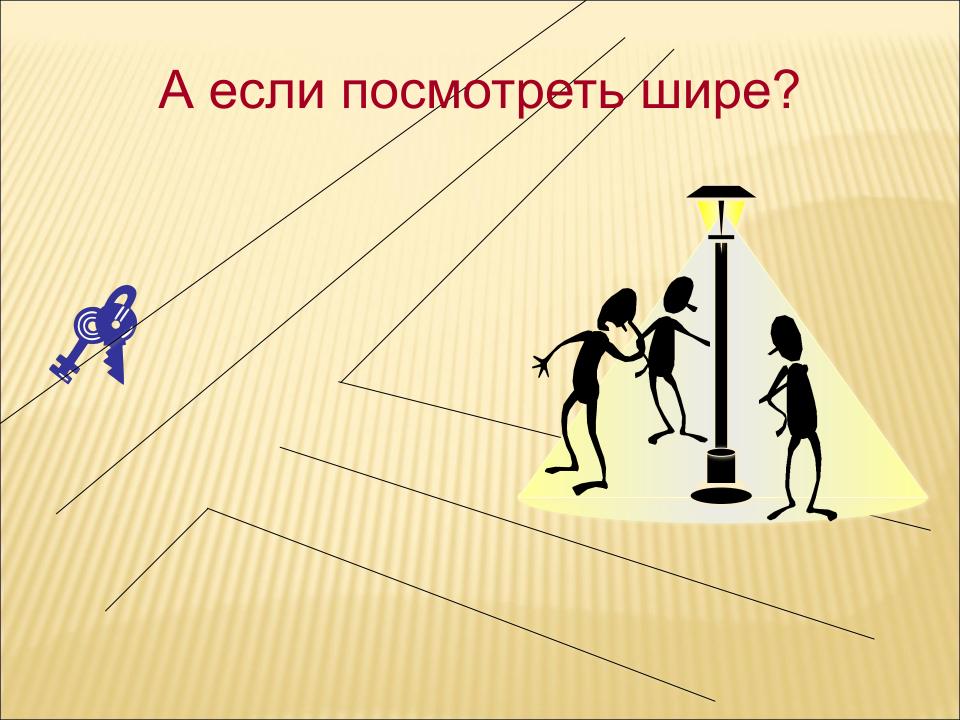


ЗАКОНЫ ГЕНЕТИКИ: РОДИТЕЛИ И ДЕТИ НА ОДНО ЛИЦО



Актриса Блайт Дэннер и ее дочь Гвинет Пэлтроу

Певец Джон Леннон и его сын Шон Леннон

ВОПРОС: НАСКОЛЬКО ВЕЛИКА РОЛЬ ГЕНЕТИКИ ЧЕЛОВЕКА В ЖИЗНИ КАЖДОГО ИЗ НАС?

Ответ:

Она бесконечно велика. Мы можем изменить в себе многое - но наши гены нам не подвластны

Генетика и геномика человека будет занимать все более важное место в изучении биологии человека – в решении проблем возникновения и эволюции вида Ното sapiens, в изучении формирования фенотипа индивидуума на всех этапах онтогенеза - от зачатия ло смерти.

ЧТО ТАКОЕ МЕДИЦИНСКАЯ ГЕНЕТИКА?

Медицинская генетика Система знаний о роли генетических факторов в патологии человека и система методов диагностики, лечения и профилактики наследственной патологии в широком смысле.

(Гинтер Е.К., 2003)

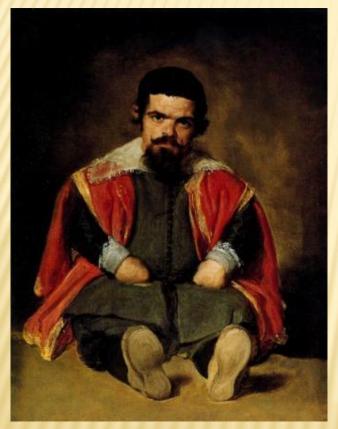
Медицинская генетика изучает роль наследственности в патологии человека, закономерности передачи от поколения поколению наследственных болезней, разрабатывает методы диагностики, профилактики и лечения наследственной патологии, включая болезни с наследственной предрасположенностью.

(Бочков Н.П., 2004)

АКСИОМЫ МЕДИЦИНСКОЙ ГЕНЕТИКИ НАЧАЛА XXI ВЕКА

- Наследственные болезни являются частью общей наследственной изменчивости человека. Нет резкой границы между наследственной патологией и вариантами нормальной вариабельности фенотипа.
- У человека нет признаков, зависящих ТОЛЬКО от генов или ТОЛЬКО от среды. Фенотип всегда есть результат взаимодействия генетической конституции организма с факторами внешней среды
- Каждый отдельный человек и человечество в целом несут на себе генетический груз, величина которого постоянно изменяется в результате мутационного процесса и естественного отбора.

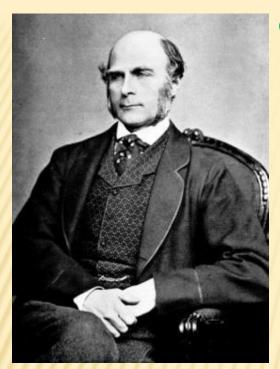
В настоящее время происходит резкое изменение генетической структуры популяций и условий внешней среды, что влияет на структуру генетического груза и его величину.


Прогресс медицины приводит к повышению продолжительности жизни и улучшению репродуктивного здоровья населения, что также приводит к изменению картины распределения генетического груза в популяции в

ряду поколений.

Чуть-чуть истории ...

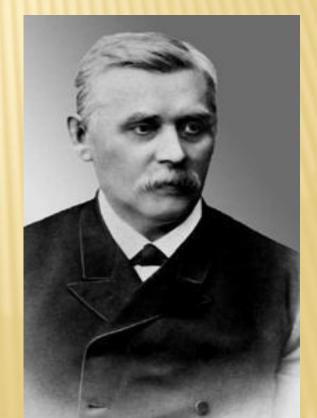
Наследственные болезни были всегда. И всегда интересовали человека


Первые сведения о передаче наследственной патологии у человека содержатся в
Талмуде (4 век до н.э.), в котором указано на опасность обрезания крайней плоти у новорожденных мальчиков, старшие братья которых или дяди по материнской линии страдают кровотечением

Портрет Sebastian de Morra

ВЕЛАСКЕС

Портрет Francisco Lezcano



Френсис Гальтон

Первым начал изучение однояйцевых близнецов и обнаружил, что некоторые человеческие признаки явственно передаются по наследству. Развивал учение о наследственной обусловленности индивидуально-психологических различий между людьми. Автор термина «евгеника»

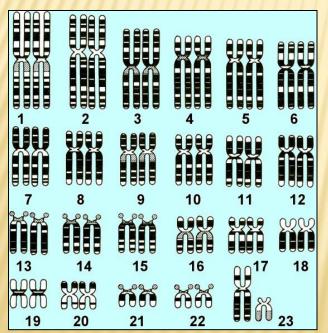
В.М. Флоринский

В изданной в 1866 г. книге «Усовершенствование и вырождение человеческого рода» впервые в русской литературе высказал некоторые мысли, положенные позднее в основу медицинской генетики, а также идеи по вопросам евгеники науки о наследственном здоровье человека и путях улучшения его наследственных свойств.

ДАВИДЕНКОВ СЕРГЕЙ НИКОЛАЕВИЧ (25.08.1880 - 2.07.1961);

- крупнейший невропатолог и генетик человека. В области медицинской генетики изучал наследственные болезни нервной системы, разрабатывал основы медико-генетического консультирования, изучал генетические и средовые причины клинического полиморфизма наследственных болезней и эволюционные аспекты невропатологии

«Задача профилактики в области наследственных болезнеи нервнои системы теоретически может быть мыслима, как: 1) борьба с возникновением болезненных мутаций; 2) дача правильного медикоевгенического совета в семьях, где менделируют тяжелые наследственные формы»


Особенности изучения генетики человека

В настоящее время главным объектом генетических исследований становится человек.

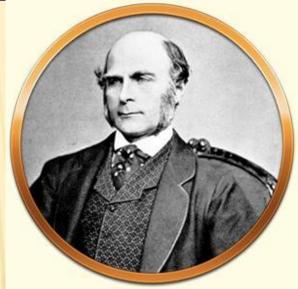
Для генетических исследований человек является очень неудобным объектом по ряду причин:

- у человека большое количество хромосом;
- невозможно экспериментальное скрещивание;
- -поздно наступает половая зрелость;
- -малое число потомков в каждой семье;
- невозможно уравнивание условий жизни для потомства.

МЕТОДЫ МЕДИЦИНСКОЙ ГЕНЕТИКИ

- 1. Клинико-генеалогический метод, составление
- родословных, (предложил в1865 г. Ф.Гальтон).
- 2. Близнецовый метод (предложил в 1875 г. Ф.Гальтон).
- 3. Дерматоглифический метод (предложил в 1892 г. Ф.Гальтон).
- 4. Популяционно -статистический метод

(предложили в 1908 г. Г.Харди и В.Вайнберг)

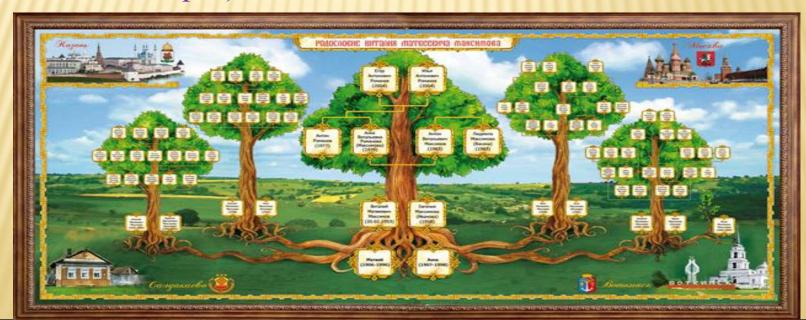

5. Цитогенетический метод

(предложили в 1956 г. Д.Тийо и А.Ла

- 6. Биохимический метод.
- 7. Молекулярно-генетический мет
- 8. Метод математического
- и компьютерного моделирования.

Сэр Фрэнсис Гальтон

(16 февраля 1822 г. — 17 января 1911г.) — английский исследователь, географ, антрополог и психолог; основатель дифференциальной психологии и психометрики. Родился в Бирмингеме, в Англии. Происхождение: Гальтон был двоюродным братом Чарльза Дарвина по их деду — Эразмусу (Эразму) Дарвину. Френсис Гальтон обладал исключительными умственными способностями (IQ = 200), став самым младшим в семье из 9 детей.

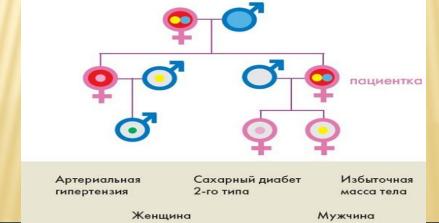


Сэр Фрэнсис Гальтон (16.02.1822 — 17.01.1911)

Занимаясь экспериментально-психологическими исследованиями (изучал пороги чувствительности, время реакции, ассоциации и другие психические процессы), Гальтон обращал главное внимание не на общие для всех индивидов законы, а на их вариативность у различных людей. Для изучения этой вариативности он изобрел ряд специальных методик. Изучив и статистически обработав огромный биографический материал, касающийся родственных связей выдающихся личностей Англии, Гальтон утверждал, что высокая даровитость определяется степенью и характером родства. Например, шанс родиться талантливым имеет только один из четырех детей.

КЛИНИКО-І ЕНЕАЛОІ ИЧЕСКИИ

- раскрывает вакономерности наследования признаков в границах одной семьи, поэтому его называют методом родословного дерева;
- позволяет установить тип наследования данного наследственного заболевания;
- оформление родословного дерева проводится путем специальных обозначений и правил;
- полученные данные должны быть отражены в легенде (генетической карте).



ЭТАПЫ КЛИНИКО-ГЕНЕАЛОГИЧЕСКОГО

- Сбор данных обо всех родственниках пробанда (анамнез);
- Построение родословной;
- Оформление легенды к родословной;
- Клинико-генеалогический анализ родословной:
 - выявление наследственных болезней и врожденных пороков развития в родословной,
 - определение типа наследования болезни, зиготности (гомо-, гетерозигота) и пенетрантности гена,
 - расчет генетического риска (вероятности рождения ребенка с наследственной патологией),

- выводы и рекомендации для пробанда и членов

родословной.

СЛОЖНОСТИ КЛИНИКО-ГЕНЕАЛОГИЧЕСКОГО АНАЛИЗА

- В зависимости от цели исследования родословная может быть полной или ограниченной.
- Желательно стремиться к наиболее полному составлению родословной по восходящему, нисходящему и боковым направлениям.
- Сложность сбора анамнеза: пробанд должен хорошо знать родственников по линии матери и отца не менее трех поколений и состояние их здоровья, что бывает крайне редко.
- Одного опроса, как правило, недостаточно: для некоторых членов родословной приходится назначать полное клиническое, параклиническое или лабораторное обследование для уточнения состояния их здоровья.

ПРОБЛЕМЫ АНАЛИЗА РОДОСЛОВНЫХ

- Решетки Пеннета и тест хи-квадрат хорошо работают для организмов с большим числом потомков и контролируемые скрещивания, но у человека все подругому:
 - 1. Небольшой (и очень небольшой) размер семей.
 - 2. Произвольный выбор брачных партнеров.
 - 3. Проблемы с точным определением отцовства.

ОСНОВНЫЕ СИМВОЛЫ

Мужчина

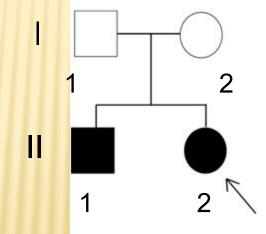
Мужчина – носитель признака

Женщина

Женщина – носитель признака

Пол не определен

Умерший

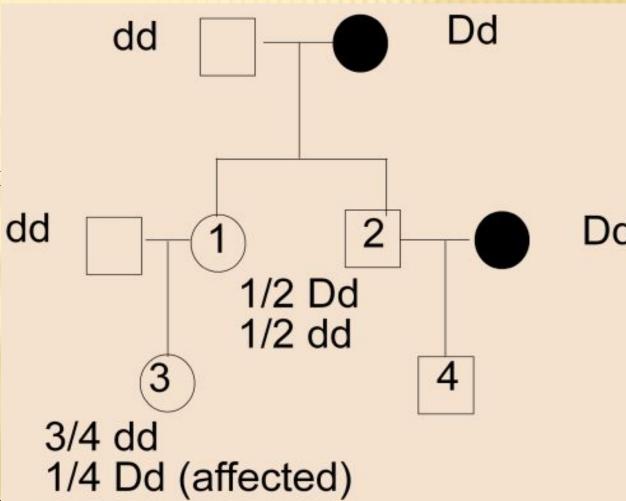

Необследованный клинически член семьи

Семейная пара

Родственная семейная пара

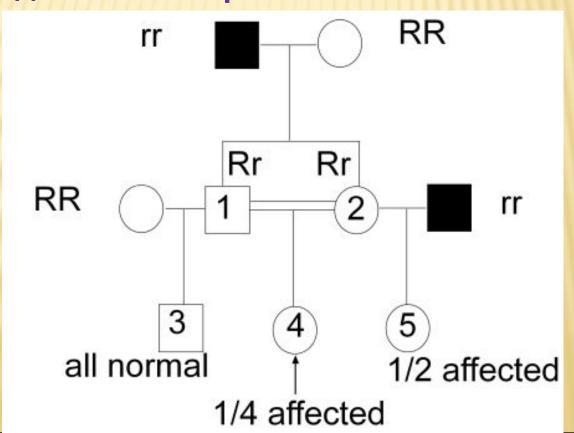
Сибсы

Пробанд



Гетерозиготный носитель мутации

АУТОСОМНО-ДОМИНАНТНОЕ


НАСЛЕДОВАНИЕ Правило для аутсайдера в доминантных семьях: все больные аутсайдеры гетерозиготны по доминантному (патологическому) аллелю. Все здоровые аутсайдеры — гомозиготы по нормальному рецессивному аллелю.

Пробанд — человек, с которого начинается генетическое обследование семьи и составление родословной.

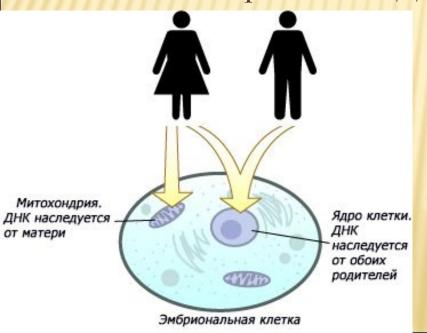
АУТОСОМНО-РЕЦЕССИВНОЕ НАСЛЕДОВАНИЕ

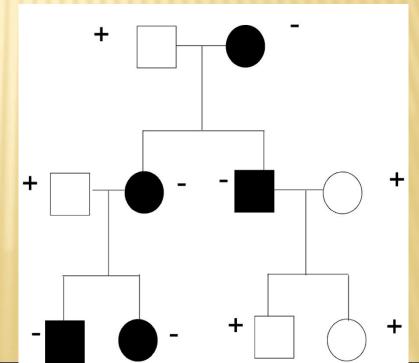
- Все больные гомозиготы по мутантному аллелю
- Здоровые аутсайдеры по умолчанию гомозиготы по нормальному аллелю
- В семьях с рецессивным наследованием часты близкородственные браки

ГЛАДКО БЫЛО НА БУМАГЕ, ДА ЗАБЫЛИ ПРО ОВРАГИ ... ПРОБЛЕМЫ

- **Фенокопии**
- **Генокопии**
- Неполная и возраст-зависимая пенетрантность
 - Разная экспрессивность признака
- Другие типы наследования признака

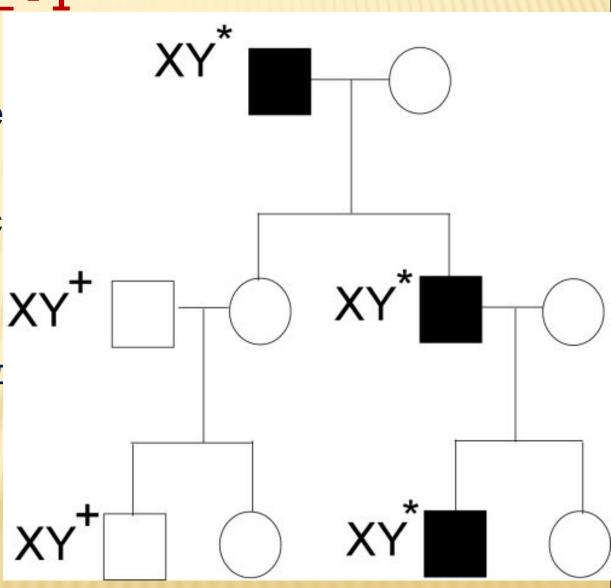
МИТОХОНДРИАЛЬНОЕ

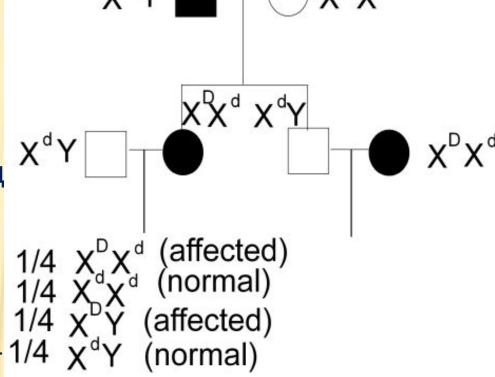

НАСЛЕДОВАНИЕ Митохондриальная ДНК наследуется только по материнской линии


 □ Все дети больной митохондриальным заболеванием матери наследуют это заболевание

 У мужчины с митохондриальным заболеванием все дети будут здоровы

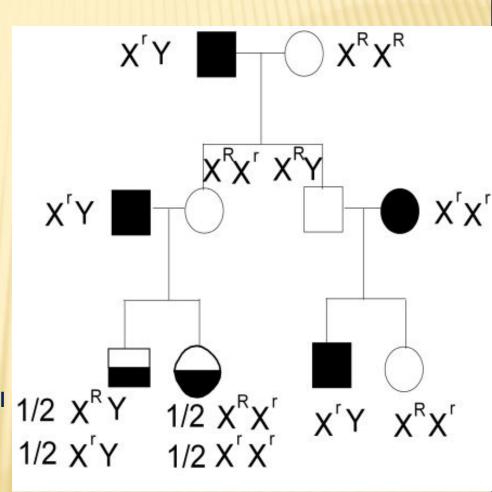
Возможна гетероплазмия – сочетание в одной яйцеклетке

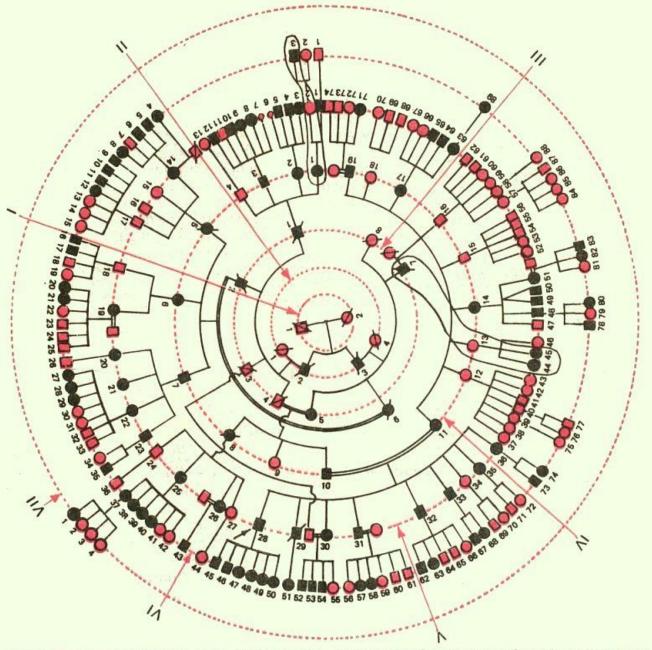

нескольких вариантов мтДНК


СЦЕПЛЕННОЕ С ПОЛОМ НАСЛЕДОВАНИЕ - 1

- Сцепленный с Ү вариант
- Признак выявляе только у мужчин передается по мужской линии вс сыновьям
- Признак гемизиготный и проявляется всегд его носителей

СЦЕПЛЕННОЕ С ПОЛОМ НАСЛЕДОВАНИЕ – 2 (ДОМИНАН

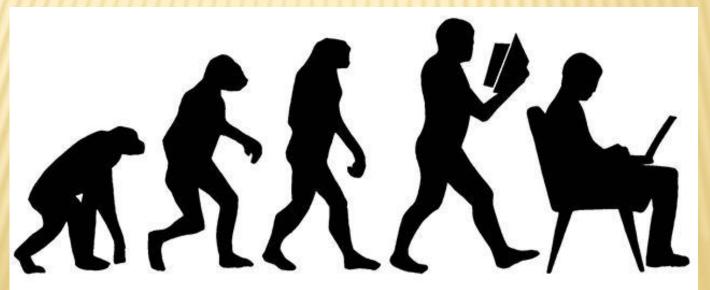

- Матери передают свою X хромосому с мутантным аллелем и дочерям, и сыновьям
- Мутантную X хромосому отц передают только дочерям
 - Стандартное правило аутсайдеров для женщин в семьях с X-сцепленным 1/4 заболеванием. Аутсайдеры- 1/4 мужчины гемизиготны и всегда очевидно, какой хромосоме .



 $X^{D} = доминантный мутантный аллель <math>X^{d} = peцессивный нормальный аллель$

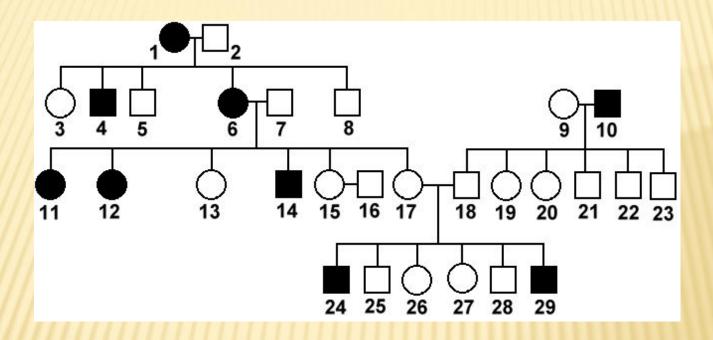
Сцепленное с полом наследование – 2 (рецессивное)

- Мужчины получают свою X хромосому от матери
- Отцы передают свою X хромосому только дочерям
- У женщин фенотип
 наблюдается только при
 гомозиготности по мутантному
 аллелю
- Фенотип наблюдается у мужчин при наличии мутантного аллеля
- □ Правило аутсайдеров клинически здоровые женщины рассматриваются как гомозиготы по нормальному аллелю


Родословная семьи: не установлено, кто из супругов первого поколения (1) был носителем патологического гена (синдром Элерса — Данлоса — гиперэластичность и хрупкость кожи, гиперлодвижность суставов, повышенная кровоточивость), переданного двум сыновьям (11). Расширенное воспроизводство

семьи (с хорошей выживаемостью больных) привело к появлению 99 больных в последующих пяти поколениях— III, IV, V, VI, VII (последнее— в процессе обследования). Петлями обозначено два случая скрытого носительства.

КОМПЬЮТЕРНЫЕ ГЕНЕАЛОГИЧЕСКИЕ ПРОГРАММЫ

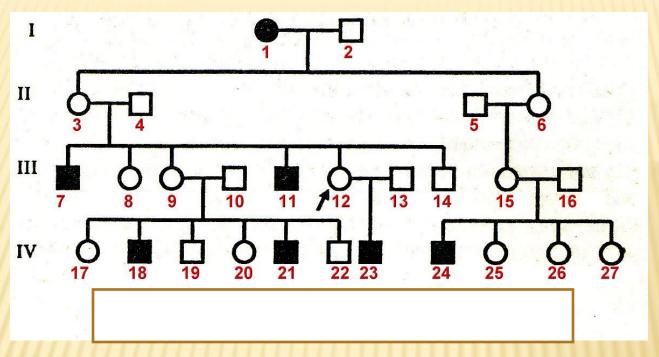

Составление родословной — задача непростая, требующая и массу интеллектуальных расходов и немало временных затрат.

В век информатизации для облегчения сбора и хранения генеалогической информации предложены различные русскоязычные и англоязычные электронные программы, позволяющие облегчить и ускорить составление родословной.

КЛИНИКО-ГЕНЕТИЧЕСКИЕ БАЗЫ ДАННЫХ

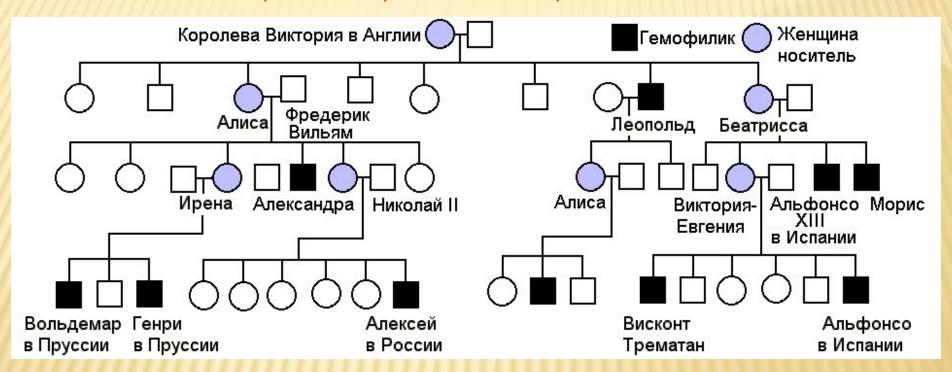
- Online Mendelian Inheritance in Man OMIM
 - www. Omim.org
- Gene Clinics
 - www.geneclinics.org
- National Newborn Screening and Genetics
 Resource Center web site: NNSGRC
 - www.genes-r-us.uthscsa.edu/
- Alliance of Genetic Support Groups
 - www.medhlp.netusa.net/www/agsg.htm

Определите, доминантен или рецессивен данный признак? Больные не в каждом поколении (18–23), больной ребенок у здоровых родителей (17–18) – значит это рецессивный ген.


Этот признак сцеплен с половыми хромосомами или с аутосомами? С аутосомами, так как болеют в равной степени и мужчины и женщины.

Определите где возможно генотипы особей по данному признаку (гомозиготность, гетерозиготность). Свои рассуждения поясните.

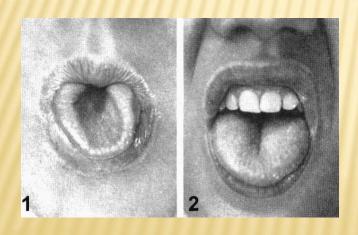
Определите, доминантен или рецессивен данный признак? Больные в каждом поколении, больной ребенок только у больных родителей – значит это доминантный ген.


Этот признак сцеплен с половыми хромосомами или с аутосомами? С аутосомами, так как болеют в равной степени и мужчины и женщины. Определите генотипы особей по данному признаку (гомозиготность, гетерозиготность). Свои рассуждения поясните.

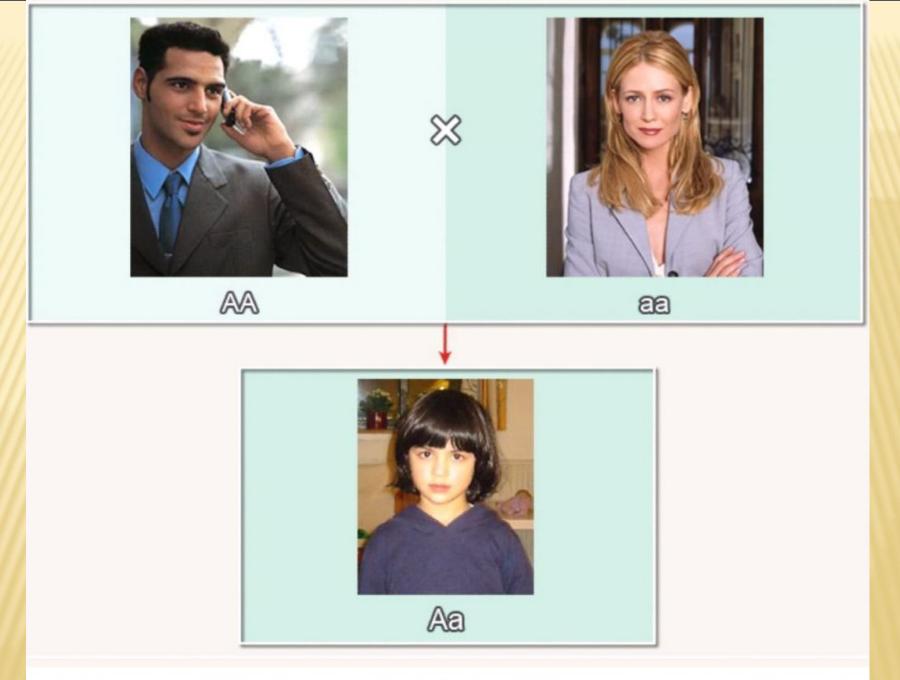
Определите, доминантен или рецессивен данный признак? Больные не в каждом поколении, больной ребенок у здоровых родителей – значит это рецессивный ген.

Этот признак сцепленным с половыми хромосомами или с аутосомами? С половыми хромосомами, так как болеют в основном мужчины. В какой половой хромосоме находится ген, отвечающий за данный признак? В X-хромосоме, так как этот признак проявляется у мужчин и женщины №1. Определите где возможно генотипы особей по данному признаку (гомозиготность, гетерозиготность). Свои рассуждения поясните.

Ярким примером Х-сцепленного рецессивного типа наследования является наследование гемофилии в царских домах Европы.

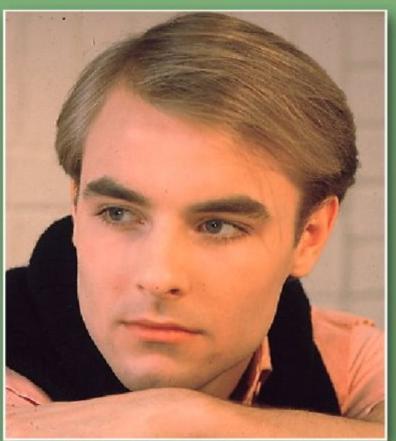



Использование генеалогического метода показало, что при родственном браке, по сравнению с неродственным, значительно возрастает вероятность появления уродств, мертворождений, ранней смертности в потомстве. В родственных браках рецессивные гены чаще переходят в гомозиготное состояние, в результате развиваются те или иные аномалии.


По аутосомно-доминантному типу наследуются:

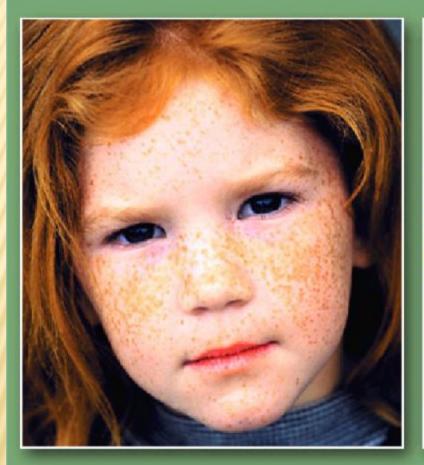
полидактилия, брахидактилия (короткопалось, обусловленная отсутствием фаланг на пальцах), возможность свертывать язык в трубочку, веснушки, раннее облысение, карие глаза, волнистые волосы.

Отсутствие веснушек, голубые глаза, прямые волосы, альбинизм, рыжие волосы и другие признаки наследуются как *аутосомно-рецессивные*.



Доминантный ген **A**, определяющий темный цвет волос, подавляет проявление рецессивного гена **a**, определяющего светлый цвет волос.

Рецессивные признаки


Доминантные признаки

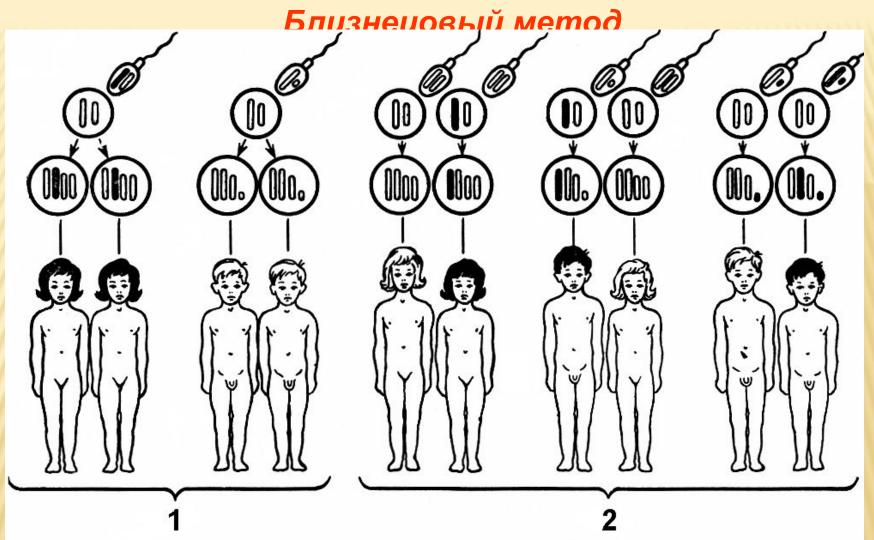
Рецессивные признаки

Рецессивные признаки

Альбинизм – рецессивный признак

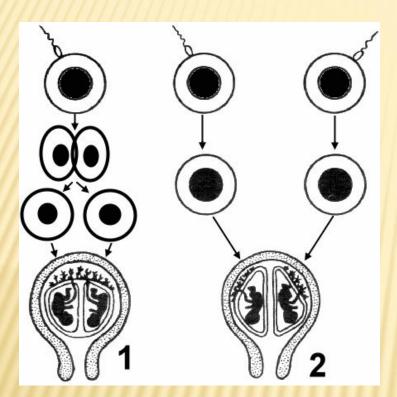
Позволяет выявить мультифакториальные заболевания т.е. болезни с наследственной предрасположенностью.

Формула Кольцингера


$$\mathbf{H} = \frac{\mathbf{C}_{\mathrm{MB}} - \mathbf{C}_{\mathrm{ДB}}}{100 - \mathbf{C}_{\mathrm{ДB}}}$$

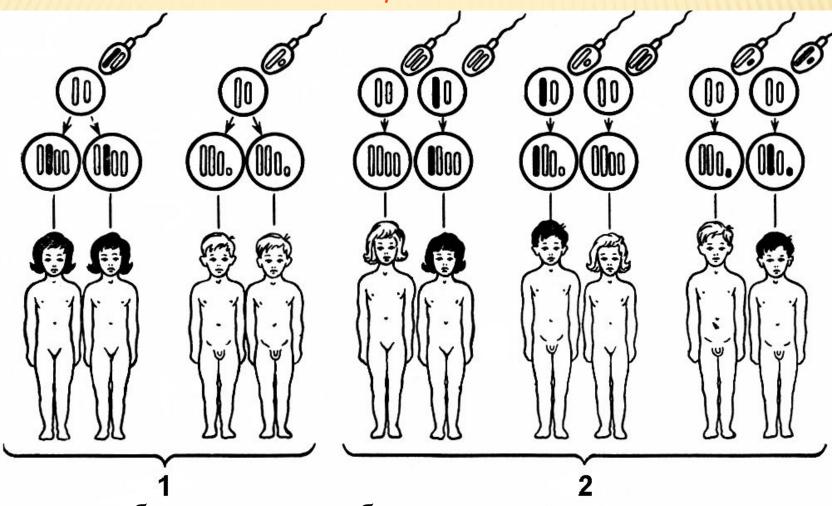
Н - коэффициент наследственности

С - конкордантность


Близнецовый метод – дает возможность установить роль генотипа и факторов среды в возникновении заболевания

Если Н ≥ 0,7, то признак наследуется NyShared

Близнецами называют одновременно родившихся детей. Они бывают монозиготными (однояйцевыми) и дизиготными (разнояйцевыми). Монозиготные близнецы развиваются из одной зиготы, которая на стадии дробления разделилась на две (или более) частей. Поэтому такие


близнецы генетически идентичны и всегда одного пола.

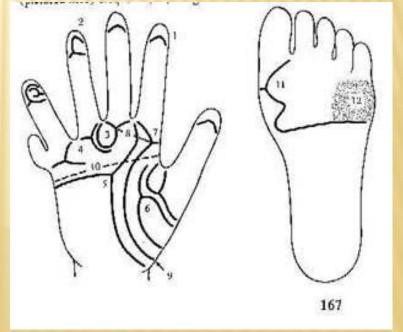
Монозиготные близнецы характеризуются большой степенью сходства (*конкордантностью*) по многим признакам.

По тем признакам, которые контролируются генами, сходство сохраняется до глубокой старости.

Дизиготные близнецы могут быть как одного, так и или разного пола. В отличие от монозиготных, дизиготные близнецы часто характеризуются *дискордантностью* — несходством по многим признакам.

79.7 W. (See) See)	Конкордантность, %		
Признаки	Монозиготные близнецы	Дизиготные близнецы	
Нормальные			
Группа крови (АВО) Цвет глаз Цвет волос	100 99,5 97	46 28 23	
Патологические			
Косолапость "Заячья губа" Бронхиальная астма Корь Туберкулез Эпилепсия Шизофрения	32 33 19 98 37 67 70	35 4,8 94 15 13	

По всем приведенным признакам конкордантность у монозиготных близнецовых значительно выше, чем у дизиготных, однако она не является абсолютной. Как правило, дискордантность однояйцевых близнецов возникает в результате нарушений внутриутробного развития одного из них или под влиянием внешней среды, если она была разной.


/92590/Jan 1992-0	Конкордантность, %		
Признаки	Монозиготные близнецы	Дизиготные близнецы	
Нормальные			
Группа крови (ABO) Цвет глаз Цвет волос	100 99,5 97	46 28 23	
Патологические			
Косолапость "Заячья губа" Бронхиальная астма Корь Туберкулез Эпилепсия Шизофрения	32 33 19 98 37 67 70	35 4,8 94 15 13	

Благодаря близнецовому методу, была выяснена наследственная предрасположенность человека к ряду заболеваний: <u>шизофрении</u>, <u>умственной отсталости</u>, <u>эпилепсии</u>, <u>сахарному диабету</u> и других.

Наблюдения за монозиготными близнецами дают материал для выяснения роли наследственности и среды в развитии признаков. Причем под внешней средой понимают не только физические факторы среды, но и социальные условия.

Метод дерматоглифики (derma-кожа, gliphe-рисовать) — основан на изучении кожного рельефа пальцев, кисти и стопы. В этих участках кожи в отличие от других эпидермис образует своеобразные борозды. Рисунок эпидермальных (папиллярных) - линий отличается у разных индивидов. Поэтому раньше отпечатки пальцев использовались вместо подписи. Существует следующие способы дерматоглифики. а)дактилоскопия (рисунки кончиков пальцев), б)

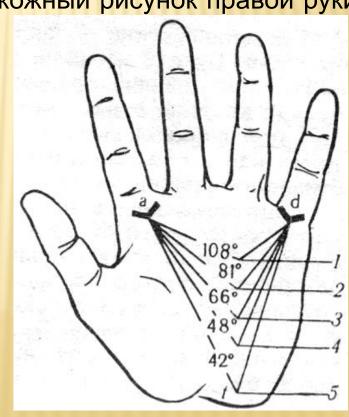
пальмоскопия (рисунок кисти), в)плантоскопия (рисунок стопы).

Дактилоскопия – самый распространенный способ дерматоглифики, основан на изучении рисунка линий кончиков фалангов. Различают в основном 3

Папиллярные линии являются полигенными признаками, их формирование начинается с 10-20 недели эмбриогенеза и завершается к 6 мес. Форма рисунка не изменяется в течение жизни. Среди форм папиллярных линий чаще встречаются петли (до 60%), реже — дуги (6%). Частота форм папиллярных линий различается у разных рас.

Пальмоскопия — изучение эпидермальных линий, трирадиусов, углов между трирадиусами на кисти. Трирадиусы (дельты) места схождения трёх разнонаправленных линий. При изучении хромосомных синдромов придается большое значение углу между трирадиусами atd (а-трирадиус — в основании второй фаланги, d-трирадиус в основании пятой фаланги, t-трирадиус в середине браслетной складки). У нормальных людей угол atd трирадиуса 57°-60°, при синдроме Дауна — 80°, при синдроме Клайнфельтера-42°, при синдроме Шерешевского-Тернера —65°. Установлена также, что у праворуких кожный рисунок правой руки более

сложный, чем левой.


1-синдром Патау;

2-синдром Дауна;

3-синдром Шерешевского-Тернера;

4-норма;

5-синдром Клайнфельтера

Те, у кого среди пальцевых узоров преобладают дуги, отличаются конкретным мышлением. Эти люди однозначны и целеустремленны, им трудно приспосабливаться к изменениям окружающей обстановки и прислушиваться к мнению других людей. Они правдивы, откровенны, не любят закулисных интриг. Нередко люди подобного типа выбиваются во всякого рода начальство. Люди с простой организацией нервной деятельности. Стабильны, прямо идут к цели. перспективе достигают вершин служебной лестницы. Не мучают себя лишними мыслями и сомнениями...

Люди с преобладанием на пальцах петлевых узоров - это «золотая середина». У них широкий круг интересов, они легко сходятся с окружающими, терпят их любые странности, вполне адекватно при этом оценивая происходящее. При всех их плюсах и минусах это идеальные руководители, способные хоть и по минимуму, но удовлетворить всех. Тем более что на окружающих они не давят (как люди с дугами) и не мучают никого постоянно меняющимися замыслами (как обладатели завитков). Основа стабильности общества и семьи. Им можно доверить Родину. Стараются осознанно и точно соблюдать инструкции. Ядерная кнопка в их руках и автомат не дадут сбоя. На них в основном рассч системы подготовки от детского до ВУЗа.

«Завитки» – «витающие в облаках» люди богемы. Творчески очень одарены, все схватывают на лету, очень быстро обучаются, хватаются сразу за несколько дел, но часто их не доделывают, теряя к ним интерес. Только они сами в состоянии заставить себя что-то сделать. Несмотря на свою колоссальную выносливость, обладатели «завитков» не терпят неприятных для себя обстоятельств. Они постоянно недовольны собой, склонны к самокопанию и мучительным сомнениям. Большое количество завитков говорит о тонкой, возбудимой психике. Их отличает, с одной стороны, очень высокая нервная организация, с другой – неустойчивость психики, склонность к депрессии.

В качестве обобщенного показателя потенциальных возможностей человека спортсмены используют называемый дельтовый индекс, зависящий от сложности пальцевых узоров. Наиболее простой – дуга – 0, петля – 1, узор или завиток – 2. Максимальный показатель (исходя из 10 пальцев) – 20. Низкий (до 10) характеризует незаурядные скоростно-силовые качества (велотрек, легкая атлетика, коньки). Средний (от 10 до 13) – показатель выносливости (лыжи, велогонка, стайерские дистанции). Высокий (выше способности к сложной координированной деятельности (штанга, бокс, фигурное катание).

Дактилоскопия — раздел трасологии, изучающий свойства и характеристики папиллярных узоров кожи человека, главным образом пальцев рук, средства и методы их обнаружения, фиксации, изъятия и исследования в целях криминалистической регистрации личности, ее идентификации и розыска.

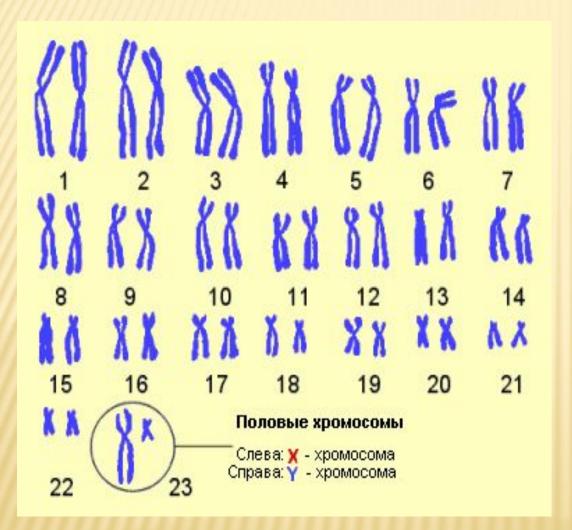
Ладонная поверхность руки содержит несколько **групп признаков**, **позволяющих идентифицировать человека**:

флексорные линии (сгибательные);

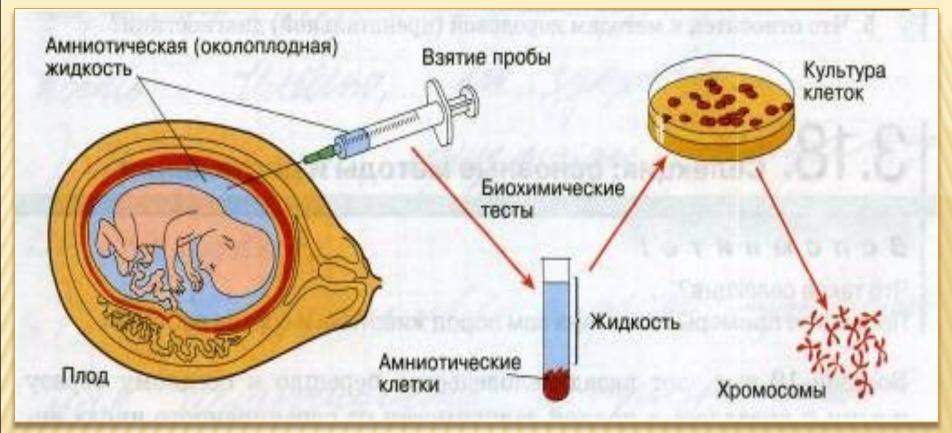
«белые линии» (линии Бокариуса) – мелкие складки кожи, расположенные на ладонной поверхности руки и на фалангах пальцев;

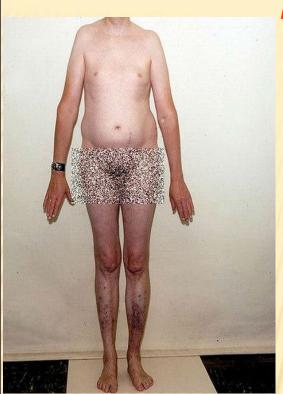
папиллярные линии — линейные возвышения которые, изгибаясь, образуют сложные построения и узоры различной формы, располагаются по всей ладонной поверхности и разделяются мелкими бороздками;

]тонкие линии;]рубцы (шрамы);


поры.

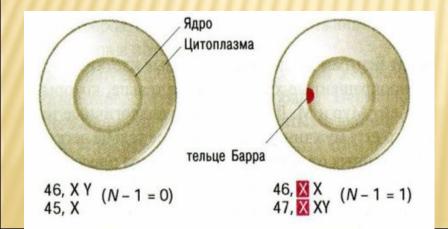
Биометрический загранпаспорт

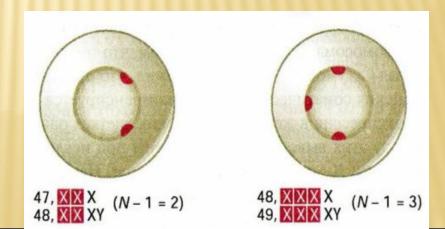

Цитогенетический метод


Цитогенетический метод

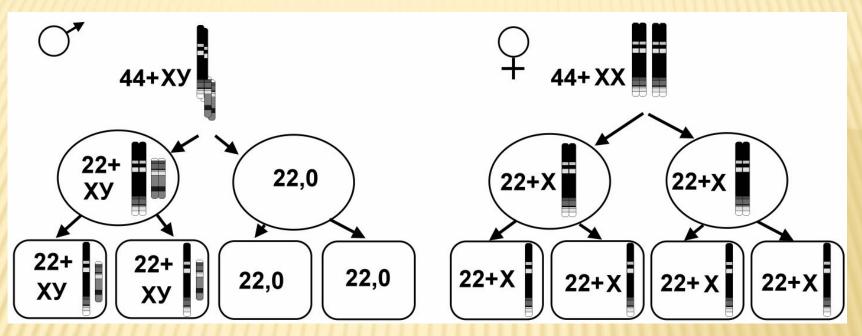
основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом — 22 пары аутосом и две половые хромосомы.

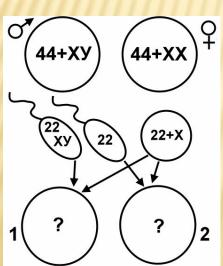
Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры.


К стандартным процедурам цитогенетического анализа крови относится кариотипирование. С его помощью выявляют нарушения в количестве и структуре хромосом. Для анализа кариотипа, забор клеток крови держат в питательной среде на протяжении 3 суток. Затем происходит фиксация полученного материала и изучение под микроскопом.



Цитогенетический метод


Такие болезни получили название *хромосомных*. К их числу относятся: синдром Клайнфельтера, синдром Шерешевского-Тернера, Больные с синдромом Клайнфельтера (47,ХХУ) всегда мужчины. Они характеризуются недоразвитием половых желез, дегенерацией семенных канальцев, часто умственной отсталостью, высоким ростом (за счет непропорционально длинных ног).


Лишняя X-хромосома конденсируется в тельце Барра. Тельца Барра обнаруживаются в женских клетках и в клетках больных с синдромом Клайнфельтера.

Цитогенетический метод

47; ХХУ – синдром Клайнфельтера;

45; ХО – синдром Шерешевского-Тернера;

47; 21,21,21 – Дауна.

Биохимический метод

Причиной многих врожденных нарушений метаболизма являются различные дефекты ферментов, возникающие вследствие изменяющих их структуру мутаций. Биохимичские показатели (первичный продукт гена, накопление патологических метаболитов внутри клетки и во всех клеточных жидкостях больного) более точно отражают сущность болезни по сравнению с показателями клиническими, поэтому их значение в диагностике наследственных болезней постоянно возрастает. Использование современных биохимических методов (электрофореза, хроматографии, спектроскопии и др.) позволяют определять любые метаболиты, специфические для конкретной наследственной болезни.

Предметом современной биохимической диагностики являются специфические метаболиты, энзимопатии, различные белки.

Объектами биохимического анализа могут служить моча, пот, плазма и сыворотка крови, форменные элементы крови, культуры клеток (фибробласты, лимфоциты).

Биохимический метод позволяет обнаружить нарушения обмене веществ, вызванные изменением генов и, как следствие, изменением

активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот (фенилкетонурия), липидов (болезнь Тея-Сакса), минералов и др.				
Дефект фермента	Ти	п гликогеноза		
Глюкозо-6-фосфатазы	— → 1 т	ип (болезнь <i>Гирке</i>)		
Альфа-1,4-глюкозидазы	— → 2 т	ип (болезнь Помпе)		
Амило-1,6-глюкозидазы	— → 3 т	ип (болезнь Кори)		
D-1,4-Глюкано-α-глюкозилтрансферазы	——→ 4 т	ип (болезнь Андерсен)		
Гликогонфорфориловичитор		ил (болоон, МокАрдая)		

Пликогенфосфорилазы миоцитов 6 тип (болезнь Гирса) Гликогенфосфорилазы гепатоцитов

5 тип (болезнь МакАрдля) 7 тип (болезнь Томпсона) Фосфоглюкомутазы

8 тип (болезнь Таруи) Фосфофруктомутазы

9 тип (болезнь Хага) Киназы фосфорилазы в гепатоцитах

Молекулярно-генетические методы

Знание структуры и функции генов, основных видов изменчивости, знакомство с наследственными болезнями позволяет перейти к анализу молекулярно-генетических методов. Методы молекулярной генетики направлены на изучение молекулы ДНК как в норме, так и при ее повреждении, а также на «манипуляции» с молекулами ДНК и РНК. Использование молекулярно-генетических методов требует знания основных этапов получения определенных последовательностей (фрагментов) ДНК.

ДНК-диагностика - это максимально точный способ диагностики: при нем риск ошибки составляет всего 3 %, быстрый: результаты доступны в течение 1-3 дней, универсальный: способ применим к широкому спектру микробов.

Различают два метода ДНК-диагностики:

Iполимеразная цепная реакция, или ПЦР (подходит для исследования практически любого материала);

Ілигазная цепная реакция, или ЛЦР.

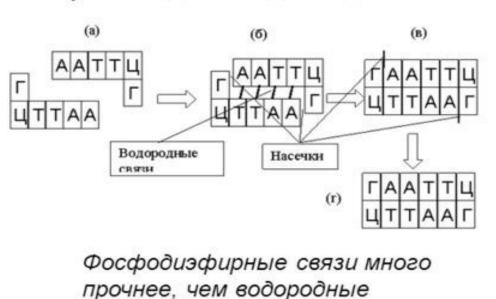
Принцип полимеразно-цепной реакции (ПЦР) предложил Кэри Мюллис в 1983 году. Это открытие стало одним из самых значимых для молекулярной биологии.

В 1993 году Мюллис был удостоен Нобелевской премии в области химии.

К этому времени уже были известны уникальные свойства одного из ферментов нуклеиновой кислоты — taq-полимеразы. Это вещество необходимо для исследования методом полимеразно-цепной реакции. Полимераза обладает высокой термостойкостью и термостабильностью. При нагреве до температуры кипения активность вещества не снижается.

Суть метода объясняется довольно просто. Существует множество заболеваний, о наличии которых человек может не подозревать долгое время. Традиционные анализы не всегда способны предоставить полную картину для вынесения корректного диагноза и назначения соответствующего лечения. Используя возможности ПЦР в медицинской диагностике, в организме можно найти микроорганизмы в минимальных концентрациях.

ПЦР— это воссоздание естественного размножения нуклеиновой кислоты. В течение небольшого времени, используя всего один фрагмент вещества, можно выделить 50 млрд. клонированных молекул. То есть врачи получают неиссякаемый источник для изучения.


ПЦР включает несколько основополагающих процедур:

- •забор и подготовка пробы;
- •полимеразно-цепная реакция;
- анализ материала, выделяемого в ходе исследования.

Основные области применения ПЦР: клиническая медицина диагностика инфекционных заболеваний диагностика наследственных заболеваний выявление мутаций генотипирование клеточные технологии создание генетических паспортов ЭКОЛОГИЯ мониторинг состояния окружающей среды анализ продуктов питания анализ генетически-модифицированных организмов (ГМО) судебная медицина и криминалистика идентификация личности установление отцовства фармакология ветеринария научные исследования (молекулярная биология, генетика)

Лигазная цепная реакция (ЛЦР) является одним из перспективных методов клинической диагностики, интенсивно развиваемым на практике в последнее десятилетие. По своей чувствительности и точности анализа ЛЦР во многих случаях продемонстрировала свое превосходство не только над классическими методами микробиологического анализа, такими как получение чистых культур, иммунохимический анализ, но и над современными вариантами полимеразной цепной реакции (ПЦР).

 Сшивка - операция, обратная операции разрезания, происходит под воздействием ферментов – лигаз.

"Липкие концы" соединяются вместе с образованием водородных связей.

Лигазы служат для того, чтобы закрыть насечки, т.е. способствовать образованию в нужных местах фосфодиэфирных связей.

Пренатальная диагностика наследственной патологии

Пренатальная диагностика врожденных и наследственных болезней - это комплексная отрасль медицины, которая быстро развивается. Она использует и *ультразвуковую диагностику* (УЗИ), и *оперативную технику* (хорионбиопсию, амнио-и кордоцентез, биопсию мышц и кожи плода), и *пабораторные методы* (цитогенетические, биохимические, молекулярно-генетические).

Показания к проведению пренатальной диагностики:

- 1. Возраст матери 35 лет;
- 2. Наличие в семье предыдущего ребенка с хромосомной патологией, в том числе с синдромом Дауна (предшествующий анеусомик);
 - 3. Перестройки родительских хромосом;
- 4. Наличие у семьи заболеваний, которые наследуются, сцеплено с полом;
 - 5. Синдром фрагильной Х-хромосомы.
 - 6. Гемоглобинопатии;
 - 7. Врожденные ошибки метаболизма.
- 8. Различные наследственные заболевания, диагностируемые методом сцепления с ДНК-маркерами;
 - 9. Дефекты нервной трубки.
- 10. Другие показания для цитогенетической пренатальной диагностики.

Во время беременности обычно производятся следующие исследования

(
Срок беременности (недели)	Методы и тесты
Первый визит (в самые ранние сроки)	Содержание гемоглобина и гематокрита крови. Общий анализ мочи на инфекции мочевых путей. Определение группы крови и Rh-фенотипа, титр анти-, Чп-антител у резус-отрицательных женщин. Титр антикраснушных антител. Реакция Вассермана. Цитология мазка шейки матки. Определение HBs-антигена в крови.
8 - 18-я	УЗИ плода и плаценты. Амниоцентез или биопсия хориона (оболочка зародыша).
16 - 18-я	Уровень а-фетопротеина, а также хорион-гонадо-тропина и свободного эстриола в крови.
26 - 28-я	Скрининг на сахарный диабет. Определение гемоглобина и гематокрита крови. Анализ мочи на белок, сахар. Нестрессовый тест.
28-я	Исследование титра анти-КИ-антител у резус-отрицательных беременных. Профилактическое введение анти-КН(0)-иммуноглобулина.
32 - 36-я	УЗИ плода. Определение гемоглобина, гематокрита крови. Бактериологическое исследование вагинального мазка.

Популяционно-статистический метод

Методы, используемые для установления частот генов и генотипов в популяции, демонстрирующие характер их изменения под влиянием окружающей среды и различных факторов популяционной динамики, называются популяционно-статистические.

С помощью этих методов можно:

- определить частоты генов, степень гомозиготности и полиморфизма;
- установить, как меняются частоты генов под действием отбора;
- выявить влияние факторов популяционной динамики на частоты тех или иных фенотипов и генотипов;
- проанализировать влияние факторов окружающей среды на экспрессию генов;
- определить степень межпопуляционного генетического разнообразия и вычислить расстояние между популяциями.

Закон Харди - Вайнберга — основа математических построений генетики популяций и современной эволюционной теории. Сформулирован независимо друг от друга математиком Г. Харди (Англия) и врачом В. Вайнбергом (Германия) в 1908 г. Этот закон утверждает, что частоты аллелей и генотипов в данной популяции будут оставаться постоянными из поколения в поколение при выполнении следующих условий:

- 1) численность особей популяции достаточно велика (в идеале бесконечно велика),
- 2) спаривание происходит случайным образом (т. е. осуществляется панмиксия),
- 3) мутационный процесс отсутствует,
- 4) отсутствует обмен генами с другими популяциями,
- 5) естественный отбор отсутствует, т. е. особи с разными генотипами одинаково плодовиты и жизнеспособны.

Математическая модель закона отвечает формуле:

$$p^2+2pq+q^2=1$$

Закон Харди-Вайнберга гласит:

В больших популяциях при условии свободного скрещивания и при отсутствии притока мутаций и отбора устанавливается равновесие частот генотипов, которое сохраняется из поколения в поколение.

Закон Харди-Вайнберга устанавливает математическую зависимость между частотами аллелей аутосомных генов и генотипов и выражается следующими формулами:

$$\mathbf{p_A} + \mathbf{q_a} = \mathbf{1}; \qquad \mathbf{p_{AA}}^2 + \mathbf{2pq_{Aa}} + \mathbf{q_{aa}}^2 = \mathbf{1},$$
 где $\mathbf{p_A}$ – частота доминантного аллеля гена, $\mathbf{q_a}$ - частота рецессивного аллеля гена, $\mathbf{p_{AA}}^2$ - частота особей, гомозиготных по доминантному аллелю, $\mathbf{2pq_{Aa}}$ частота гетерозиготных особей, $\mathbf{q_{aa}}^2$ - частота особей, гомозиготных по рецессивному аллелю,

то есть частота особей с рецессивным признаком, $p_{AA}^2 + 2pq_{Aa} - частота особей с доминантным признаком, <math display="block">2pq_{Aa} + q_{aa}^2 - частота особей, в генотипе которых имеется рецессивный аллель.$

Различные способы выражения частоты аллеля или генотипа

- В исследуемой популяции 84 человека из 420 имели доминантный признак.
- В одной из популяций встречаемость людей с резус-положительной кровью (рецессивный признак) составляет 15 %.
- Встречаемость больных, страдающих фенилкетонурией, равна 10⁻⁴.
- В европейских популяциях распространенность ахондроплазии составляет 0,02 на 1000 новорожденных.
- Алкаптонурия встречается с частотой 1:100 000.
- Изучаемый признак характеризуется неполной пенетрантностью, равной 30%, и встречается в популяции с частотой 0,09.

Расчет частоты, выраженной в долях единицы

$$84:420=0,2$$

$$15:100=0,15$$

$$10^{-4} = 1 : 10000 = 0,0001$$

$$0.02:1000 = 0.00002$$

$$1:100\ 000=0,00001$$

$$0.09:0.3=0.3$$

У человека альбинизм – аутосомный рецессивный признак. Заболевание встречается с частотой 1 / 20 000. Определите частоту гетерозиготных носителей заболевания в районе.

Решение.

Альбинизм наследуется рецессивно.

Величина 1/20000 - это q2.

Следовательно, частота гена a будет: q = 1/20000 = 1/141.

Частота гена р будет: p = 1 - q; p = 1 - 1/141 = 140/141.

Количество гетерозигот в популяции равно 2pq. $2pq = 2 \times (140/141) \times (1/141) = 1/70$.

Т.к. в популяции 20000 человек то число гетерозигот в ней 1/70 x 20000 = 286 человек.

Врожденный вывих бедра у человека наследуется как сутосомный доминантный признак с пенетрантностью 25%. Болезнь встречается с частотой 6:10 000. Определите число гетерозиготных носителей гена врожденного вывиха бедра в популяции.

Решение.

Генотипы лиц, имеющих врожденный вывих бедра, *АА* и *Аа* (доминантное наследование).

Здоровые лица имеют генотип аа.

Из формулы p2 + 2pq + q2 = 1 ясно, что число особей несущих доминантный ген равно (p2+2pq).

Однако приведенное в задаче число больных 6/10000 представляет собой лишь одну четвертую (25%) носителей гена А в популяции.

Следовательно, $p2 + 2pq = (4 \times 6)/10 \times 000 = 24/10000$. Тогда q2 (число гомозиготных по рецессивному гену особей) равно 1 - (24/10000) = 9976/10000 или 9976 человек.

Популяционно-статистический метод использует математическую обработку материала и заключается в изучении распространенности тех или иных генов по определенным критериям. В этом отношении все гены делятся на следующие 2 группы:

имеющие универсальное распространение:

- •ген амавротической миопатии, который в рецессивном состоянии встречается почти у 1 % населения Европы;
- •ген дальтонизма, который проявляется у 7 % мужчин и 0,5 % женщин, но в гетерозиготном состоянии обнаруживается уже у 13 % женщин;
- встречающиеся локально, преимущественно в строго определенных районах. К ним относятся:
- •ген серповидноклеточной анемии, распространенный в странах Африки и Средиземноморья;
- •ген врожденного вывиха бедра, имеющий высокую концентрацию у аборигенов северо-восточных регионов нашей страны.

Экспериментальный метод

Метод предусматривает изучение болезни на лабораторных животных, которые являются объектом моделирования болезней человека.

Эксперимент – это основной метод патологической физиологии. Особенность патофизиологического эксперимента состоит в воспроизведении на лабораторных животных экспериментальных моделей болезней с целью установления механизмов их возникновения, развития и исхода у человека.

Экспериментальная модель болезни — это искусственное воспроизведение у лабораторных животных болезни, которая имеет похожие черты с соответствующей болезню человека.

Хотя эксперимент на животных не воспроизводит полную картину болезни у человека, он дает возможность наблюдать и изучать болезнь от самого начала и до её завершения, что невозможно в клинике. В эксперименте можна контролировать условия внешней среды, которые влияют на течение болезни. Экспериментальные исследования дают объективный материал для научных теорий как фундаментальной основы доказательной медицины.

Биоинформатика и её связи с другими дисциплинами

