Влияние условий на скорость химической реакции.

По фазовому составу

- Гомогенный процесс
- Гетерогенный процесс

Понятие о скорости химической реакции

Реакции

Гомогенные

Реакции протекают в однородной среде

$$N_{2(ra3)} + 3H_{2(ra3)} = 2NH_3$$

$$NaOH_{(p-p)} + HCI_{(p-p)} \rightarrow NaCI + H_2O$$

Гетерогенные

Реакция идет между веществами, находящимися в разных агрегатных состояниях или между веществами, не способными образовывать гомогенную среду

$$C_{(TB.)} + O_{2(\Gamma\alpha3)} \rightarrow CO_{2}$$

$$Zn_{(\tau_B.)}$$
 + $2HCl_{(p-p)}$ \rightarrow $ZnCl_2$ + $H_2\uparrow$

Гомогенные реакции идут во всем объеме, а гетерогенные только на поверхности фаз.

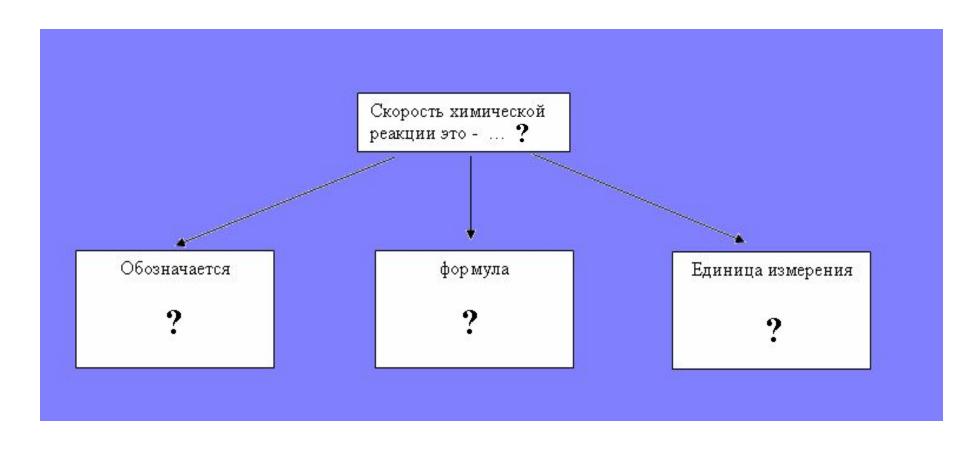
Гомогенные реакции

 Реакции между газообразными веществами:

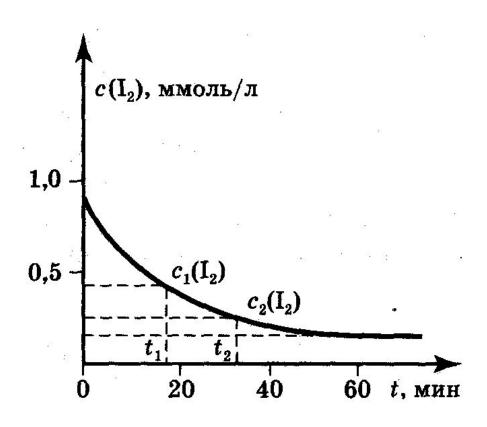
$$2H_{2(r)} + O_{2(r)} \rightarrow 2H_2O$$

 Реакции между веществами в растворе:

$$HCI_{(p-p)} + KOH_{(p-p)} \rightarrow KCI + H_2O$$


Гетерогенные реакции

 Между веществами в разных фазовых состояниях :


$$Cl_{2(r)} + KOH_{(p-p)} \rightarrow KCI + KCIO + H_2O$$

$$S_{(TB.)} + O_{2(r)} \rightarrow SO_2$$

Заполните схему с вопросами о скорости реакции:

V

 $V = \frac{C_1 - C_2}{t_2 - t_1}$

Моль/л.сек

<u>Мзменение концентрации</u> <u>реагирующих веществ в</u> <u>единицу времени.</u>

Перечислите факторы, влияющие на скорость химической реакции.

Изучаемый фактор	Используемые вещества	вывод
Природа	HCI укс. кислота	Чем активнее
реагирующих	+Zn +Zn	вещество,
веществ		вступающее в
	$ V_1\rangle$	реакцию, тем
		быстрее идет
		эта реакция.

Изучаемый фактор	Используемые вещества	вывод
Концентраци я реагирующих веществ	HCI 10% HCI 20% +Zn +Zn V ₁ < V ₂	Чем больше концентрация реагирующих веществ, тем выше скорость химической реакции. Реакции между ионами протекают мгновенно

Закон «действующих масс»:

 Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

$$mA + nB = pC + lD$$

$$\mathcal{U} = k \cdot C_A^m \cdot C_B^n$$

- Запишите кинетическое уравнение для следующих уравнений реакций:
- A) $S(TB) + O_2(\Gamma) = SO_2(\Gamma)$
- Б) $2SO_2(\Gamma) + O_2(\Gamma) = 2SO_3(ж)$

• Решение:

•

• Согласно закону действующих масс, который действует для газов и жидкостей (твёрдые вещества не учитываются):

•

•
$$U = K_1 C (O_2)$$

•

•
$$U = \kappa_2 C^2 (SO_2) \cdot C (O_2)$$

Изучаемый фактор

Используемые вещества

вывод

Площадь соприкоснове ния реагирующих веществ. Fe (порошок) Fe (кнопка) HCI + HCI

 $V_1 > V_2$

Чем больше площадь соприкосновения реагирующих веществ, тем выше скорость химической реакции.

Изучаемый фактор	Используемые вещества	вывод
Температура	AI + HCI + HCI + t > V ₂	При нагревании скорость химической реакции повышается.

Изучаемый фактор	Используемые вещества	вывод
Присутствие некоторых веществ	H_2O_2 H_2O_2 +MnO ₂ V_1 > V_2	Катализаторы — вещества, ускоряющие скорость химической реакции. Ингибиторы — уменьшают скорость реакции.

Влияние температуры на скорость химической реакции

При повышении t на 10° скорость химической реакции увеличивается в 2-4 раза (правило Вант-Гоффа)

$$\mathbf{V}\mathbf{t}_2 = \mathbf{V}\mathbf{t}_1 \cdot \mathbf{\gamma}^{\frac{\mathbf{t}_2 - \mathbf{t}_1}{10}}$$

Использование знаний о скорости реакции в быту

Почему продукты хранят в холодильнике?

Использование знаний о скорости реакции в быту

 Для консервирования продуктов используют вещества консерванты. Какое другое название можно дать этим веществам?

Задачи

- 1.Задача. Вычислите среднюю скорость реакции, схема которой $A + B \longrightarrow C$, если начальная концентрация вещества A равна 0,220 моль/л, а через 10 сек 0,215 моль/л.
- 2.Задача. Как изменится скорость химической реакции при охлаждении системы от 100° С до 50° С, если температурный коэффициент скорости химической реакции равен 2?
- Вычислите, во сколько раз увеличится скорость реакции при повышении температуры от 30 до 70 ° С, если температурный коэффициент скорости равен 2.

1. С наибольшей скоростью при комнатной температуре реагируют:

□ <u>CuSO_{4(ТВ)} и</u> и <u>Fe</u> и Fe (порошок) □ <u>CuSO_{4(TB)} и</u> и <u>Fe</u> и Fe (гвоздь) □ CuSO_{4(p-p)} и и Fe и Fe □ <u>CuSO_{4(p-p)} и</u> и <u>Fe</u> и Fe

2. С наименьшей скоростью при комнатной температуре реагируют

- <u>Al</u> Al <u>и О</u>₂
- <u>Na₂SO₃ и и <u>H₂SO</u>₄</u>
- <u>NaOH_(p-p) и и HCI_(p-p)</u>
- <u>CuSO</u>_{44(p-p)} <u>и КОН</u>_(p-p)

- 3. Скорость реакции: $S(\tau) + O_2 \rightarrow SO_2$ увеличивается при...
 - уменьшении концентрации кислорода;
 - <u>увеличении концентрации</u> кислорода;
 - повышении температуры;
 - понижении давления.

- 4. На скорость химической реакции между раствором серной кислоты и железом не оказывает влияния
- 1) концентрация кислоты
- 2) измельчение железа
- 3) температура реакции
- 4) увеличение давления

- 5. Для увеличения скорости взаимодействия железа с хлороводородной кислотой следует
- 1) добавить ингибитор
- 2) понизить температуру
- 3) повысить давление
- 4) увеличить концентрацию соляной кислоты HCI

- 6. С наибольшей скоростью при обычных условиях взаимодействуют
- 1) цинк и соляная кислота
- 2) натрий и вода
- 3) магний и вода
- 4) свинец и соляная кислота

- 7. При повышении давления увеличивается скорость реакции
- 1) кислорода с сернистым газом
- 2) цинка с серной кислотой
- 3) серы с железом
- 4) гидроксида натрия с хлоридом меди (II)

- 8. Скорость реакции
- Zn + H2SO4 = ZnSO4 + H2 + Q
- понизится при
- 1) повышении температуры
- 2) понижении давления
- 3) повышении давления
- 4) разбавлении раствора кислоты

- 9. Для увеличения скорости реакции водорода с азотом
- 1) охлаждают азотоводородную смесь
- 2) снижают давление в системе
- 3) используют катализатор
- 4) используют циркуляцию азотоводородной смеси

- 10. При комнатной температуре с наибольшей скоростью протекает реакция между
- 1) Zn и HCl (1 % p-p)
- 2) Zn и HCl (30 % p-p)
- 3) Zn и HCl (10 % p-p)
- 4) ZnCl2 (p-p) и AgNO3 (p-p)