PHOTOSYNTHESIS

Photosynthesis

- Anabolic (small molecules combined)
- Endergonic (stores energy)
- Carbon dioxide (CO_2) requiring process that uses light energy (photons) and water (H_2O) to produce organic macromolecules (glucose).

$$\frac{\text{SUN}}{6CO_2 + 6H_2O} \rightarrow C_6H_{12}O_6 + 6O_2$$

Where does photosynthesis take place?

Plants

- Autotrophs produce their own food (glucose)
- Process called photosynthesis
- Mainly occurs in the leaves:
 a. stoma pores
 b. mesophyll cells

Stoma

Stomata (stoma) Pores in a plant's cuticle through which water vapor and gases (CO_2 & O_2) are exchanged between the plant and the atmosphere.

5

Mesophyll Cell of Leaf

Photosynthesis occurs in these cells!

Chloroplast

Organelle where photosynthesis takes place.

Thylakoid stacks are connected together

Thylakoid

Grana make up the inner membrane

Why are plants green?

Chlorophyll Molecules

- Located in the thylakoid membranes
- Chlorophyll have Mg⁺ in the center
- Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red-660 nm are most important)
- Plants are green because the green wavelength is reflected, not absorbed.

Wavelength of Light (nm)

Absorption of Light by Chlorophyll

Chlorophyll absorbs blue-violet & red light best

During the fall, what causes the leaves to change colors?

Fall Colors

- In addition to the chlorophyll pigments, there are other pigments present
- During the fall, the green chlorophyll pigments are greatly reduced revealing the other pigments
- Carotenoids are pigments that are either red, orange, or yellow

Redox Reaction

- The transfer of one or more electrons from one reactant to another
- Two types: 1. Oxidation is the loss of e⁻ 2. Reduction is the gain of e⁻

Oxidation Reaction The loss of electrons from a substance or the gain of oxygen.

Reduction Reaction

The gain of electrons to a substance or the loss of oxygen.

Why do cells use for energy?

Energy for Life on Earth

Sunlight is the ULTIMATE energy for all life on Earth

- Plants store energy in the chemical bonds of sugars
- Chemical energy is released as ATP during cellular respiration

Structure of ATP

- ATP stands for adenosine triphosphate
- It is composed of the nitrogen base ADENINE, the pentose (5C) sugar RIBOSE, and three PHOSPHATE groups
- The LAST phosphate group is bonded with a HIGH ENERGY chemical bond
- This bond can be BROKEN to release ENERGY for CELLS to use

Removing a Phosphate from ATP

- Breaking the LAST PHOSPHATE bond from ATP, will ---
 - Release ENERGY for cells to use
 - Form ADP
 - Produce a FREE PHOSPHATE GROUP

High Energy Phosphate Bond

FREE PHOSPHATE can be re-attached to ADP reforming ATP Process called Phosphorylation

Parts of Photosynthesis

Two Parts of Photosynthesis

Two reactions make up photosynthesis: **1.Light Reaction or Light Dependent Reaction -**Produces energy from solar power (photons) in the form of ATP and NADPH.

SUN

Two Parts of Photosynthesis

- 2. Calvin Cycle or Light Independent Reaction
- Also called Carbon Fixation or C₃ Fixation
- Uses energy (ATP and NADPH) from light reaction to make sugar (glucose).

Light Reaction (Electron Flow)

- Occurs in the Thylakoid membranes
- During the light reaction, there are two possible routes for electron flow:
 A.Cyclic Electron Flow
 - **B. Noncyclic Electron Flow**

Cyclic Electron Flow

- Occurs in the thylakoid membrane.
- Uses Photosystem I only
- P700 reaction center chlorophyll a
- Uses Electron Transport Chain (ETC)
- Generates ATP only

ADP + P ATP

Noncyclic Electron Flow

- Occurs in the thylakoid membrane
- Uses Photosystem II and Photosystem I
- P680 reaction center (PSII) chlorophyll a
- P700 reaction center (PS I) chlorophyll a
- Uses Electron Transport Chain (ETC)
- Generates O₂, ATP and NADPH

Noncyclic Electron Flow

- ADP + P ATP
- NADP⁺ + H \rightarrow NADPH
- Oxygen comes from the splitting of H_2O , not CO_2
 - $H_2O \rightarrow 1/2O_2 + 2H^+$

Chemiosmosis

- Powers ATP synthesis
- Takes place across the thylakoid membrane
- Uses ETC and ATP synthase (enzyme)
- H+ move down their concentration gradient through channels of ATP synthase forming ATP from ADP

Calvin Cycle

- Carbon Fixation (light independent reaction)
- C_3 plants (80% of plants on earth)
- Occurs in the stroma
- Uses ATP and NADPH from light reaction as energy
- · Uses CO,
- To produce glucose: it takes 6 turns and uses 18 ATP and 12 NADPH.

Chloroplast

Calvin Cycle (C_3 fixation)

Calvin Cycle

Remember: $C_3 = Calvin Cycle$

Photorespiration

- Occurs on hot, dry, bright days
- Stomates close
- Fixation of O_2 instead of CO_2
- Produces 2-C molecules instead of 3-C sugar molecules
- Produces no sugar molecules or no ATP

Photorespiration

Because of photorespiration, plants have special adaptations to limit the effect of photorespiration:
1. C₄ plants
2. CAM plants

C_4 Plants

- Hot, moist environments
- 15% of plants (grasses, corn, sugarcane)
- Photosynthesis occurs in 2 places
- Light reaction mesophyll cells
- Calvin cycle bundle sheath cells

C_4 Plants

Mesophyll Cell

Bundle Sheath Cell

CAM Plants

- · Hot, dry environments
- 5% of plants (cactus and ice plants)
- Stomates closed during day
- Stomates open during the night
- Light reaction occurs during the day
- Calvin Cycle occurs when CO₂ is present

Why do CAM plants close their stomata during the day? Cam plants close their stomata in the hottest part of the day to conserve water

