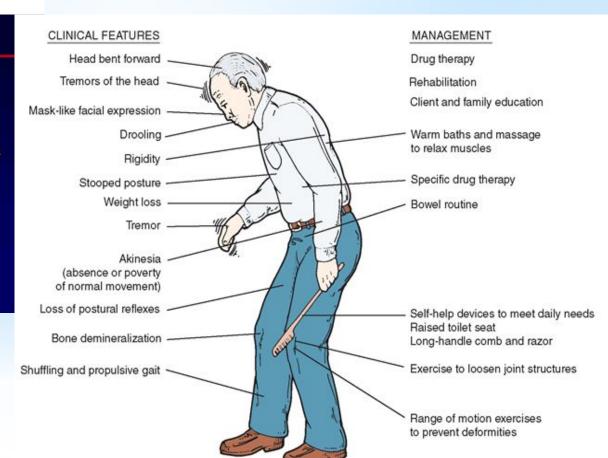


Substantia nigra


Zaporizhzhia State Medical University Pharmacology Department

Lecture № 6

HYPNOTIC, ANTIEPILEPTIC and ANTIPARKINSONIAN DRUGS

Parkinson's Disease

- Chronic, progressive neurodegenerative disease
- Slow and selective loss of substantia nigra dopaminergic neurons
- Clinical features
 - Tremor, rigidity, bradykinesia and postural instability in later stages of disease
 - Autonomic dysfunction
 - Orthostatic hypotension
 - Constipation and bladder dysfunction
 - Sexual dysfunction
 - Neuropsychiatric disturbances
 - Depression
 - Dementia
 - Psychosis

SEDATIVE-HYPNOTIC DRUGS

I. Benzodiazepine Receptor Agonists

1. BZD compounds:

```
Diazepam -Tab. 5 mg; amp. 0.5%-2 ml
```

Nitrazepam - Tab. 5 and 10 mg

Lorazepam - Tab. 1 and 2 mg, amp. 0. 2% - 1ml

Phenazepam - Tab. 0.5 and 1 mg

Alprazolam (Xanax) - Tab. 0.25 and 0.5 mg

Chlordiazepoxide

Nozepam (Oxazepam, Tazepam) - Tab. 10 mg

2. Agents of other chemical groups:

Zolpidem - Tab. 10 mg

Zopiclone - Tab. 7.5 mg

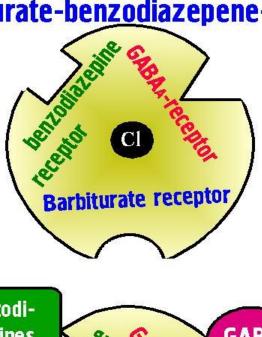
II. Hypnotics with Narcotic Effect

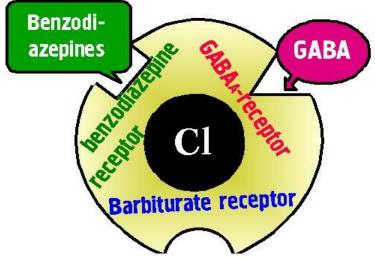
1. Barbiturates:

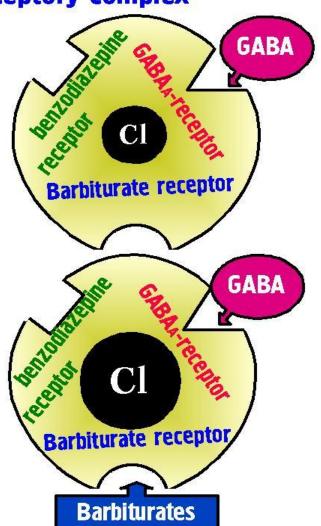
- Long-acting: 1 2 days

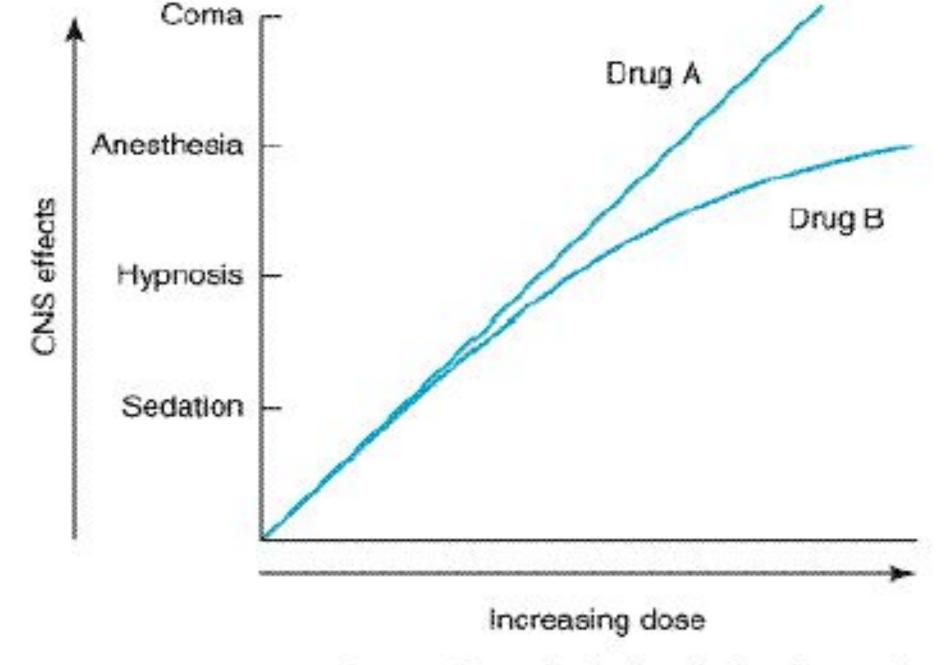
 Phenobarbital (*Luminal*) Tab. 0.005, 0.05 and 0.1 g
- Short-acting: 3 8 hours

 Amobarbital Tab. 0.03, 0.05, 0.1 g; Vial 0.5 g

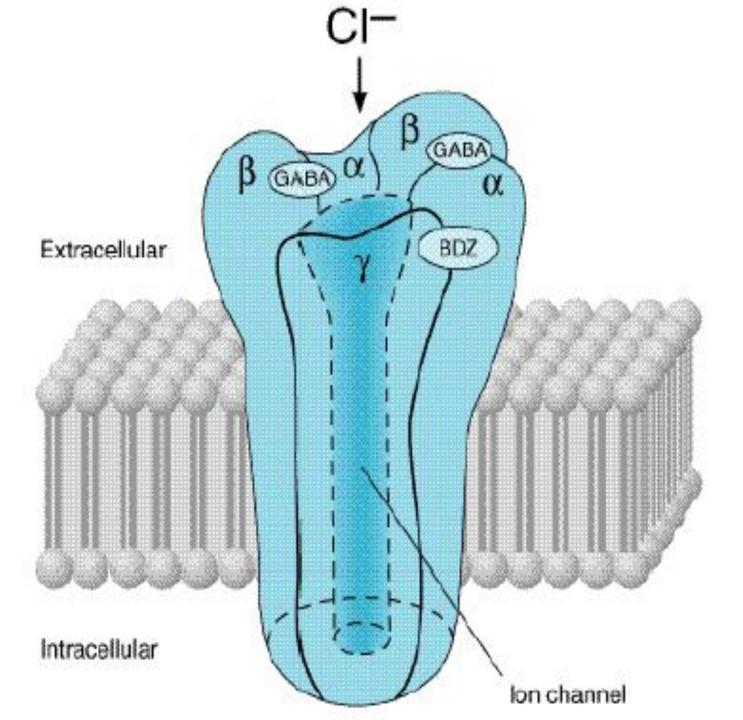

 Secobarbital Caps. 0.05 and 0.1 g; syringe 5% 2 ml


 Pentobarbital
- Ultra-short acting: 20 min
 Thiopental sodium (Aethaminalum-natrium, Nembutal)


Non-barbiturate hypnotics:Chloral hydrate - powder


Mechanism of action of barbiturates and benzodiazepines

Barbiturate-benzodiazepene-GABA-receptory complex



Dose-response curves for two hypothetical sedative-hypnotics.

MECHANISM OF ACTION of BZDs

- Bind to the α-subunit of the GABAA Rs
 surrounding the CI channels
 Designated as BZD Rs (omega-receptors)
 - □ Affinity of GABA receptors
 - □ Frequency of Cl ¯ channel opening
 - ☐ CI conductance => HYPERPOLARIZATION

INHIBITION of ACTION POTENTIAL formation and further NEURONAL FIRING

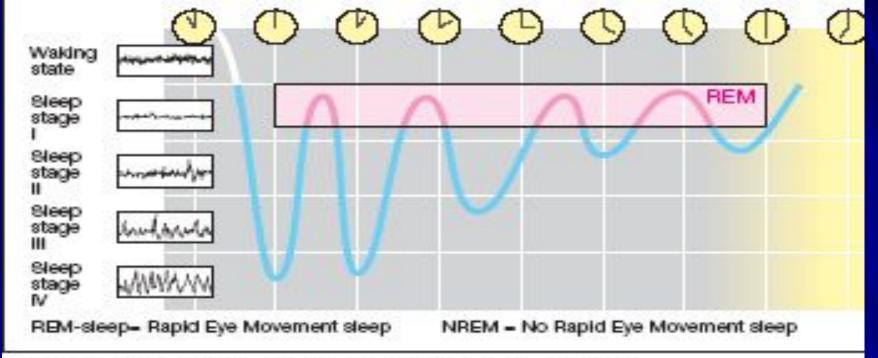
BZDs □turnover of 5-HT and NORADRENALINE

- Antispasticity Effect:
- action on GABA_A Rs in the Brain Stem
 Spinal Chord
- Sedative and Anticonvulsant effects:
 - are localized to the Limbic System.
- Seadtive-hypnotic Effect:
 - is due to their actions on the omega-1 Rs
- Impairment of Memory:
 - action on the omega-2 Rs

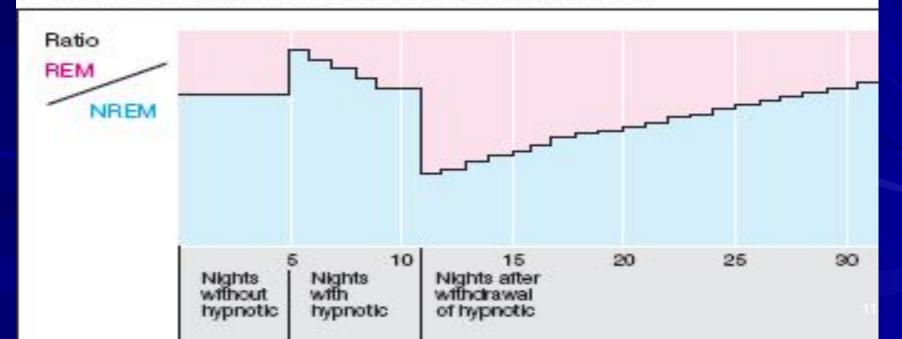
MECHANISM OF ACTION of Barbiturates

- Bind to the **B-subunit** of **the GABA** Receptor surrounding the Cl channels.
- They facilitate the actions of GABA at multiple sites in the CNS and hyperpolarize the post-synaptic cell,
- Duration of the GABA-gated Chloride Channel openings.
- At lower doses they enhance the action of GABA whereas in larger doses they may also be GABA-mimetic, directly activating Chloride Channels.

Barbiturates also inhibit the excitatory AMPA-glutamate receptors. They are less selective than BZDs, since they also depress the actions of excitatory neurotransmitters (e.g., glutamic acid)


Rapid Eye Movement (REM)

- During sleep, the brain generates a rhythmic activity.
- Internal sleep cycles recur 4-5 times per night, each cycle
- being interrupted by a Rapid Eye Movement sleep phase.
- The REM stage is characterized by EEG activity similar to that
- seen in the waking state, Rapid Eye Movements, Vivid Dreams,
- and occasional twitches of individual muscle groups against
- a background of generalized atonia of skeletal musculature.
- The **REM stage** is entered after a **non-REM cycle** (NREM).


All hypnotics shorten the time spent in the REM stages !!

- With repeated ingestion of a hypnotic for several successive days, the proportion of time spent in REM vs. non-REM sleep returns to normal despite continued drug intake.
- Withdrawal of the hypnotic drug results in **REM rebound**, which tapers off over many days.
- Since REM stages are associated with vivid dreaming, sleep with excessively long REM episodes is experienced as unrefreshing.
- The attempt to discontinue use of hypnotics may result in the impression that refreshing sleep calls for a hypnotic, promoting

Hypnotic Drug Dependence.

A. Succession of different sleep phases during night rest

PHENOBARBITAL (Luminal)

Tab. 0.005, 0.05 and 0.1 g

- Bind to β-subunit of the GABAA Rs
 - => Facilitate the actions of GABA
- **DURATION** of the GABA-gated
 - Cl channel openings
- □ is a potent inducer of the *P-450* system, and it enhances the metabolism of other agents

Pharmacological Effects of Barbiturates

- 1. Depression of the CNS
- 2. Respiratory Depression
- 3. Enzyme Induction:

Barbiturates induce *P-450* microsomal enzymes in the liver.

Clinical Uses of Barbituretes:

- 1. Anesthesia:
 Thiopental Sodium IV to induce general anesthesia.
- 2. Anticonvulsant:

Phenobarbital - in long-term management of Tonic-clonic Seizures

Status Epilepticus Eclampsia.

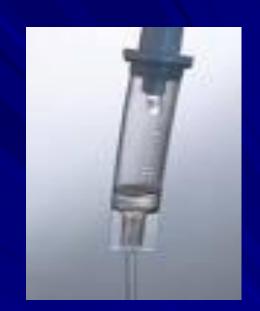
- □ 3. Insomnia.
- □ 4. Preoperative sedation

Adverse Effects of Barbiturates:

- 1. Drowsiness, impaired concentration, mental and physical sluggishness
- 2. Drug hangover: a feeling of tiredness after the patient awakes
- 3. Barbiturates induce the P-450 system and may □the effect of drugs that are metabolized by these hepatic enzymes

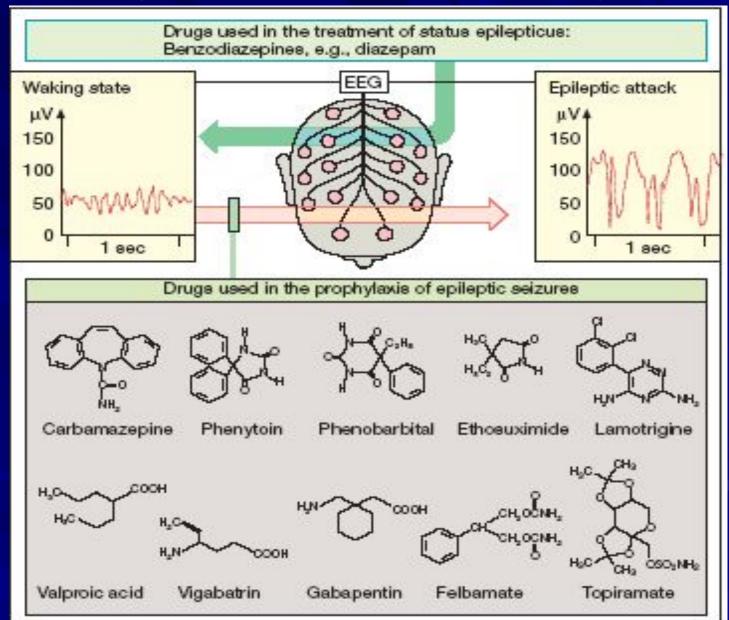
Poisoning with Barbiturates

- I Stage (Falling Asleep): slurred speech, sustained Nystagmus, Somnolence; Apathy, Miosis, Bradycardia, Hypersalivation.
- Il Stage (Superficial Coma): unconsciousness, Tachycardia,
 Muscle Hypotonia or Hypertonia,
 - Decrease or Increase of Reflexes,
 - Miosis. Rare and Superficial Breathing,
 - Weak Pulse, Cyanosis, Oliguria
- III Stage (Deep Coma): Areflexia,
 Absence of Reaction to Painful Stimulation.
- IV Stage: (Post Comatose Period): Ptosis, Unsteady Gate, Emotional Lability, Depression.


Treatment of Poisoning with Barbiturates

- Forced Alkaline Diuresis,
 Adequate Fluids, Acid-base Balance Correction Mannitol, Furosemide (*Lasix*)
 Sodium Bicarbonate 4% 500 ml IV
- Intensive Infusion Therapy with Polyglucin, Rheopolyglucin, Hemodes
- Antidote Therapy:

 Bemegrid 0.5% 5-10 ml IV or IM
 Sulfacamphocaine
 Coffeine-sodium bensoate
 Ephedrine hydrochloride
 Cordiamine


VITAMINS:

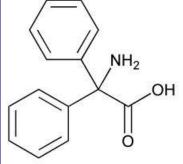
B₁ 6% 5 ml, B₆ 5% 6-8 ml, B₁₂ 600 μg C 5% 5-10 ml.

- ATP 1% 6 ml
- Noradrenaline hydrotartrate 0.2% 1 ml combined with
- Dopamine 4% 5 ml
 in Polyglucin (Macrodex) 400 ml IV infusion

Drugs Used to Treat Epilepcy

Antiepileptic Drugs

I. Delaying the recovery from inactivating Na⁺ channels:


Carbamazepine (Finlepsin)

Oxcarbazepine

Diphenin (Phenytoin)

- Carbamazepine tab. 0.2 g, 0.4 g
 Mechanism of action: It blocks Na⁺ channels =>
- Propagation of abnormal impulses
- Generation of repetitive action potentials in the Epileptic Focus

Clinical Uses:

- Partial Seizures (Simple and Complex) is the Drug of 1st Choice.
- Tonic-Clonic Seizures
- Trigeminal Neuralgia

• Diphenin (Phenytoin, Hydantoin)

- Tab 0.117 g; amp. 5%-5 ml

Mechanism of action: Influx of Na⁺ across cell membranes in the motor cortex during generation of nerve impulses

Adverse effects:

Gingival Hyperplasia, Ataxia.

Nystagmus - involuntary movement of the eye comprising a Smooth Drift followed by a Flick Back

Teratogenic Effects of *Diphenin*

Fetal Hydantoin Syndrome:
 Cleft Lip (hare lip)
 Cleft Palate
 Congenital Heart Disease
 Slowed Growth
 Mental Deficiency

Fig. 1. Frontal view of the patient's head with proptosis, depressed nasal bridge and triangular mouth.

II. GABA-mimetics:

- 1. Stimulating GABA-ergic transmission: Sodium Oxybutyrate (Sodium oxybate)
- 2. Activating GABA Receptors: BARBITURATES, BENZODIAZEPINES
- 3. Inhibiting GABA-transferase and pGABA synthesis: Sodium Valproate
- 4. Releasing GABA from neuronal endings: Gabapentin
- 5. Inhibiting GABA transaminase: Vigabatrine
- 6. Inhibiting GABA reuptake:

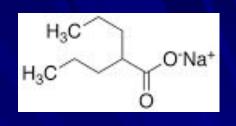
Tiagabine

Valproate Sodium (Depakin)

Tab. 0.3 g; amp. 10% - 5 ml; Syrup 5%-120 ml

a Stimulator of GABA-ergic Processes

Mechanism of action:

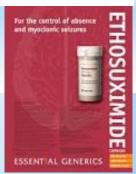

- Inhibits GABA-transferase
- GABA synthesis =>
- □ Brain Levels of GABA
- Propagation of abnormal electrical discharge

Adverse effects: ataxia, tremor, rash,

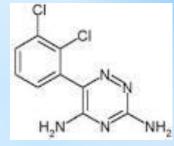
Hepatic toxicity,

Alopecia,

□Bleeding time


III. Inhibiting Excitatory Neurotransmitters and NMDA-receptors:

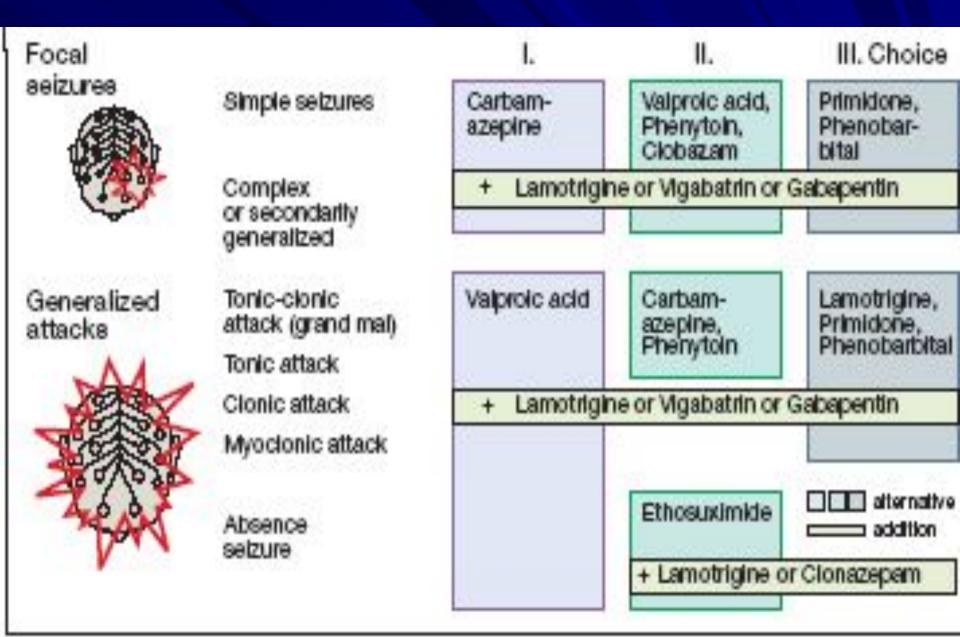
Lamotrigine


IV. Inhibitig Low threshold (*T-current*) Ca²⁺ channels in the thalamic neurons:

Ethosuximide

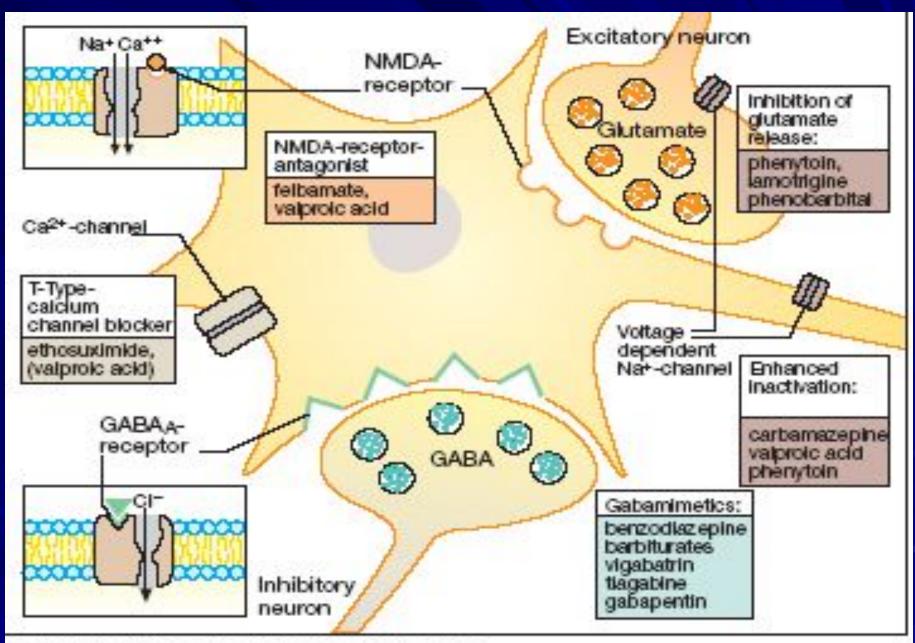
Trimethine (*Trimethadione*)

Lamotrigine - Tab. 0.05 and 0.1 g an Inhibitor of Exciting Amino Acids -Glutamate and Asparginate


Mechanism of action:

- inactivates voltage-sensitive Na⁺ Channels => inhibits the Release of Glutamate and Asparginate -**Exciting Neurotransmitters**
- Clinical uses: partial and secondarily generalized seizures that are resistant to other drugs.
- Adverse effects: nausea, headache, rash, diplopia,

ataxia, hepatotoxicity, aggressiveness.


Classification of Epilepsy

- 1. PARTIAL:
 - a. Simple Partial
 - b. Complex Partial
- 2. GENERALIZED:
 - a. Tonic-clonic (Grand mal)
 - b. Absence (Petit mal)
 - c. Myoclonic
 - d. Febrile Seizures
 - e. Status Epilepticus

B. Indications for antiepileptics

Seizure Type	1st Choice	2nd Choice
Focal Seizures	Carbamazepine	Clonazepam
	Difenin	Lamotrigine
		Valproate Na
Generalized	Carbamazepine	Clonazepam
Seizures	Diphenin	Lamotrigine
(GRAND MAL)	Valproate Sodium	
Status	Diazepam	Phenobarbital
Epilepticus	Diphenin	
	Sodium Oxybutyrate	
Absence	Ethosuximide	Lamotrigine
(PETIT MAL)	Valproate Sodium	Trimethine 30

A. Neuronal sites of action of antiepileptics

Antiparkinsonian Drugs

- I. Activating Dopaminergic Influences
 - 1. Precursors of Dopamine:

```
Levodopa (Tab. 0.25 and 0.5 g)
```

Combined agents:

Sinemet (Nakom)

Madopar

2. D-receptor agonist:

Bromocriptine (tab. 2.5 mg)

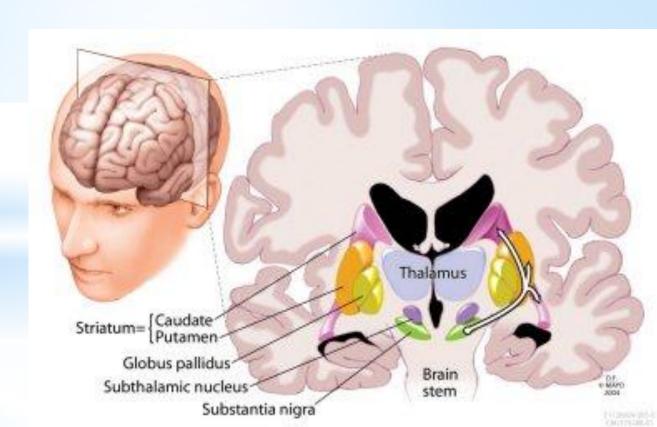
Pergolide (tab. 0.25 mg and 1 mg)

Cabergolin (tab. 0.5 mg)

3. MAO-B inhibitors:

Deprenil (Selegiline - tab. 5 mg)

II. Inhibiting Glutamatergic Influences:

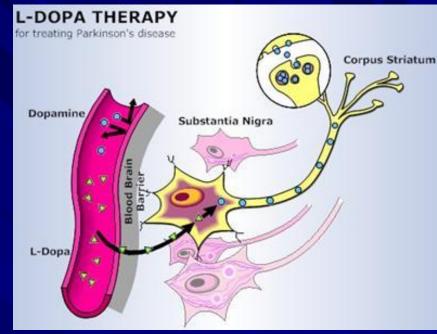

Amantadine (Midantane - tab. 0.1 g)

III. Inhibiting Cholinergic Influences:

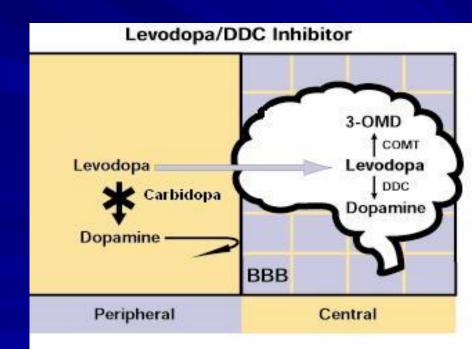
Cyclodol (tab. 1 mg, 2 mg and 5 mg)

Benztropine

Tropacine



Levodopa (L-DOPA, Dopar) -

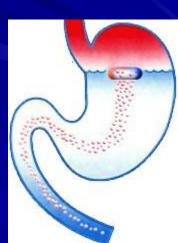

- a Laevorotatory Isomer of DOPA (Dihydroxy-Phenylalanine) –a precursor of Dopamine
- **MA**: Stimulates the D₂ receptors in the basal ganglia
- => Improves modulation of Voluntary Nerve Impulses transmitted to the motor cortex
- => Relieves all major symptoms, esp.:
 - Akinesia (inability of voluntary movement)
 - Rigidity and Bradykinesia (Slowness of movement)
 - Akathisia (the inability to sit still because of uncontrollable movement)
 - Tremors
- => Improves Mood and Memory

Adverse effect of Levodopa:

- Anorexia, Vomiting
- Cardiac Arrhythmias
- Orthostatic Hypotension
- Aggressive Behavior
- Seizures
- Hallucinations, Confusion, Delirium
- Dyskinesia Involuntary Repetitive Movements
 - in up to 80% of patients

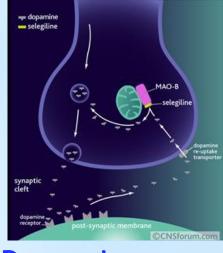
- Carbidopa and Benserazide inhibitors of DOPA decarboxylase do not penetrate the Blood-Brain barrier
- => less Levodopa is decarboxylated in peripheral tissues
- => more Levodopa reaches the brain where it is decarboxylated to DOPAMINE
- => much smaller doses of Levodopa can be given.

Sinemet (Nakom):


Levodopa 100 mg + Carbidopa 25 mg

Madopar :

Levodopa 100 or 200 mg + Carbidopa 25 mg or 50 mg respectively



- Bromocriptine, an *ergotamine* derivative, is a Dopamine Receptor Agonist.
- The actions are similar to those of Levodopa, except that
- Hallucinations, Confusion, Delirium, Nausea, and Orthostatic Hypotension are more common, whereas **Dyskinesia** is less prominent.
- In psychiatric illness it causes the mental condition to worsen.
- In patients with Peripheral Vascular Disease a worsening of the vasospasm occurs.
- In patients with Peptic Ulcer, there is a worsening of the ulcer.

Selegiline (Deprenil) - MAO-B inhibitor

Mechanism of Action: This is a selective, irreversible inhibitor of Monoamine Oxidase type B, thus decreasing the metabolism of Dopamine by preventing inter-neuronal degradation.

Inhibition of this enzyme slows the breakdown of Dopamine in the striatum.

Adverse reactions: can potentiate dyskinesia, mental and psychiatric adverse effects, and nausea due to *levodopa* dose.

If selegiline is administered in high doses, the selectivity of the drug is lost, and the patient is at risk for severe hypertension.

Selegiline increase the peak effect of L-DOPA and can worsen preexisting dyskinesia or psychiatric symptoms such as delusion and hallucination.

Contraindication: Selegiline should be avoided in patients with known falls, hallucinations, confusion and postural hypotension.

Thank You for Attention!