#### Environmental Geology - Chapter 4 Earth's Structure and Plate Tectonics

#### Deformation of Rocks

- A force causes stress on rocks
- Rocks near surface are elastic and will return to original form when stress is removed
- Elastic limit point at which rocks are no longer elastic and deformation becomes permanent
- Rocks can be brittle or ductile
- Rocks deform, slide by each other along point of fracture or *fault*

# Three Types of Stress



- Compression pushes on rocks from opposite directions; shortens rocks
- Tension pulls from opposite directions; stretches / lengthens
- 3. Shear pressure in uneven manner; rocks become skewed

Temperature, time and pressure are factors in stress.

#### Earth's Interior

- Internal heat source is energy causing metamorphism, uplift of crust (rock cycle)
- Seismic waves (earthquake waves)
  - Travel at different speeds through different materials
  - Reflect and refract when density changes
  - Has allowed scientists to determine boundaries b/w materials within Earth

# Earth's Structure



#### Earth's Structure

- Crust
  - Less dense layer
  - Lithosphere < 15 km, brittle rigid, broken into tectonic plates
- Mantle
  - ~2,900 km (1,800 mi) thick
  - Rocky, iron rich silicates, upper layer is asthenosphere
    - Silicates nearer to melting point; usual source of magma

#### Earth's Interior

- Scientists hypothesize inner and outer core are iron-nickel alloy
- Outer core
  - Metallic liquid
- Inner core
  - Metallic solid

# Earth's Magnetic Field

- Inner core is solid, rotates faster than planet
- Electrically charged metallic ions in outer core circulate
- Generates magnetic field
- Used for magnetic north in compasses
- Blocks some solar radiation

# Earth's Magnetic Field



#### Earth's Internal Heat

- Geothermal gradient 25°C/km temperature increases with depth
- Heat from radioactive decay of U, Th, & K
- Friction (internal compression) and pressure
- Conduction heat transferred through atmosphere to space
- Convection transfers heat; driven by temperature induced changes in density

# Earth's Internal Heat



#### Continental Drift

- Idea that continents were once joined first proposed in 1596 by Dutch mapmaker
- 1850s American writer noted how S. America and Africa shorelines fit together
- Frank Taylor, American geologist, 1910 suggested the continents were once joined

#### Continental Drift

- Alfred Wegener 1922 book on theory of continental drift
- More evidence than Taylor
  - similar sequences of rocks
  - fossil evidence
  - coal in Antarctica
  - evidence of past glaciation in tropical and desert areas
- Proposed supercontinent, Pangaea
- Could not fully explain how

# Developing Theory of Plate **Tectonics**





#### Developing Theory of Plate Tectonics

- Mapping ocean floor began in 1855 by U.S. Navy
  - WW1 and sonar
  - 1950s many sonar surveys by scientists
  - Mid oceanic ridges mountain chain in Atlantic
     Ocean
  - Ocean trenches as deep as 35,000 ft
- Map location and depths of earthquakes
  - Fall on plate boundaries
- Polar wandering
  - Moving poles and continents supported data

# Mapping the Ocean Floor



#### Magnetic Studies

- Igneous basalts contain iron mineral magnetite (Fe<sub>3</sub>O<sub>4</sub>)
- Magnetite is naturally magnetic
- Atoms orient parallel to Earth's magnetic field when rock cools
- Field of paleomagnetism studies changes in magnetic poles over geologic time

### Magnetic Reversal



Figure 4.11 Page 101

# Sea Floor Spreading

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Crustal age



- Millions years B.P.
- 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 NOAA/NGDC

- Mid oceanic ridges magma erupts forming new ocean crust
- Rocks older farther away from ridge crests
- 1968 drilling and dating basalts
- Oldest part of sea floor 200 million yrs old
- Atlantic basin growing, crust material destroyed in trenches

### Earthquakes

- Earthquake release of energy that occurs when rocks are deformed past their elastic limit causing a rupture
- Energy travels out in seismic waves
- Epicenter point on the surface that directly overlies point where rocks rupture
- 1960s global network of seismic recording stations

### Earthquake Locations



#### Earthquake Locations

- Epicenters along Mid Atlantic Ridge magma rises up, buckles crust forming ridge
- Epicenters coincide with continental mountain ranges
- Subduction occurs when plate is forced downward into mantle; associated with volcanic activity at ocean trenches

# Last Piece of Evidence for Continental Drift

- Magnetite rocks form/cool, atoms orient to magnetic north pole
- Throughout geologic time, rocks orient to different location – "polar wandering"
- Different continents had different paths
- Paleomagnetic and sea floor spreading studies prove continents were moving no the N. pole

# Polar Wandering



#### Plate Tectonics and Earth's Systems

- By 1960, 50 years of data proved sea floor spreading at mid ocean ridges
- New crust formed at ridges, and crust destroyed at trenches through subduction
- Tectonic Plates
  - Earth's lithosphere broken up into 7 major plates

#### Plate Tectonics and Earth's Systems

- Plate Boundaries defined by epicenters
  - Plates move over asthenosphere
  - Slide past
  - Override
  - Tear
  - Push into each other creating pressure ridges
- Plate movement creates volcanic eruptions and mountain ranges

#### **Plates**



#### Plate Boundaries

- Movement generates compression, tension or shear
- 3 Types of Boundaries
  - Divergent
  - 2. Convergent
  - 3. Transform
- See Figure 4.19 Page 107

#### Plate Boundaries



# Movement of Plates

Figure 4.17, Page 106



#### Surface Features & Plate Boundaries

- Convergent
- Oceanic-oceanic island arc; one plates undergoes subduction; may produce an island arc
- Oceanic-continental continental arc formed; oceanic plate undergoes subduction; volcanic activity
  - Andes Mountains along S. America's west coast
  - Cascades in Pacific Northwest of U.S.
- Continental-continental mountain belt, both plates are low density continental crust
  - Appalachian Mountains
  - Himalayas in Asia
  - Alps in Europe

#### Surface Features & Plate Boundaries

- Divergent
- Ocean ridges
- Rift valleys; may fill in with water
- <u>Transform</u> plates "side swipe" each other; shear forces; most in ocean plates; no subduction
- San Andreas fault
- See figures on pages 110 111

# Divergent Plate Boundaries

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display







#### Convergent Plate Boundaries

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display







# Transform Plate Boundary



# East African Rift Valley



# East African Rift Valley



### Future of African Continent?



http://www.pmfias.com/wp-content/uploads/2015/12/East-African-Rift-Valley-break-up.jpg

### Plate Boundaries and People

- Natural hazards
  - Earthquakes, volcanic eruptions, landslides
- Natural resources; minerals form under specific geologic conditions
- Climate oceans transfer heat, mountain ranges interrupt air masses; volcanic ash
- Development of life