

Высокоэффективная хроматография

Детекторы

- Основное назначение детектора, применяемого в ВЭЖХ, заключается в определении наличия аналитов в подвижной фазе и дальнейшей передаче сигналов на регистрирующее устройство.
- Он должен быть устойчив к изменениям условий окружающей среды (например, температуры) и максимально быстро реагировать на появление компонента в потоке элюента.
- Наиболее распространенным детектором является ультрафиолетовый. Кроме того, применяются рефрактометрический, кондуктометрический и флуоресцентный детекторы и др.
- Сигнал детекторов, применяемых в ВЭЖХ, пропорционален концентрации компонента (г/мл) т. е. сигнал детектора также зависит от значения объемного потока подвижной фазы

- Детекторы для ВЭЖХ должны фиксировать изменение каких-либо свойств растворителя, выходящего из колонки, связанное с наличием в нем анализируемых веществ.
- Это может быть:
- изменение оптических свойств элюента (в ИК-, УФ- или видимой области),
- его показателя преломления,
- способности флюоресцировать,
- электропроводности,
- способности окисляться или восстанавливаться,
- диэлектрической проницаемости и т.д.

- Детекторы подразделяются на селективные и универсальные.
- Селективные детекторы способны зафиксировать элюирование интересующих исследователя веществ, обладающих специфическими свойствами, на фоне многих других компонентов, такими свойствами не обладающих.
- Эти детекторы (флюоресцентный, электрохимический и др.) находят широкое применение в анализе следовых количеств лекарственных препаратов в биологических образцах, микропримесей, биогенных аминов

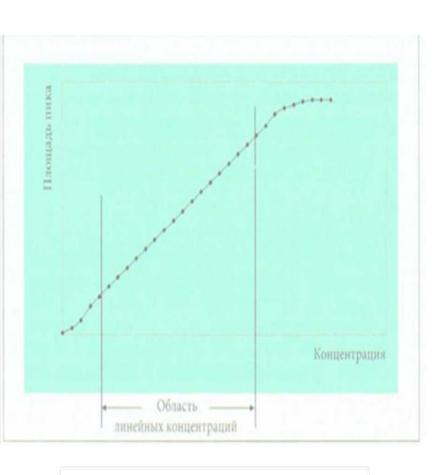
- Универсальные детекторы должны реагировать на элюирование любых веществ вне зависимости от того, обладают они какими-то особыми свойствами или нет.
- Такие детекторы находят широкое применение в органической химии, нефтехимии, фармацевтической, химической, медицинской промышленности, биологических

1101/110

Детекторы, применяемые в высокоэффективной жидкостной

хроматографии Какими же свойствами должен обладать идеальный детектор для ВЭЖХ?

- •Он не должен вызывать размывания зоны пика, выходящего из колонки, и ее уширения.
- Должен иметь высокую чувствительность и отклик на прохождение вещества, который можно предсказать.
- •Образец не должен разлагаться, проходя через детектор.
- Изменения температуры, скорости потока и состава растворителя не должны влиять на работоспособность детектора.
- •Отклик детектора на количество вещества должен быть линейным, и линейный диапазон должен быть широким.
- Детектор должен быть простым и удобным в работе и обслуживании.
- •Детектор при прохождении вещества должен давать не только количественную информацию, но и качественную, подтверждающую состав или строение вещества.
- Отклик детектора должен появляться при прохождении через кювету любого вещества, этот отклик не должен зависеть от растворителя, он


Какие же **характеристики детекторов** нужно принимать во внимание, подбирая подходящий для данной задачи детектор? Эти характеристики следует подразделять на те, которые связаны с самой конструкцией детектора, и на те, которые зависят от свойств растворителя, анализируемого вещества.

- Каждый детектор характеризуется определенным **шумом**, который для разных типов детекторов выражается в разных единицах
- Чем меньше шум у детектора по сравнению с другим такого же типа, тем лучше использованные конструкционные элементы, более удачная схема, лучше регулировка. Разница в шуме у разных детекторов одного типа может составлять порядок и даже больше (по данным фирмпроизводителей).
- Другая очень важная величина это дрейф нулевой линии, который определяется смещением нулевой линии в процессе работы детектора за определенный отрезок времени после прогрева. Эта величина также может иметь разницу у детекторов одного типа более чем на порядок.

- Вместимость кюветы детектора является фактором, наряду с ее геометрией (размывающей или неразмывающей), определяющим, насколько могут быть размыты пики, попадающие в нее из колонки. Вместимость кюветы должна быть не более 0,1 объема первого пика, который представляет интерес для исследователя (например, если первый такой пик выходит в объеме 30 мкл, вместимость кюветы не должна превышать 3 мкл
- Наконец, если детектор работает в градиентном режиме или в условиях, не исключающих некоторого изменения окружающей температуры, очень большое значение имеет нечувствительность детектора к флуктуациям температуры, скорости потока и изменению состава растворителя и стабильность его отклика вне зависимости от изменения этих условий.

Тип детектора	Минимальная детектируемая концентрация, г/мл	Типичная область применения
Ультрафиолетовый	Около 10 ⁻¹⁰	Анализируемые компоненты
		способны
		поглощать
		излучение
		УФ-диапазона
Рефрактометрич еский	Около 10 ⁻⁷	Сахара, глицерин, гликоли, ами-
		нокислоты
Кондуктометриче ский	Около 10 ⁻⁷	Соли, ионогенные вещества

- Наибольшее значение при выборе детектора для проведения ВЭЖХ-анализа имеют параметры «минимальная детектируемая концентрация» и «линейная область концентраций» (линейный диапазон). Оба параметра зависят от типа аналита и детектора.
- В таблице приведены значения минимальных детектируемых концентраций наиболее распространенных детекторов в ВЭЖХ.

- Область линейных концентраций детектора (рис. 2.36) описывается интервалом концентраций, в котором сигнал (площадь пика) прямо пропорционален концентрации анализируемого компонента.
- Нижняя граница интервала линейных концентраций ограничена минимальными пределами детектирования, верхняя лимитирована принципом работы детектора.
- Значение верхней границы интервала линейных концентраций зависит от типа проб, при этом разработчик метода должен определить, соответствует ли реальная концентрация аналита верхней границе интервала.
- Если концентрация аналита слишком высокая, то пробу следует разбавить, если слишком низкая, — необходимо предпринять соответствующие меры, чтобы сконцентрировать пробу, например, методом твердофазной экстракции.

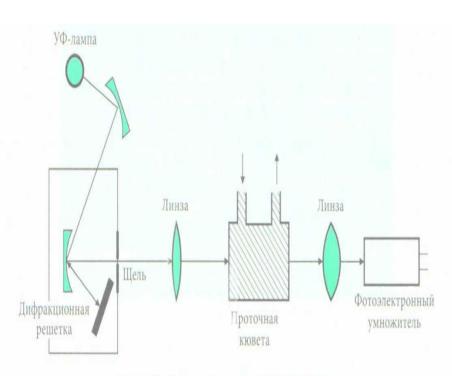


Рис. 2.37. Оптическая система УФ-детектора

Если анализируемый компонент способен поглощать УФ-излучение, можно оценить его содержание с помощью УФ-детектора.

УФ-детекторы имеют очень широкую область линейных концентраций и могут применяться при градиентном элюировании.

Они слабочувствительны к колебаниям температуры.

На рис. 2.37 представлена оптическая система УФ-детектора.

После того как подвижная фаза покидает колонку, она протекает через измерительную кювету детектора. Объем типичной измерительной кюветы составляет 4-10 мкл.

• УФ-излучение (чаще всего используют дейтериевую лампу D2) проходит одновременно через измерительную кювету и кювету сравнения, которая

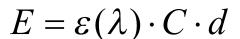

- Дейтеривые лампы испускают УФизлучение с непрерывным спектром и максимумом при длине волны λ в 340 нм.
- Вольфрамовые лампы испускают излучение в ультрафиолетовом и видимом диапазонах с максимумами при длинах волн около 340 и 850 нм.
- Таким образом, вольфрамовые лампы являются идеальным дополнением дейтериевых.
- Продолжительность работы УФ-ламп составляет около 1000 ч.
- Во многие детекторы встраивают устройства, позволяющие проверять качество работы ламп.
- Для установки длины волны излучения, необходимой для анализа определенного соединения (вещества), источники света оснащены монохроматорами.

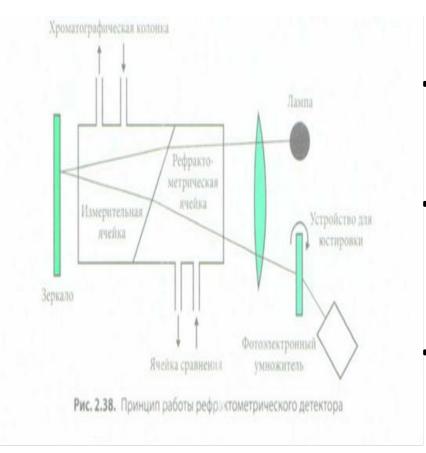
Таблица 2.4				
Растворители	И	границы	ИХ	прозрачности
в УФ-диапазоне				•

Растворите ль (элюент)	Граница пропускания λ, нм
Вода	190
Ацетонитр л	и 190
Гексан	200
Метанол	205
Хлорофор	м 240

- Перед проведением измерения для проверки правильности работы детектора необходимо пропустить чистый элюент через ячейку сравнения и измерительную ячейку.
- При этом подвижная фаза не должна поглощать испускаемое лампой излучение в заметной степени.
- При меньшем значении длины волны растворители начинают интенсивно поглощают УФизлучение.
- Значение таких «границ пропускания» растворителей, применяемых в ВЭЖХ, приведены в табл. 2.4.
- Ниже значения границы пропускания проводить измерения нельзя.
- При необходимости элюент следует заменить.

- С помощью фотоэлектронного умножителя измеряется интенсивность УФ-излучения и рассчитывается значение светопоглощения (оптической плотности).
- В идеальном случае при протекании через детектор только подвижной фазы значение этой величины остается постоянтым.
- Как только анализируемый компонент, способный поглощать УФ-излучение, попадает на детектор, значение оптической плотности (светопоглощения) резко возрастает.
 Зависимость оптической плотности Е от концентрации вещества в пробе описывается законом Ламберта — Бера
- где E оптическая плотность;
- έ(λ) молярный коэффициент экстинкции (постоянная величина для вещества) при длине волны λ, л/(моль • см);
- d— толщина слоя кюветы (толщина поглощающего слоя), см;
- с концентрация вещества в пробе, моль/л.

$$C = \frac{m}{M \cdot V}$$


- В идеальном случае ε(λ) и d являются константами, поэтому оптическая плотность Ε пропорциональна концентрации анализируемого компонента.
- При этом концентрация *с* рассчитывается как частное от деления массы *m* растворенного вещества на молярную массу продукта *M* и объем элюата *V* (подвижная фаза после прохождения через хроматографическую колонку):

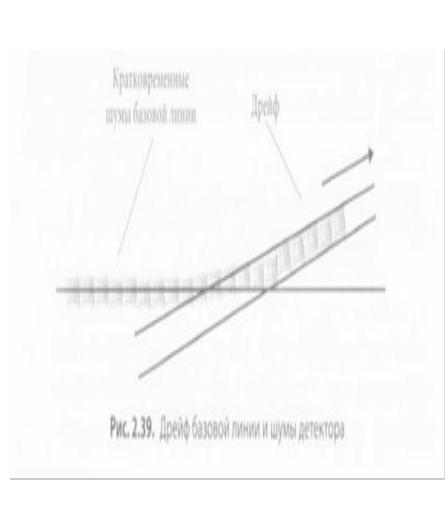
- Поэтому при проведении анализа очень важно устанавливать постоянную скорость подачи подвижной фазы.
- Измерения необходимо проводить при максимальном значении величины оптической плотности для данного вещества.
- Отдельные исследования максимальных значений оптической плотности проводятся разработчиком метода с помощью внешнего УФ-спектрофотометра.
- Если максимальные значения поглощения анализируемых компонентов в смеси наблюдаются при различных длинах волн, то необходимо использовать диодно-матричный детектор (ДМД).
- Такие детекторы позволяют одновременно (!) определять значения оптической плотности при 1028 различных длинах волн в диапазоне от 180 до 400 и более нм.
- Таким образом, получают трехмерную хроматограмму, на которой, помимо времени и интенсивности сигнала, приводится значение длины волны λ.
- Такие ДМД также используются для выбора оптимальной длины волны и дают возможность пользователю идентифицировать пики с помощью

- Чувствительность детектирования зависит от типа детектора и может варьироваться в пределах 0,005-3,0 оптических единиц (опт. ед.; англ. absorption unit full scale, AUFS).
- Чем *меньше* установленное значение *AUFS*, тем *выше* чувствительность детектора.
- Чтобы минимизировать ошибки измерения, количества анализируемых проб выбирают, по возможности, таким образом, чтобы детектируемые сигналы попадали в середину диапазона детектирования (и наоборот).

- Если спектрофотометр предполагается установить и эксплуатировать в условиях атмосферы, содержащей пары органических веществ, воды, пыли (например, в производственных лабораториях), целесообразно приобрести спектрофотометр, чувствительная оптическая схема которого герметично защищена от вредного влияния загрязнений атмосферы. Этому же способствует регулярная замена осушителя, обычно силикагеля, помещаемого внутри спектрофотометра.
- Спектрофотометр по своим характеристикам приближается к универсальным и селективным детекторам (в зависимости от выбранной длины волны).
- При длинах волн, близких к 190 нм, он позволяет детектировать сахара, жиры, сложные и простые эфиры, ПАВ полиоксиэтиленгликолевого ряда и другие вещества, практически не поглощающие УФ-излучения при 210 нм и выше — здесь он приближается к универсальному детектору.

- Существуют быстро сканирующие спектрофотометрические детекторы, которые позволяют снять УФ-спектр вещества при его прохождении через кювету без остановки потока.
- Применению спектрофотометров как универсальных детекторов, работающих при длинах волн около 200 нм, в большой мере препятствует очень малый выбор растворителей, УФ-прозрачных в этом диапазоне.
- Только тщательно очищенные ацетонитрил и вода могут использоваться в обращенно-фазном варианте при 200 нм и ниже.
- Получить такие высокочистые растворители очень трудно, и стоят они дорого. Еще труднее очистить для работы в этой области алканы (гексан, гептан и др.).

- Рефрактометрические детекторы применяются в тех случаях, когда анализируемые компоненты не поглощают УФ-излучение, а показатели преломления чистой подвижной фазы и аналитов имеют разное значение.
- Можно осуществить количественное определение высокомолекулярных спиртов, таких как гликоли, углеводородов или аминокислот.
- Рефрактометрические детекторы не могут применяться при градиентном элюировании, так как показатель преломления подвижной фазы постоянно меняется.
 - Поскольку показатель преломления растворов зависит от температуры, необходимо обеспечить ее постоянство в кювете.
- В рефрактометре Френеля растворитель протекает через ячейку сравнения, при этом через


• Рефрактометр Френеля. Действие данного детектора основано на законе Френеля, который гласит, **что** количество света, отраженного от поверхности раздела двух веществ (жидкости и стекла), пропорционально разности показателей преломления этих веществ и углу падения света на поверхность раздела

- После того как луч света покинул призму, его направляют на фотоэлемент.
- Если луч, прошедший через измерительную ячейку, больше не попадает на фотоэлемент из-за того, что изменился показатель преломления элюата, то сопротивление фотоэлемента в измерительной ячейке также изменяется.
- Разность потенциалов фоторезисторов обеих ячеек передается в форме электрического сигнала на регистрирующее устройство.
- Наименьшая концентрация, которую можно определить с помощью рефрактометрического детектора, при наиболее благоприятных условиях составляет около 10⁻⁷ г/мл.
- Чувствительность рефрактометрических детекторов в

- Главным достоинством этого детектора является универсальность, так как при выборе подходящего растворителя он может детектировать любые вещества.
- Поэтому он занимает второе место (после УФ-детектора) по частоте использования.
- К другим достоинствам рефрактометра относятся возможность работы с любыми растворителями в широком интервале скорости потока, невысокие требования к чистоте подвижной фазы, надежность и удобство в эксплуатации.
- Некоторые модели детекторов могут работать при температуре до 150 °C, что является исключительно важным для эксклюзионной хроматографии ряда синтетических полимеров

Кондуктометрические детекторы

- Кондуктометрические детекторы, как правило, применяются в ионообменной хроматографии.
- После прохождения элюата через колонку измеряют его электропроводность.
- Если электропроводность элюата изменяется, то на самописец передается электрический сигнал.
- Другой проблемой, возникающей при проведении ВЭЖХ, является слишком высокий шум детектора и постоянное отклонение базовой линии в определенном направлении (дрейф).
- На рис. 2.39 изображены эти два нарушения.

Кондуктометрические детекторы

Причинами появления более сильных шумов могут быть:

- •краткосрочное изменение величины потока; пузырьки воздуха в кюветах детектора;
- •неисправная лампа детектора (с отработанным сроком эксплуатации); колебания температуры (рефрактометрический детектор);
- •неполное смешение растворителей в градиентной ВЭЖХ;
- •нарушение работы электроники детектора и вычислительной системы.

Кондуктометрические детекторы

- Дрейф базовой линии может быть продиктован загрязнением хроматографической колонки.
- При протекании элюента через колонку (особенно в тех случаях, когда в качестве элюента используют достаточно «сильный» растворитель) осажденные в колонке частицы примесей медленно вымываются элюентом.
- Если при использовании УФ-детекторов применяют растворители, «граница пропускания» которых для установленных длин волн является слишком высокой, то в результате шумы детектора усилятся.

- Детектирование по флуоресценции применяют в биологии, медицине, формакологии, при анализе пищевых продуктов и контроле загрязнения окружающей среды.
- Флуоресцентными свойствами, т.е. способностью излучать свет (в видимой области спектра) под действием ультрафиолетового излучения, обладают многие биологически-активные вещества: лекарства, витамины, стероиды.
- Красители, соединения с сопряженными связями, в том числе полиядерные ароматические углеводороды, также можно определять с помощью флуориметрического детектора, при этом чувствительность определения велика.

- Интенсивность флуоресцентного излучения зависит от интенсивности возбуждающего излучения и квантового выхода процесса возбуждения.
- Поэтому для повышения чувствительности метода следует использовать достаточно мощные источники света, например газоразрядные лампы или лазеры.
- С помощью ФМД с высокой чувствительностью можно детектировать аминокислоты, амины, витамины, стероиды.
- Высокая чувствительность является одним из главных преимуществ.

- Разработаны детекторы, которые могут одновременно работать и как спектрофотометры и как флуориметры.
- Детекторы с монохроматорами, позволяющими выбрать необходимые длины волн для возбуждающего и флуоресцентного излучения, обеспечивают высокую чувствительность и селективность, однако они оказываются значительно более дорогими, чем флуориметры с постоянной спектральной полосой.
- Флуориметр применяют при анализе **микропримесей,** когда мала концентрация растворенного вещества, подлежащего обнаружению

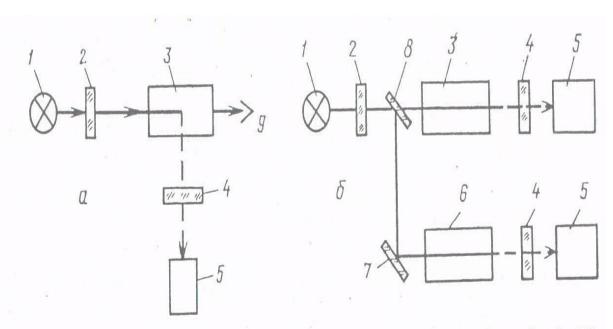


Рис. III.26. Прямоугольная (a) и линейная со сравнительной ячейкой (б) струкции флуориметрических детекторов:

1- источник света; 2, 4- фильтры; 3- проточная рабочая ячейка; 5- фотоприемник; 6- нительная ячейка; 7, 8- полупрозрачные зеркала; 9- ловушка света. Сплошная линия — возбуждения; пунктирная — свет эмиссии

- Для измерения обычно используют два типа конструкций ФМД.
- Свет от УФ источника проходит через фильтр 2 и фокусируется в проточной ячейке 3 с прямоугольной или линейной конструкцией ввода и вывода света эмиссии. Излучение проходит через фильтр 4 и измеряется с помощью фотоприемника 5.
- При применении ФМД подвижная фаза не должна поглощать свет на длине волны поглощения, ни на длине волны излучения

OTICK I POATHWIN ACCINIC

детекторы

- В ВЭЖХ наряду с широким применением оптических детекторов за последние 10—15 лет наметился значительный прогресс в развитии электрохимического метода детектирования.
- Доказательством этого является увеличение числа публикуемых работ по разработке и применению электрохимических детекторов (ЭХД) главным образом, увеличение выпуска аппаратуры, пригодной для практического использования
- Благодаря высокой чувствительности и селективности, ЭХД особенно эффективен для анализа некоторых важных для биохимии и медицины соединений, таких как эстрогены и катехоламины, присутствующие обычно в малых концентрациях в тканях крови и других сложных объектах исследования.
- ЭХД применяют также для анализа веществ при исследовании загрязнений окружающей среды ввиду его высокой чувствительности и селективности к фенолам, бензидинам, нитросоединениям, ароматическим аминам и пестицидам.

Электрохимические

Наибольшее применение ЭХД нашел в обращенно-фазовой и ионообменной ВЭЖХ, в которой используют полярные элюенты.

- В нормально-фазовой ВЭЖХ также можно применять ЭХД, если после разделительной колонки в неполярную подвижную фазу добавить электролит или подходящий растворитель с высокой диэлектрической проницаемостью.
- •Работа электрохимических детекторов основана на определении электрохимических свойств соединений в потоке элюента.

Электрохимический детектор. Этот детектор можно применять для анализа всех веществ, обладающих электрохимической активностью, т. е. способными при определенном потенциале окисляться или востанавливаться, соответственно отдавая или принимая электроны.

Вольтамперометрический детектор

- Вольтамперометрический детектор (ВАД) применяют для анализа широкого круга неорганических и органических веществ. Большинство неорганических ионов могут быть электрохимически окислены или восстановлены.
- Среди органических соединений электроактивными являются соединения с кратными связями, окисляемыми или восстанавливаемыми функциональными группами, ароматические и другие соединения.
- Поскольку для каждого класса электроактивных соединений характерен определенный потенциал окисления или восстановления, этот потенциал и определяет селективность детектора.
- На практике метод окисления осуществить проще, так как из элюента и из пробы не надо удалять растворенный кислород. В детекторе имеется по крайней мере два электрода рабочий и сравнительный, по отношению к которому устанавливается потенциал рабочего электрода.
- В качестве сравнительного чаще всего используют каломельный или хлорсеребряный электроды. В некоторых детекторах дополнительно

Вольтамперометрический детектор

- Вольтамперометрические, полярографические и некоторые типы кулонометрических детекторов измеряют ток как функцию времени при постоянном напряжении на электродах.
- В качестве материалов электродов используют ртуть, платину, золото, серебро, графит, угольную пасту и др.

Вольтамперометрический детектор

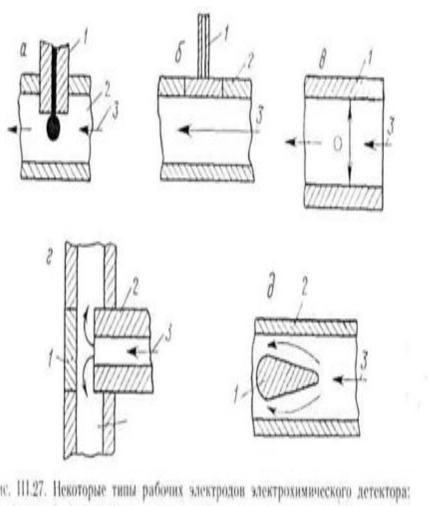


Рис. III.27. Некоторые типы рабочих электродов электрохимического детектора: a сферический, 6 плоский, в пилинарический; г типа «стенка сопло»; д конический; I рабочий электрод; 2 мчейка, 3 поток элюента

- Сигнал ВАД измеряется как ток при постоянном потенциале на электродах и зависит от гидродинамических условий работы рабочего электрода.
- Большинство обычных твердых электродов имеет плоскую тонкослойную гидродинамическую систему или систему «стенка сопло», с которыми легче получить рабочий объем ячейки менее 1 мкл.
- Электроды в тонкослойной ячейке располагают часто в промежуточном канале параллельно потоку.
- Некоторые типы рабочих электродов ЭХД представлены на слайде.

Кроме детекторов, описанных выше, для ВЭЖХ используют и другие приборы: электрохимический,

- •инфракрасный,
- •детектор с диодной матрицей,
- •масс-спектрометрический,
- •радиоактивный,
- •по диэлектрической проницаемости,
- •электронозахватный,
- •кулонометрический и др.

Одни из них обладают высокой селективностью или чувствительностью, другие дают важную качественную информацию.

Детекторы, применяемые в высокоэффективной жидкостной хроматографии

- Кроме детекторов, описанных выше, для ВЭЖХ используют и другие приборы: электрохимический,
- инфракрасный,
- детектор с диодной матрицей,
- масс-спектрометрический,
- транспортный с пламенно-ионизационным детектированием,
- радиоактивный,
- по диэлектрической проницаемости,
- электронозахватный,
- кулонометрический и др.

Одни из них обладают высокой селективностью или чувствительностью, другие дают важную качественную информацию.

Детекторы, применяемые в высокоэффективной жидкостной хроматографии

ИК-детекторы. Детекторы, основанные на поглощении в инфракрасной области спектра, в ВЭЖХ применяют сравнительно недавно и в достаточной степени ограниченно. Главной причиной такого положения является несовместимость ИК-детектора с основными растворителями, применяемыми в адсорбционной и обращенно-фазной хроматографии, а также сравнительно невысокая чувствительность.

Правильный выбор подвижной фазы зависит:

- •во-первых, от энергии адсорбционных взаимодействий разделяемых компонентов с неподвижной фазой,
- •а во-вторых— от элюирующей силы растворителя.

Чем выше энергия адсорбционных взаимодействий, тем больше должна быть элюирующая сила подвижной фазы.

Для начала следует определить, какой тип хроматографии (ОФ- или НФВЭЖХ) должен быть использован в каждом конкретном случае.

- •Общепризнано, что применяемые растворители должны смешиваться друг с другом.
- •При НФВЭЖХ в качестве подвижной фазы применяют неполярные растворители.

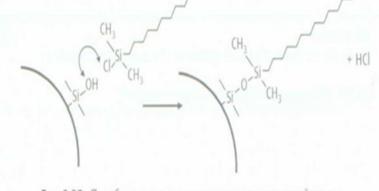
К таким растворителям относятся (растворители расположены в порядке возрастания элюирующей силы):

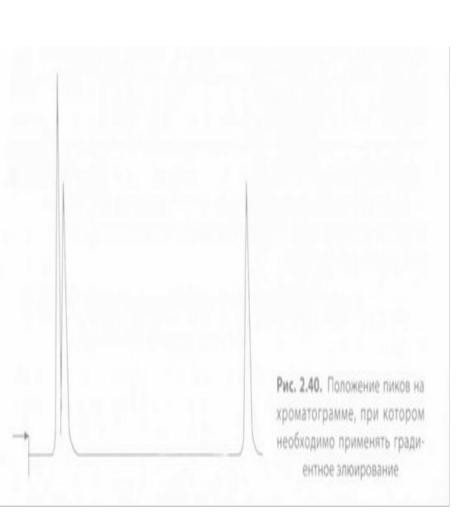
- •п -пентан;
- •п -гексан;
- циклогексан;
- •дихлорметан (метиленхлорид);
- •этиловый эфир уксусной кислоты.

- В НФ ВЭЖХ можно изменять элюирующую силу подвижной фазы в определенных пределах с помощью смешивания «более слабого» растворителя, например п-гексана (при применении которого анализируемый компонент плохо отделяется от неподвижной фазы), с «более сильным», например дихлорметаном.
- Сложно добиться установления равновесия между силикагелем и элюентом, поэтому следует избегать больших скачков в элюотропном ряду при выборе элюента.
- Использование градиентного элюирования в НФ ВЭЖХ рационально только в редких случаях.
- Лучше всего применять для каждого растворителя отдельную колонку.

Выбор подвижнои фазы в

- В ОФВЭЖХ используют *полярные органические растворители,* которые содержат определенное количество воды.
- Так как вода не может смачивать поверхность неполярной неподвижной фазы, она выполняет функцию «тормоза», т. е. с увеличением содержания воды повышается время удерживания анализируемых компонентов в хроматографической системе.
- Органические компоненты, применяемые в ОФВЭЖХ, называют модификаторами
- Растворитель должен содержать не более 90% воды, в противном случае «щетки», т. е. длинные привити по привити привити привижной фазы, могут разрушать:




Рис. 2.35. Преобразование силикагеля при его взаимодействии с силилирующими реагентами

выоор подвижнои фазы в ВЭЖХ

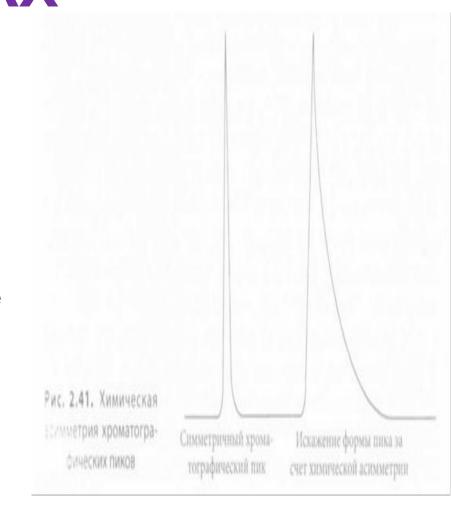
- Кроме того, вода, применяемая в ВЭЖХ, должна быть очень чистой.
- При необходимости (особенно для градиентной ВЭЖХ) такой степени очистки можно добиться применением специальных устройств (вода, профильтрованная через фильтр *Millipor* с диаметром пор около 0.45 мкм).
- Недостаточно просто осуществить обессоливание воды!
- После введения модификатора в воду необходимо очень тщательно проводить *дегазацию* элюента.
- Начинать процесс хроматографического разделения лучше с элюентом. содержащим 70-80% метанола и 30-20% воды (концентрации принято указывать в объемных процентах).
- При изократическом элюировании растворители отдельно смешивают в определенных количествах и проводят дегазацию пробы.
- При применении градиентного элюирования процессом смешивания растворителей можно управлять с помощью специальных программ.

- Наибольшую опасность при использовании водных элюентов представляет загрязнение растворов микроорганизмами, в особенности в тех случаях, когда применяют старые реактивы или буферные растворы.
- Поэтому работы следует проводить в максимально стерильных условиях.
- При необходимости употребляют специальные дезинфицирующие средства, которые, однако, не должны детектироваться и появляться на хроматограмме.
- Многие пользователи в таких целях используют очень разбавленный раствор азида натрия. Впрочем, у последнего есть существенный минус: очень высокая токсичность, поэтому при работе с этим веществом нужно строго соблюдать правила техники безопасности.

выоор подвижнои фазы в ВЭЖХ

- После проведения хроматографического разделения в первую очередь обращают внимание на то, где именно появился пик на хроматограмме.
- Если некоторые пики располагаются в начале хроматограммы (k' < 1) и при этом они не полностью разделены, а еще один пик находится на слишком удаленном от них расстоянии (к' > 5), то обязательно следует проводить градиентное элюирование (рис. 2.40).
- Если для всех пиков значение к' < 2, необходимо увеличить содержание воды в элюенте.

- Если для всех пиков значение к'> 5, то содержание метанола в элюенте необходимо увеличить. Содержание воды в составе элюента при этом следует рассчитывать таким образом, чтобы большинство пиков на хроматограмме соответствовало значениям коэффициента емкости должны составлять
 - от **к'** = 1 до **к'** =7. Элюирующая сила подвижной фазы тогда будет оптимальной.
 - Если все пики разделены до базовой линии и нет их расширения, то состав подвижной фазы также можно считать оптимальным
- При наличии не до конца разделенных пиков необходимо далее подбирать состав подвижной фазы для повышения ее селективности.
- Для этого заменяют модификатор.
- В большинстве случаев вместо метанола используют ацетонитрил (CH₃CN).
- Для того чтобы элюирующая сила растворителя также была соответствующей, количество нового вводимого модификатора согласно эмпирическому правилу должно составлять 10-15% от ранее установленного содержания метанола.


Выбор подвижной фазы в

- Если, например, оптимальная элюирующая сила подвижной фазы устанавливается при содержании 85% метанола и 15% воды, то сначала в качестве элюента используют смесь, содержащую 75% ацетонитрила и 25% воды. При той же элюирующей силе (со значениями пиков между к'=2 и к'= 7) такая смесь растворителей обладает существенно лучшей селективностью элюента и, как правило, вполне достаточна для разделения пиков на хроматограмме.
- Если полного разделения всё же не происходит, можно попытаться разделить компоненты методом градиентного элюирования.
- Следует учитывать, что ацетонитрил является очень токсичным и требует строгого соблюдения правил техники безопасности.

выоор подвижнои фазы в

- Особый случай представляет разделение полярных и ионогенных аналитов методом ОФВЭЖХ, при котором использование смеси модификатора и воды может давать очень широкие пики на полученной хроматограмме (явление «химической асимметрии», рис. 2.41).
- В таких случаях необходимо применять буферные растворы для создания необходимого значения рН, которое препятствует диссоциации аналитов.
- В недиссоциированном состоянии разделение ионогенного аналита не представляет каких-либо трудностей.
- Например, при добавлении кислого буфера равновесие протолитической реакции органической кислоты смещается в сторону недиссоциированной кислоты
- RCOOH + H $_{2}$ 0------ RCOO + $_{1}$ $_{3}$ O+

 ${
m H_30^+}$ Добавление кислоты

- Буферные растворы для ОФВЭЖХ изготавливают из цитратов, фосфатов, тартратов и аминов.
- В зависимости от степени протолиза са аналита концентрация солевых компонентов буфера с должна составлять приблизительно 10-50 ммоль/л.
- Однако следует учитывать, что применение буферов сокращает продолжительность эксплуатации колонки. Значение рН в ОФВЭЖХ ни в коем случае не должно быть менее 2 или более 10. При необходимости в исключительных случаях в качестве неподвижной фазы используют специальные материалы.
- Важно помнить и о возможном смещении границы пропускания при применении буферной соли. Для удаления последней перед дальнейшим использованием хроматографа необходимо промыть колонку и насос теплой

выоор подвижнои фазы в ВЭЖХ

- При разделениях методом ионообменной хроматографии силу растворителя меняют, увеличивая или уменьшая концентрацию буферного раствора или меняя рН, в некоторых случаях используют модификацию органическими веществами.
- Однако, особенно в случае сложных природных и биологических смесей, зачастую не удается подобрать силу растворителя таким образом, чтобы все компоненты пробы элюировались за приемлемый срок.
- Тогда приходится прибегать к градиентному элюированию, т.е. использовать растворитель, элюирующая сила которого в процессе анализа изменяется так, что она постоянно увеличивается по заранее заданной программе.
- Таким приемом удается добиться элюирования всех компонентов сложных смесей за относительно короткий промежуток времени и их разделения на компоненты в виде узких пиков.

- Роль подвижной фазы (растворителя) в жидкостной хроматографии весьма многообразна.
- Наряду с чисто транспортной функцией растворитель активно участвует в самом процессе разделения и оказывает существенное влияние на возможности детектирования.
- Часто незначительное изменение состава подвижной фазы дает возможность оптимизировать процесс, улучшить форму пиков, разрешение отдельных компонентов и даже изменить механизм разделения.
- Поэтому при выборе растворителей необходимо учитывать весь комплекс их свойств, в той или иной степени влияющих на проведение хроматографического эксперимента

ПОДВИЖНАЯ ФАЗА ДЛЯ ВЭЖХ

ОСНОВНЫЕ ТРЕБОВАНИЯ К РАСТВОРИТЕЛЯМ

Растворители, применяемые в ВЭЖХ, должны удовлетворять следующим основным требованиям:

- - чистота,
- -химическая инертность,
- -совместимость с детектором,
- -достаточная растворяющая способность по отношению к анализируемым веществам,
- -низкая вязкость,
- -безопасность,
- -доступность.

В некоторых случаях существенное значение имеют смешиваемость с другими растворителями, температура кипения и возможность легкого извлечения вещества из элюата.

ПОДВИЖНАЯ ФАЗА ДЛЯ ВЭЖХ

Наличие примесей в растворителе может вызвать следующие типичные затруднения.

- 1. Ухудшение эффективности разделения и воспроизводимости результатов (пример неконтролируемая влажность растворителя в адсорбционной хроматографии).
- 2. Сильное отклонение нулевой линии и образование ложных пиков при градиентном элюировании.
- 3. Ухудшение возможностей детектирования (примеры—примеси олефинов в парафиновых углеводородах при УФ-детектировании, примесь этанола в хлороформе при ИК-детектировании).

ПОДВИЖНАЯ ФАЗА ДЛЯ ВЭЖХ

- 4.Порча сорбента: примеси оснований приводят к растворению силикагеля; примеси диенов и других лабильных соединений осмоляются и блокируют поверхность адсорбентов, особенно оксида алюминия; примеси карбонильных соединений реагируют с привитыми сорбентами, содержащими аминогруппу; пероксиды окисляют привитые фазы и полистирольные гели.
- 5.Загрязнение веществ, выделяемых из элюата.
- В препаративной хроматографии приходится выделять вещества из очень разбавленных растворов. При этом даже незначительные примеси или добавки, которые не мешают аналитическому разделению, могут концентрироваться в извлекаемом веществе, существенно снижая его чистоту.
- 6.Разложение или химическое изменение компонентов пробы (типичные примеры—гидролиз многих металлоорганических соединений, окисление лабильных веществ пероксидами или растворенным киспородом)

ОСНОВНЫЕ ТРЕБОВАНИЯ К РАСТВОРИТЕЛЯМ

- Химическая инертность. Все, что сказано выше о химически активных примесях, имеет гораздо большее значение применительно к химической активности самих растворителей. Дополнительно можно отметить, что такие классы соединений, как кетоны, алифатические и ароматические амины, следует применять с особой осторожностью и только в тех случаях, когда их трудно заменить более стабильными растворителями.
- Такие элюенты, как хлорорганические соединения, тетрагидрофуран и другие простые эфиры, следует использовать только свежеочищенными.

ОСНОВНЫЕ ТРЕБОВАНИЯ К РАСТВОРИТЕЛЯМ

- Совместимость с детектором. Наиболее распространенными детекторами в настоящее время являются УФ-детекторы и дифференциальные рефрактометры.
- Возможность использования тех или иных растворителей в сочетании с УФ-детектором принято определять минимальной длиной волны, на которой при оптическом пути 10 мм падение интенсивности светового потока составляет 90%.
- С УФ-детектором практически не могут быть использованы такие растворители, как бензол, толуол, тетрахлорид углерода, диметилформамид и хлороформ, а также сложные эфиры и кетоны.
- С рефрактометрическим детектором в принципе можно применять любые растворители, но его чувствительность определяется разностью показателей преломления растворителя и анализируемого вещества. Поэтому при

ОСНОВНЫЕ ТРЕБОВАНИЯ К

- РАСТВОРИТЕЛЯМ
 Вязкость растворителя должна быть по возможности низкой, так как ее повышение ведет к ухудшению массопередачи, а тем самым и эффективности разделения, а также затрудняет работу насосов. При прочих равных условиях следует выбирать растворители, имеющие вязкость 0,5—0,7 мПа при температуре разделения.
- Безопасность работы с теми или иными растворителями определяется их воспламеняемостью и токсичностью. Практически все растворители, применяемые в ВЭЖХ, либо имеют весьма низкую температуру вспышки, либо в определенной степени токсичны.
- Поэтому помещение, в котором проводят работы по жидкостной хроматографии, должно иметь эффективную приточно-вытяжную вентиляцию.
- На рабочем месте недопустимы плохо продуваемые и застойные зоны, так как в них могут накапливаться пары растворителей, имеющие большую плотность чем воздух.
- Нижний предел взрываемости многих растворителей составляет 1—2%, поэтому в застойных зонах возможно образование взрывоопасной смеси.

OCHOBRE I PEDUBARNA

- РАСТВОРИТЕЛЯМ
 Во всех случаях следует выбирать наименее пожароопасные и токсичные растворители, руководствуясь соответствующими данными. Так, диэтиловый эфир можно заменить диизопропиловым, а бензол — толуолом практически без ущерба для разделения.
- С нашей точки зрения, токсичность является более важным фактором, чем пожароопасность. При хорошей организации рабочего места и тщательном соблюдении правил техники безопасности опасность загорания практически исключена, а контакта с растворителем полностью избежать невозможно.
- Многие ароматические и хлорсодержащие растворители обладают способностью накапливаться в организме человека. По последним данным, некоторые из них, считавшиеся ранее малотоксичными (хлороформ, тетрахлорэтилен) являются канцерогенами, поэтому работа с этими растворителями требует осторожности.
- Следует отметить, что ПДК необходимо рассматривать с учетом температуры кипения растворителя: хотя метиленхлорид и хлорбензол имеют одинаковую ПДК (50 мг/м3), но при прочих равных условиях в случае

ОСНОВНЫЕ ТРЕБОВАНИЯ К РАСТВОРИТЕЛЯМ

- Температура кипения менее существенный фактор, чем характеристики, рассмотренные выше. Ее следует учитывать в основном в двух аспектах: в надежности работы насосов и детекторов и легкости выделения вещества из элюата.
- Низкокипящие растворители часто образуют пузырьки в насосах и детекторах.
- При использовании наиболее распространенных в настоящее время плунжерных насосов вероятность образования пузырьков тем больше, чем выше давление паров растворителя и скорость плунжера в фазе всасывания.
- Наличие пузырьков в насосе резко снижает точность подачи растворителя, а пузырьки в детекторе вызывают сильный шум и нестабильность нулевой линии.
- Для предотвращения этого явления проще всего применять растворители, температура кипения которых по крайней мере на 20—50 °C выше комнатной.
- С другой стороны при необходимости препаративного:

ОСНОВНЫЕ ТРЕБОВАНИЯ К РАСТВОРИТЕЛЯМ

• Смешиваемость с другими растворителями необходимо учитывать при работе в режиме градиентного элюирования и при подготовке анализируемого образца с использованием предварительного экстракционного разделения. Следует помнить, что подвижная фаза в ВЭЖХ всегда должна быть гомогенной. Однако такие важные полярные растворители, как метанол и ацетонитрил, ограниченно смешиваются с гексаном. Для расширения диапазона концентраций, соответствующих гомогенным смесям, гексан заменяют на циклогексан или изооктан. Полная смешиваемость в подобных системах достигается заменой полярного компонента на этанол или изопропанол.