

Vibrio, Aeromonas & Plesiomonas

General Characteristics of Vibrio,
 Aeromonas and Plesiomonas
 Similarities to Enterobacteriaceae

- Gram-negative
- Facultative anaerobes
- Fermentative bacilli
- Differences from Enterobacteriaceae
 - Polar flagella
 - Oxidase positive

Formerly classified together as Vibrionaceae

- Primarily found in water sources
- Cause gastrointestinal disease
- Shown not closely related by molecular methods

Morphology & Physiology of Vibrio Comma-shaped (vibrioid) bacilli V. cholerae, V. parahaemolyticus, V. vulnificus are most significant human pathogens Broad temperature & pH range for growth on media •18-37°C pH 7.0 - 9.0 (useful for enrichment) Grow on variety of simple media including: MacConkey's agar TCBS (Thiosulfate Citrate Bile salts Sucrose) agar **V. cholerae grow without salt** Most other vibrios are halophilic

Vibrio spp. (Family Vibrionaceae) Associated with Human Disease

Species	Source of Infection	Clinical Disease
V. cholerae	Water, food	Gastroenteritis
V. parahaemolyticus	Shellfish, seawater	Gastroenteritis, wound infection, bacteremia
V. vulnificus	Shellfish, seawater	Bacteremia, wound infection, cellulitis
V. alginolyticus	Seawater	Wound infection, external otitis
V. hollisae	Shellfish	Gastroenteritis, wound infection, bacteremia
V. fluvialis	Seafood	Gastroenteritis, wound infection, bacteremia
V. damsela	Seawater	Wound infection
V. metschnikovii	Unknown	Bacteremia
V. mimicus	Fresh water	Gastroenteritis, wound infection, bacteremia
V. furnissii*	Seawater	Gastroenteritis
V. cincinnatiensis*	Unknown	Bacteremia, meningitis
V. carchariae*	Seawater	Wound (shark bite)

Epidemiology of Vibrio spp.

- *Vibrio* spp. (including *V. cholerae*) grow in
 estuarine and marine environments worldwide
- All Vibrio spp. can survive and replicate in contaminated waters with increased salinity and at temperatures of 10-30°C
- Pathogenic Vibrio spp. appear to form symbiotic (?)
 associations with chitinous shellfish which serve as an important and only recently recognized reservoir
- Asymptomatically infected humans also serve as an important reservoir in regions where cholera is endemic

Taxonomy of Vibrio cholerae

- >200 serogroups based on somatic O-antigen
- O1 and O139 serogroups are responsible for classic epidemic cholera
- O1 serogroup subdivided into
 - Two biotypes: El Tor and classical (or cholerae)
 - Three serotypes: ogawa, inaba, hikojima
- Some O1 strains do not produce cholera enterotoxin (atypical or nontoxigenic O1 V. cholerae)
- Other strains are identical to O1 strains but do not agglutinate in O1 antiserum (non-cholera (NCV) or non-agglutinating(NAG) vibrios) (non-O1 V.cholerae)
- Several phage types

Epidemiology of Vibrio cholerae

- Cholera recognized for more than two millennia with sporadic disease and epidemics
- Endemic in regions of Southern and Southeastern Asia; origin of pandemic cholera outbreaks
- Generally in communities with **poor sanitation**
- Seven pandemics (possible beginning of 8th) since 1817 attributable to increased world travel
- Cholera spread by contaminated water and food
- Human carriers and environmental reservoirs

Recent Cholera Pandemics 7th pandemic:

- V. cholerae O1 biotype EI Tor
- Began in Asia in 1961
- Spread to other continents in 1970s and 1980s
- Spread to Peru in 1991 and then to most of South & Central America and to U.S. & Canada
- By 1995 in the Americas, $>10^6$ cases; 10^4 dead

8th pandemic (??)

- V. cholerae O139 Bengal is first non-O1 strain capable of causing epidemic cholera
- Began in India in 1992 and spread to Asia, Europe and U.S.
- Disease in humans previously infected with O1 strain, thus no cross-protective immunity

Pathogenesis of V.cholerae Incubation period: 2-3 days High infectious dose: >10⁸ CFU 10³-10⁵ CFU with achlorhydria or hypochlorhydria (lack of or reduced stomach acid) Abrupt onset of vomiting and life-threatening watery diarrhea (15-20 liters/day) As more fluid is lost, feces-streaked stool changes to rice-water stools: Colorless Odorless

- No protein
- Speckled with mucus

Pathogenesis of V.cholerae (cont.)

- Cholera toxin leads to profuse loss of fluids and electrolytes (sodium, potassium, bicarbonate)
 - Hypokalemia (low levels of K in blood)
 - Cardiac arrhythmia and renal failure
- Cholera toxin blocks uptake of sodium & chloride from lumen of small intestine

Death attributable to:

- Hypovolemic shock (due to abnormally low volume of circulating fluid (plasma) in the body)
- Metabolic acidosis (pH shifts toward acid side due to loss of bicarbonate buffering capacity)

Treatment & Prevention of V. cholerae

- Untreated: 60% fatality
- □ Treated: <1% fatality
- Rehydration & supportive therapy
 - Oral

Sodium chloride (3.5 g/L) + Potassium chloride (1.5 g/L) + Rice flour (30-80g/L) + Trisodium citrate (2.9 g/L)

- Intravenous (IV)
- Doxycycline or tetracycline (Tet resistance may be developing) of secondary value
- Water purification, sanitation & sewage treatment
- Vaccines

Virulence Factors Associated with Vibrio cholerae O1 and O139

Virulence Factor

Biologic Effect

Cholera toxin

Coregulated pilus Accessory colonization Hemagglutinationprotease (mucinase) Siderophores Neuraminidase

Hypersecretion of electrolytes and water Adherence to mucosal cells Adhesin factor

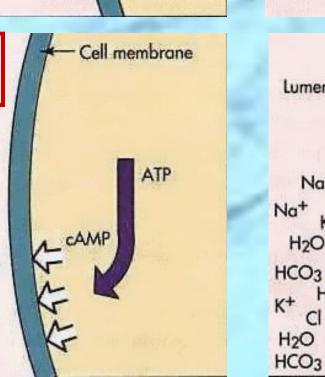
Induces intestinal inflammation and degradation of tight junctions Iron sequestration Increase toxin receptors

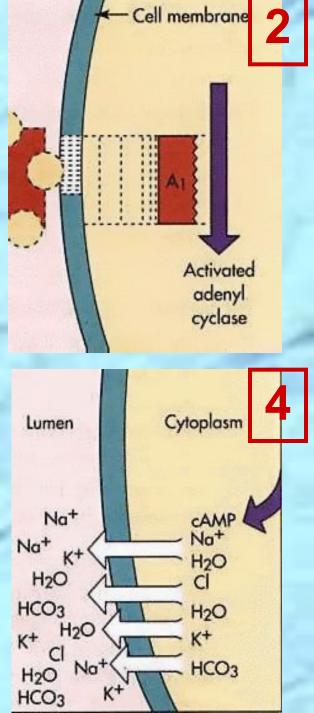
Two Broad Classes of Bacterial Exotoxins Intracellular Targets: A-B dimeric (two domain) exotoxins: (prototype is diphtheria toxin of Corynebacterium diphtheriae):

- Bipartite structure: Binding domain (B) associated with absorption to target cell surface and transfer of active component (A) across cell membrane; once internalized, domain (A) enzymatically disrupts cell function
- Receptor-mediated endocytosis (host cell uptake and internalization of exotoxin)
- ADP-ribosylation of intracellular target host molecule

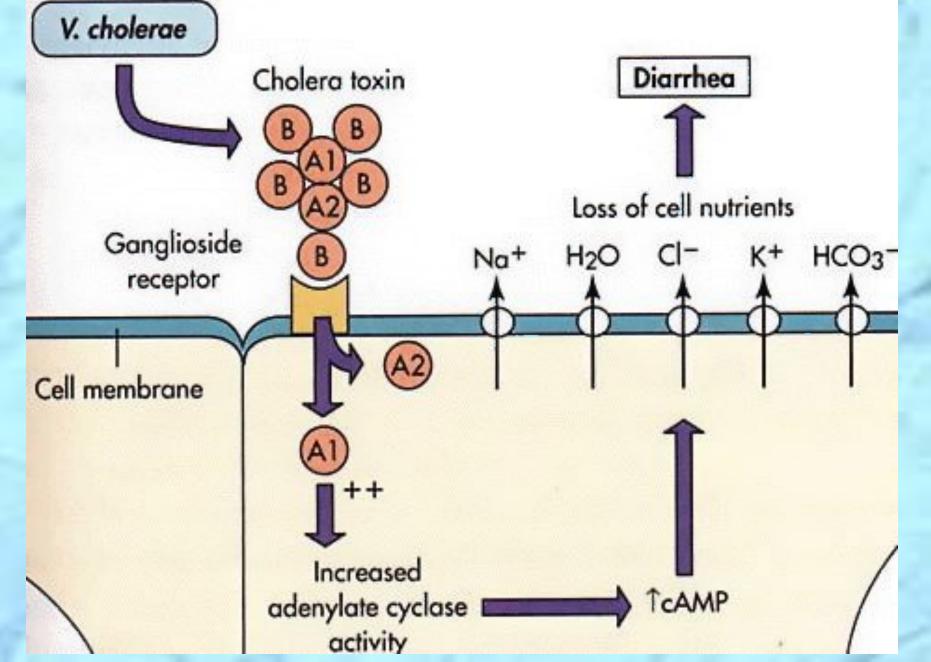
Cellular Targets: Cytolytic exotoxins (usually degradative enzymes) or cytolysins: hemolysis, tissue necrosis, may be lethal when administered intravenously

Cholera Toxin (A2-5B)(Vibrio cholerae)


- Chromosomally-encoded; Lysogenic phage conversion; Highly conserved genetic sequence
- Structurally & functionally similar to ETEC LT
- B-subunit binds to GM₁ ganglioside receptors in small intestine
- Reduction of disulfide bond in A-subunit activates A₁ fragment that **ADP-ribosylates** guanosine triphosphate (GTP)-binding protein (G_s) by transferring ADP-ribose from nicotinamide adenine dinucleotide (NAD)
- ADP-ribosylated GTP-binding protein activates adenyl cyclase leading to an increased cyclic AMP (cAMP) level and hypersecretion of fluids and electrolytes


Mechanism of Action of Cholera Toxin

Cholera toxin B B B B B B B B B B B Cell membrone


NOTE: In step #4, uptake of Na⁺ and Cl⁻ from the lumen is also blocked.

 HCO_3^- = bicarbonate which provides buffering capacity.

Mechanism of Action of Cholera Toxin

TABLE DAS Properties of A-B Type Bacterial Toxins					
τοχιν	ORGANISM	GENETIC CONTROL	SUBUNIT STRUCTURE	TARGET CELL RECEPTOR	BIOLOGICAL EFFECTS
Anthrax toxins	Bacillus anthracis	Plasmid	Three separate proteins (EF, LF, PA)	Unknown, probably gly- coprotein	EF + PA: increase in target-cell cAMP level, localized edema; LF + PA: death of target cells and experimental animals
Bordetella adeny- late cyclase toxin	Bordetella species	Chromosomal	A-B	Unknown, probably gly- colipid	Increase in target cell cAMP level, modified cell function or cell death
Botulinum Ioxin	C. botulinum	Phage	A-B	Possibly ganglioside (GD16)	Decrease in peripheral, presynaptic acetyl- choline release, flaccid paralysis
Cholera toxin	V. cholerae	Chromosomał		Ganglioside (GM ₁) n-binding epidermal growth on heart & nerve surfaces	Activation of adenylate cyclase, increase in cAMP level, secretory diarrhea
Diphtheria toxin	C. diphtheriae	Phage	A-B	Probably glycoprotein	Inhibition of protein syn- thesis, cell death
Heat-labile en- terotoxins	E. coli	Plasmid	Similar or ic	dentical to cholera toxin	
Pertussis toxin	B. pertussis	Chromosomał	A-5B	Unknown, probably gly- coprotein	Block of signal transduc- tion mediated by target G proteins
Pseudomonas exotoxin A	P. aeruginosa	Chromosomal	A-B	Unknown, but different from diphtheria toxin	Similar or identical to diphtheria toxin
Shiga toxin	Shigella dysente- ríae	Chromosomal	A-5B	Glycoprotein or glyco- lipid	Inhibition of protein syn- thesis, cell death
Shiga-like toxins	Shigella species, E. coli	Phage	Similar or i	identical to Shiga toxin	
Telanus toxin	C. tetani	Plasmid	A-8	Ganglioside (GT1) and/or GD16	Decrease in neurotrans- mitter release from in- hibitory neurons, spas- tic paralysis

TABLE 19-3 Properties of A-B Type Bacterial Toxins

 \rightarrow

Summary of Vibrio parahaemolyticus Infections

Physiology and Structure

Curved gram-negative bacilli. Facultative anaerobe. Fermenter.

Simple nutritional requirements but requires salt for growth.

Virulence

Refer to Table 30-3 for complete listing. Hemolysin. Adhesin.

Epidemiology

Organism found in estuarine and marine environments worldwide.

Associated with consumption of contaminated shellfish.

Not commonly isolated in the United States but is a major pathogen in countries where raw fish is eaten.

Diseases

Diarrhea ranging from mild disease to a cholera-like illness.

Typical presentation is an explosive, watery diarrhea.

Less commonly associated with wound infections and bacteremia.

Diagnosis

Culture should be performed as with V. cholerae.

Treatment, Prevention, and Control

Self-limited disease, although antibiotics can shorten symptoms and fluid loss.

Disease prevented by proper cooking of shellfish. No vaccines are available.

Summary of Vibrio vulnificus Infections

Physiology and Structure

Curved gram-negative bacilli. Facultative anaerobe.

Fermenter.

Simple nutritional requirements but requires salt for growth.

Virulence

Refer to Table 30-3 for complete listing.

 Resistant to complement- and antibody-mediated serum killing (thus, systemic infections).

Antiphagocytic capsule.

Production of hydrolytic enzymes (cytolysins, collagenase, proteases).

Epidemiology

Infection associated with exposure of a wound to contaminated salt water or ingestion of improperly prepared shellfish.

Diseases

Wound infections that can progress rapidly to formation of bullae and tissue necrosis.

Septicemia following ingestion of contaminated shellfish.

High mortality rate in immunocompromised patients.

Diagnosis

Culture wounds and blood.

Treatment, Prevention, and Control

Life-threatening illnesses that must be promptly treated with antibiotics.

Tetracyclines or aminoglycosides treatment of choice. No vaccine is available.

Virulence Factors Associated with **Non-cholerae Vibrios**

Organism

Virulence Factors

V. alginolyticus V. hollisae

V. damsela

polysaccharides, cytolysins, collagenase, protease, siderophore Collagenase Heat-stabile and heat-labile enterotoxin, hemolysin Cytolysin

Laboratory Identification of Vibrios

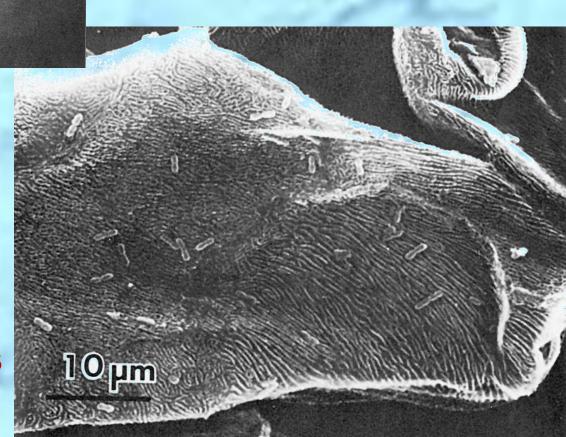
- Transport medium Cary-Blair semi-solid agar
- Enrichment medium alkaline peptone broth
 - Vibrios survive and replicate at high pH
- Other organisms are killed or do not multiply
 Selective/differential culture medium TCBS agar
 V. cholerae grow as yellow colonies
- Biochemical and serological tests

Characteristics and Epidemiology of Aeromonas (Family Aeromonadaceae)

- Gram-negative facultatively anaerobic bacillus
 resembling members of the Enterobacteriaceae
- Motile species have single polar flagellum (nonmotile species apparently not associated with human disease)
- 16 phenospecies: Most significant human pathogens *A. hydrophila*, *A. caviae*, *A. veronii* biovar sobria
- Ubiquitous in fresh and brackish water
- Acquired by ingestion of or exposure to contaminated water or food

Clinical Syndromes of Aeromonas

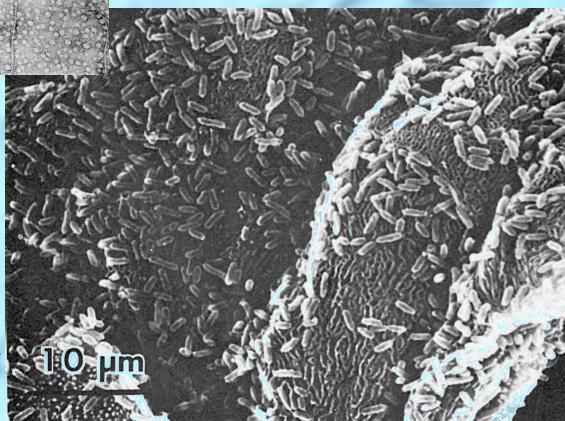
- Associated with gastrointestinal disease
 - Chronic diarrhea in adults
 - Self-limited acute, severe disease in children resembling shigellosis with blood and leukocytes in the stool
 - 3% carriage rate
- Wound infections
- Opportunistic systemic disease in immunocompromised


 Putative virulence factors include: endotoxin; hemolysins; eneterotoxin; proteases; siderophores; adhesins

Afimbriated Aeromonas hydrophila

la

Nonadherent Afimbriated Bacterial Cells and Buccal Cells



Fimbriated Aeromonas hydrophila

Adherent Fimbriated Bacterial Cells and Buccal Cells

6

0.3 µm

Characteristics of Plesiomonas

- Formerly Plesiomonadaceae
- Closely related to Proteus & now classified as Enterobacteriaceae despite differences:
 - Oxidase positive
 - Multiple polar flagella (lophotrichous)
- □ Single species: *Plesiomonas shigelloides*
- Isolated from aquatic environment (fresh or estuarine)
- Acquired by ingestion of or exposure to contaminated water or seafood or by exposure to amphibians or reptiles
- Self-limited gastroenteritis: secretory, colitis or chronic forms
- Variety of uncommon extra-intestinal infections

Characteristics of Aeromonas and Plesiomonas Gastroenteritis

Epidemiological Features	<u>Aeromonas</u>	Plesiomonas	
Natural Habitat Source of Infection	Fresh or brackish water Contaminated water or food	Fresh or brackish water Contaminated water or food	
Clinical Features			
Diarrhea	Present	Present	
Vomiting	Present	Present	
Abdominal Cramps	Present	Present	
Fever	Absent	Absent	
Blood/WBCs in Stool	Absent 🔶	Present	
Pathogenesis	Enterotoxin (??)	Invasiveness	

REVIEW

Vibrio spp. (Family Vibrionaceae) Associated with Human Disease

Species	Source of Infection	Clinical Disease
V. cholerae	Water, food	Gastroenteritis
V. parahaemolyticus	Shellfish, seawater	Gastroenteritis, wound infection, bacteremia
V. vulnificus	Shellfish, seawater	Bacteremia, wound infection, cellulitis
V. alginolyticus	Seawater	Wound infection, external otitis
V. hollisae	Shellfish	Gastroenteritis, wound infection, bacteremia
V. fluvialis	Seafood	Gastroenteritis, wound infection, bacteremia
V. damsela	Seawater	Wound infection
V. metschnikovii	Unknown	Bacteremia
V. mimicus	Fresh water	Gastroenteritis, wound infection, bacteremia
V. furnissii*	Seawater	Gastroenteritis
V. cincinnatiensis*	Unknown	Bacteremia, meningitis
V. carchariae*	Seawater	Wound (shark bite)

REVIEW

Epidemiology of Vibrio spp.

- *Vibrio* spp. (including *V. cholerae*) grow in
 estuarine and marine environments worldwide
- All Vibrio spp. can survive and replicate in contaminated waters with increased salinity and at temperatures of 10-30°C
- Pathogenic Vibrio spp. appear to form symbiotic (?)
 associations with chitinous shellfish which serve as an important and only recently recognized reservoir
- Asymptomatically infected humans also serve as an important reservoir in regions where cholera is endemic

REVIEW

Taxonomy of Vibrio cholerae

- >200 serogroups based on somatic O-antigen
- O1 and O139 serogroups are responsible for classic epidemic cholera
- O1 serogroup subdivided into
 - Two biotypes: El Tor and classical (or cholerae)
 - Three serotypes: ogawa, inaba, hikojima
- Some O1 strains do not produce cholera enterotoxin (atypical or nontoxigenic O1 V. cholerae)
- Other strains are identical to O1 strains but do not agglutinate in O1 antiserum (non-cholera (NCV) or non-agglutinating(NAG) vibrios) (non-O1 V.cholerae)

Several phage types

Epidemiology of Vibrio cholerae

- Cholera recognized for more than two millennia with sporadic disease and epidemics
- Endemic in regions of Southern and Southeastern Asia; origin of pandemic cholera outbreaks
- Generally in communities with **poor sanitation**
- Seven pandemics (possible beginning of 8th) since 1817 attributable to increased world travel
- Cholera spread by contaminated water and food
- Human carriers and environmental reservoirs

Summary of Vibrio cholerae Infections

REVIEW

Physiology and Structure

Curved gram-negative bacilli. Facultative anaerobe.

Fermenter.

Simple nutritional requirements; do not require salt for growth but can tolerate it.

Strains subdivided by their O cell wall antigens. Two biotypes of *V. cholerae* O1 strains—El tor and classical (this is important for epidemiologic classification of isolates).

Virulence

Refer to Table 30-2 for complete listing.

Cholera toxin is primarily responsible for the watery diarrhea characteristic of this species.

Adherence factors are important for establishing the initial colonization in the intestines, permitting the toxin to function.

Epidemiology

Organism responsible for major pandemics (worldwide epidemics), with significant mortality in underdeveloped countries.

All pandemics of cholera caused by serotype O1, although O139 can cause similar diseases and may cause a pandemic.

Organism found in estuarine and marine environments worldwide (including along the coast of the United States) associated with chitinous shellfish.

Organism can multiply freely in water.

Summary of Vibrio cholerae Infections (cont.)

REVIEW

Bacterial levels increase in contaminated waters during the warm months.

Spread by consumption of contaminated food or water. Direct person-to-person spread is rare because the infectious dose is high.

The infectious dose is high because most organisms are killed by stomach acids.

Disease

Cholera.

Presentation can range from mild disease to severe lifethreatening disease.

Disease is characterized by profuse watery diarrhea. Death is caused by electrolyte abnormalities and massive fluid loss.

Diagnosis

Culture should be performed early in course of disease with fresh stool specimens.

Treatment, Prevention, and Control

Fluid and electrolyte replacement are crucial.

Antibiotic therapy reduces the bacterial burden and exotoxin production, as well as duration of diarrhea.

Doxycycline (adults), trimethoprim-sulfamethoxazole (children), or furazolidone (pregnant women) is administered.

Improved hygiene is critical for control.

The killed parenteral vaccine is of no value, but the newer oral vaccine has some protective value.

Pathogenesis of V.cholerae (cont.)

- Cholera toxin leads to profuse loss of fluids and electrolytes (sodium, potassium, bicarbonate)
 - Hypokalemia (low levels of K in blood)
 - Cardiac arrhythmia and renal failure
- Cholera toxin blocks uptake of sodium & chloride from lumen of small intestine

Death attributable to:

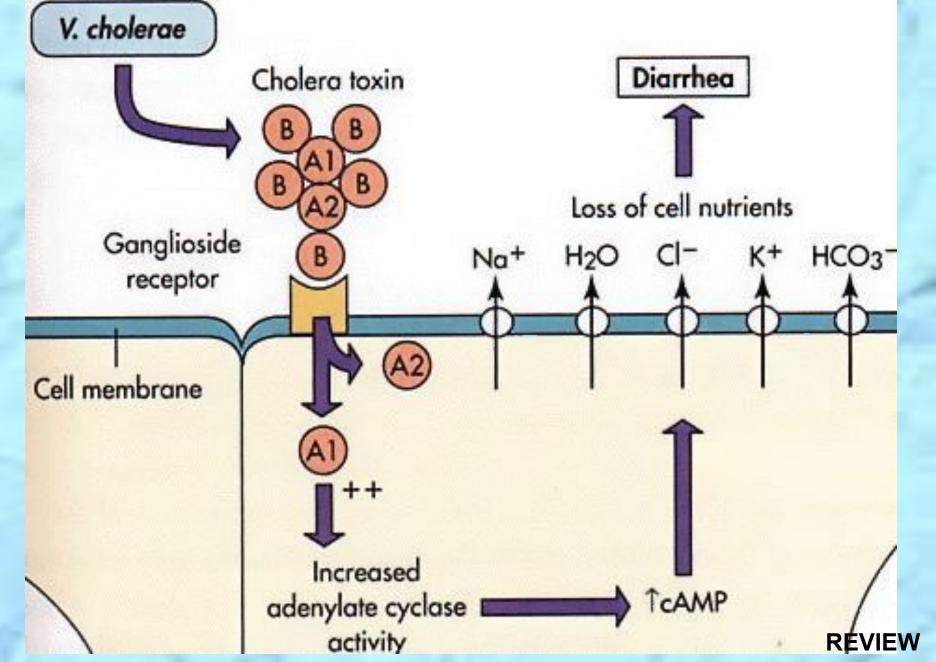
- Hypovolemic shock (due to abnormally low volume of circulating fluid (plasma) in the body)
- Metabolic acidosis (pH shifts toward acid side due to loss of bicarbonate buffering capacity)

REVIEW

Virulence Factors Associated with Vibrio cholerae O1 and O139

Virulence Factor

Biologic Effect


Cholera toxin

Coregulated pilus Accessory colonization Hemagglutinationprotease (mucinase) Siderophores Neuraminidase

Hypersecretion of electrolytes and water Adherence to mucosal cells Adhesin factor

Induces intestinal inflammation and degradation of tight junctions Iron sequestration Increase toxin receptors

Mechanism of Action of Cholera Toxin

Summary of Vibrio parahaemolyticus Infections

REVIEW

Physiology and Structure

Curved gram-negative bacilli. Facultative anaerobe. Fermenter.

Simple nutritional requirements but requires salt for growth.

Virulence

Refer to Table 30-3 for complete listing. Hemolysin. Adhesin.

Epidemiology

Organism found in estuarine and marine environments worldwide.

Associated with consumption of contaminated shellfish.

Not commonly isolated in the United States but is a major pathogen in countries where raw fish is eaten.

Diseases

Diarrhea ranging from mild disease to a cholera-like illness.

Typical presentation is an explosive, watery diarrhea.

Less commonly associated with wound infections and bacteremia.

Diagnosis

Culture should be performed as with V. cholerae.

Treatment, Prevention, and Control

Self-limited disease, although antibiotics can shorten symptoms and fluid loss.

Disease prevented by proper cooking of shellfish. No vaccines are available.

Summary of Vibrio vulnificus Infections

Physiology and Structure

Curved gram-negative bacilli. Facultative anaerobe.

Fermenter.

Simple nutritional requirements but requires salt for growth.

Virulence

Refer to Table 30-3 for complete listing.

 Resistant to complement- and antibody-mediated serum killing (thus, systemic infections).

Antiphagocytic capsule.

Production of hydrolytic enzymes (cytolysins, collagenase, proteases).

Epidemiology

Infection associated with exposure of a wound to contaminated salt water or ingestion of improperly prepared shellfish.

Diseases

Wound infections that can progress rapidly to formation of bullae and tissue necrosis.

Septicemia following ingestion of contaminated shellfish.

High mortality rate in immunocompromised patients.

Diagnosis

Culture wounds and blood.

Treatment, Prevention, and Control

Life-threatening illnesses that must be promptly treated with antibiotics.

Tetracyclines or aminoglycosides treatment of choice. No vaccine is available.

REVIEW

Virulence Factors Associated with **Non-cholerae Vibrios**

Organism

Virulence Factors

V. alginolyticus

V. hollisae

V. damsela

V. vulnificus Serum resistance, antiphagocytic polysaccharides, cytolysins, collagenase, protease, siderophore Collagenase Heat-stabile and heat-labile enterotoxin, hemolysin Cytolysin

Characteristics and Epidemiology of Aeromonas (Family Aeromonadaceae)

- Gram-negative facultatively anaerobic bacillus
 resembling members of the Enterobacteriaceae
- Motile species have single polar flagellum (nonmotile species apparently not associated with human disease)
- 16 phenospecies: Most significant human pathogens *A. hydrophila*, *A. caviae*, *A. veronii* biovar sobria
- Ubiquitous in fresh and brackish water
- Acquired by ingestion of or exposure to contaminated water or food

Clinical Syndromes of Aeromonas

- Associated with gastrointestinal disease
 - Chronic diarrhea in adults
 - Self-limited acute, severe disease in children resembling shigellosis with blood and leukocytes in the stool
 - 3% carriage rate
- Wound infections
- Opportunistic systemic disease in immunocompromised

 Putative virulence factors include: endotoxin; hemolysins; eneterotoxin; proteases; siderophores; adhesins

REVIEW

Characteristics of Plesiomonas

- Formerly Plesiomonadaceae
- Closely related to Proteus & now classified as Enterobacteriaceae despite differences:
 - Oxidase positive
 - Multiple polar flagella (lophotrichous)
- □ Single species: *Plesiomonas shigelloides*
- Isolated from aquatic environment (fresh or estuarine)
- Acquired by ingestion of or exposure to contaminated water or seafood or by exposure to amphibians or reptiles
- Self-limited gastroenteritis: secretory, colitis or chronic forms
- Variety of uncommon extra-intestinal infections

Characteristics of Aeromonas and Plesiomonas Gastroenteritis

Epidemiologic and Clinical Features	Aeromonas	Plesiomonas
	Easth an breakish mater	Fresh or brackish water
Natural habitat	Fresh or brackish water	
Source of infection	Contaminated food or water	Contaminated food or water; contact v
Clinical presentation:		amphibians or reptiles
Diarrhea	Present	Present
Vomiting	Present	Present
Abdominal cramps	Present	Present
Fever	Absent	Absent
Blood/leukocytes in stool	Absent	Present
Pathogenesis	Enterotoxin (?)	Invasive

