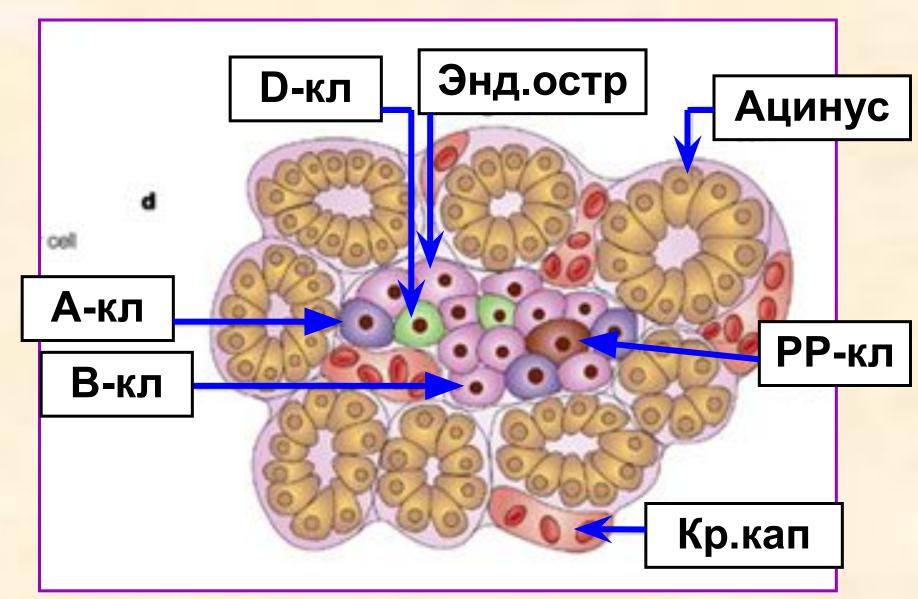
СТРОЕНИЕ ИНСУЛОЦИТОВ

- 1) Ядро
 - деспирализованный хроматин
 - ядрышки
- 2) Гранулярная ЭПС
- 3) Комплекс Гольджи
- 4) Митохондрии
- 5) Секреторные включения



типы инсулоцитов

типы инсулоцитов


- 1) В-клетки (β-клетки, *базофильные*) 70%, располагаются в *центре* островка
 - синтезируют инсулин
 - 1. способствует усвоению глюкозы соматическими клетками
 - 2. способствует преобразованию *глюкозы в гликоген* в соматических клетках
 - 3. вызывает гипогликемический эффект
- 2) А-клетки (α-клетки, *ацидофильные*) 20%, располагаются на *периферии* островка
 - синтезируют глюкагон
 - 1. усиливает *расщепление гликогена* до глюкозы в соматических клетках
 - 2. вызывает гипергликемический эффект

типы инсулоцитов

- 1) D-клетки (дельта, дендритические) 5%, располагаются на периферии островка
 - синтезируют соматостатин, который
 - 1. тормозит синтез белка
 - 2. подавляет активность В- и А-клеток (уменьшает продукцию инсулина и глюкагона)
 - 3. подавляет активность ациноцитов (уменьшает продукцию ферментов поджелудочной железы)
- 2) D₁-клетки малочисленные, располагаются на периферии островка
 - синтезируют ВИП (вазоактивный интестинальный полипептид), который
 - 1. расслабление гладкой мускулатуры
 - 2. снижение артериального давления (АД)
 - 3. стимулируют активность В- и А-клеток
 - 4. стимулируют активность ациноцитов
- 3) РР-клетки 2-5%, располагаются на периферии островка
 - синтезируют панкреатический полипептид, который
 - 1. стимулируют секрецию желудочного и панкреатического сока

ЭНДОКРИННЫЙ Островок ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

