- 1.«Высокомолекулярные соединения» под редакцией А.Б. Зезина, М: Юрайт, 2016
- 2.Ю.Д. Семчиков. «Высокомолекулярные соединения» М: Академия, 2003.
 - 2. В.В. Киреев. «Высокомолекулярные соединения» М: Юрайт, 2013.
 - 3. А.А. Тагер. «Физико-химия полимеров», М: Научный мир, 2007
 - 4. В.Н. Кулезнев, В.А. Шершнев, «Химия и физика полимеров», М: КолосС, 2007

Свободные электронные источники

Методические пособия к практикуму по высокомолекулярным соединениям //

http://www.vmsmsu.ru/what.html

Макрогалерея // http://www.pslc.ws/russian/index.htm

• Полимеры состоят из макромолекул.

Немецкие ученые Вернер Кун и Герман Штаудингер предложили

рассматривать Макромолекулу как

<u>длинную, гибкую,</u>

цепную конструкцию,

состоящую из большого числа (поли-)

повторяющихся мономерных звеньев одинаковой или

различной химической природы

КЛАССИФИКАЦИЯ ПОЛИМЕРОВ

по геометрии основной цепи

по происхождению

- 1. природные
- 2. искусственные
- 3. синтетические

- 1. линейные
- 2. разветвленные
- 3. гребнеобразные
 - 4. лестничные
- 5. дендритные и др.

<u>по типу атомов в</u> <u>молекуле</u>

органические элементоорганические неорганические

по типу мономерных звеньев

- 1. гомополимеры
- 2. сополимеры
 - а) статистические
 - б) чередующиеся
 - в) блочные
 - г) привитые

по функциональным группам в макромолекуле

углеводороды

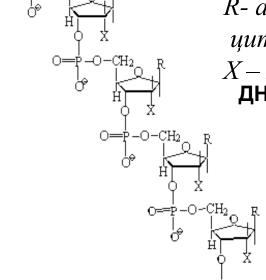
спирты

кислоты

амиды

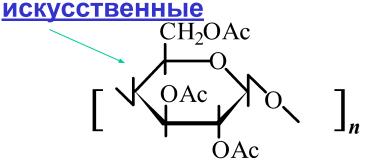
амины

простые и сложные эфиры ацетали и др.


По происхождению:

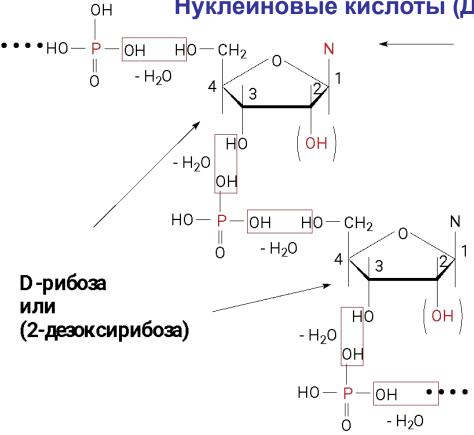
ЦЕЛЛЮЛОЗА- (С₆H₁₀O₅)-

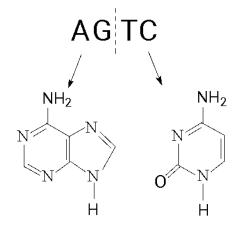
природные


НУКЛЕИНОВЫЕ КИСЛОТЫ

R- аденин, гуанин, цитозин, урацил

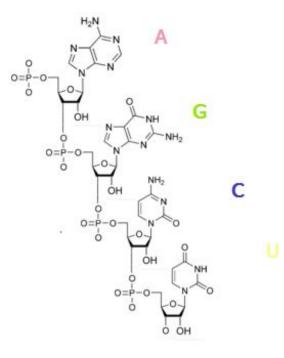
PH **К** *R- аденин, гуанин,* тимин, цитозин X-OH

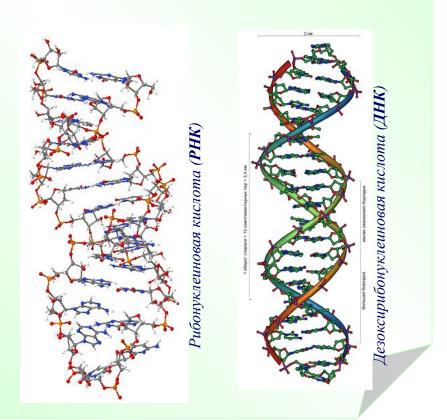

ТРИАЦЕТАТ ЦЕЛЛЮЛОЗЫ -


ПОЛИПРОПИЛ EH -

синтетичесние

Нуклеиновые кислоты (ДНК, РНК)

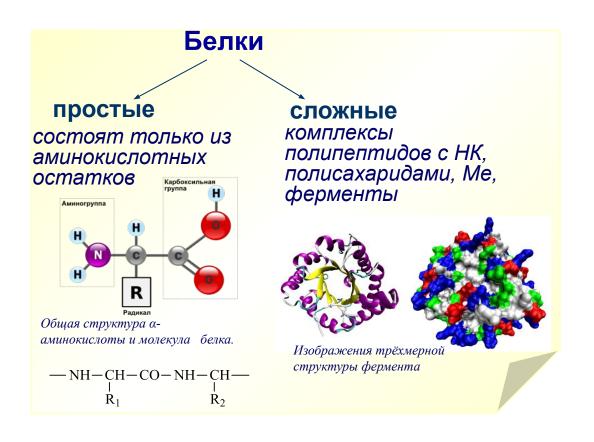

N - пуриновые или пиримидиновые основания



Белки (proteins)

α – аминокислоты

Нуклеиновые кислоты (РНК, ДНК)

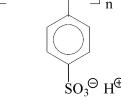


Гуанин

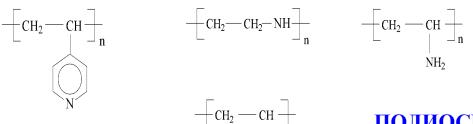
Тимин

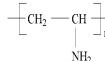
ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ В ЖИВОЙ ПРИРОДЕ

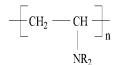
Сбор латекса гевеи-


загустевшего млечного сока, вытекшего из порезов на коре дерева гевеи.

$$- \begin{bmatrix} CH_2 - CH \\ COO \end{bmatrix}_n$$

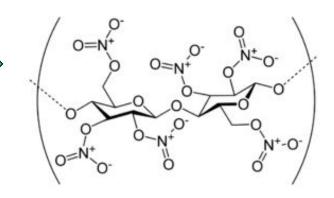

$\begin{array}{c|c} & CH_3 & Br^{\bigodot} & CH_3 & Br^{\bigodot} \\ \hline (CH_2)_x - N & (CH_2)_y - N & \\ & |_{CH_3} & CH_3 & -n \end{array}$


<u>ПОЛИКИСЛОТЫ</u>


ПОЛИФОСФАТ

 $-\left[0-\frac{0}{P}-0\right]_{\mathbf{n}}$

ИОНЕН



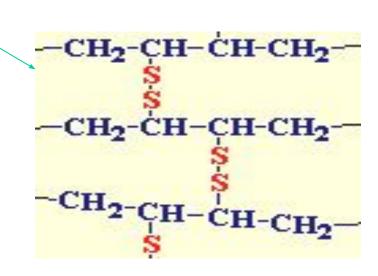
- $\begin{bmatrix} CH_2 - CH \end{bmatrix}_n$ ПОЛИОСНОВАНИЯ

Целлулоид (1870 г)

Смесь <u>нитроцеллюлозы</u>

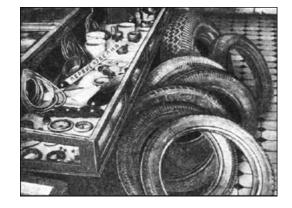
с пластификаторами (камфорой, алифатическими спиртами, дибутилфталатом)

Применяется для изготовления кино- и фото-плёнки, линеек, различных галантерейных товаров, игрушек и др.


Необходима <u>смягчающая добавка</u>, не уменьшающая при этом главное полезное свойство – упругость.

Пластификатор (специфическое свойство полимеров)

Практически незаменимый материал при изготовлении шариков для настольного тенниса


• 1839 г. американец Чарльз Гудьир обнаружил, что нагревание каучука с серой (вулканизация) позволяет получать из эластичного и легко теряющего свою форму каучука резину, способную к деформации и легко восстанавливающую первоначальный размер и форму.

Вулканизация полибутадиена

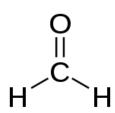
Объяснение высокоэластических свойств полимерных материалов было дано лишь почти через сто лет после открытия Гудьира. (специфическое свойство полимеров)

Историческая справка

• 1835 г. — В результате опытов с хлористым винилом химик Реньо впервые синтезировал поливинилхлорид, о чем сам Реньо не догадывался.

$$-\text{CH}_2-\text{CH}_{\frac{1}{n}}$$

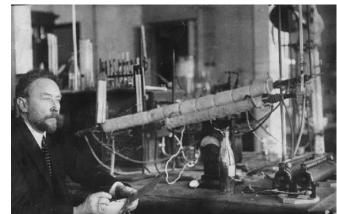
• 1839 г. — Работая со стиролом, химик Симон обнаружил в колбах и ретортах какой-то нерастворимый осадок. Однако не придал этому значения..


• 1843 г. — Из природного каучука (белого цвета сока дерева гевеи) получена первая в мире твердая пластическая масса — эбонит, содержащая около 30% серы (больше 30% и невозможно).

• 1856 г. — Англичанин Паркес получил новое вещество паркезин (целлулоид).

Историческая справка

- 1859 г. —русский химик А. М. Бутлеров создатель теории химического строения органических веществ открыл формальдегид.
- <u>А.М.Бутлеров</u> создает теорию химического строения, изучая связь между строением и относительной устойчивостью (сейчас это называют реакционной способностью) молекул, проявляющейся в реакциях полимеризации.



- 1872 -1912 гг. получение фенолформальдегидной смолы, создание пластмасс, получение поливинилхлорида.
- начало 30-х годов синтез каучука на основе бутадиена, впервые осуществленный в промышленных масштабах по методу

С. В. Лебедева.

Н Н (-CH2-CH=CH-CH2-)n

С=С Н анионная полимеризации бутадиена

13

• 1936 г.-получение полиэтилена полимеризацией этилена (компания "Империал кемикал индастриз")

Условия: очень высокие температура (200°С) и давление (сотни атмосфер),

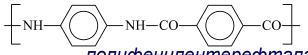
nCH2=CH2 \rightarrow [-CH2-CH2-]n

свойства пластика не оправдали ожиданий, т.к. в жестких условиях реакции образовывались макромолекулы разветвлённого строения ноябрь 1953 г. - новая реакции получения полиэтилена

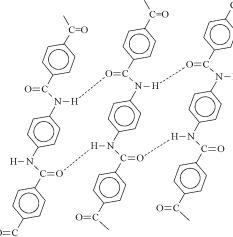
1953 г. (Циглер) – новый комплексный катализатор на основе триэтилалюминия и галогенидов титана для полимеризации этилена

14

способствует полимеризации при значительно более низких температуре и давлении


материал с гораздо лучшими свойствами-более плотный, твердый и устойчивый к высоким температурам

1957 г. (Натта)- на промышленной установке получен <mark>изотактический</mark> полипропилен(макромолекулы линейные и регулярного строения годи от стро


революция в производстве пластических материалов!

Суперпрочные волокна

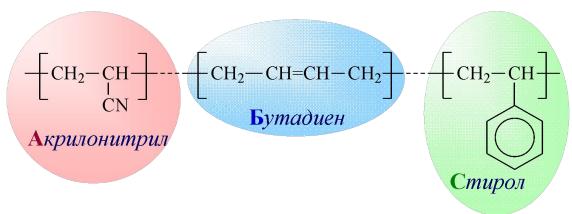
Кевлар

полифенилентерефталами

Паутина — простейшее волокно, созданное природой. В шесть раз прочнее стали, в восемь раз легче. Проявляет эластические свойства, растягивается на 30-40% перед разрывом.

Химический состав: белок (глицин, аланин, серин)

Прочность ориентированного волокна				
ПЭ	Напряжение при разрыве, ГПа	Е _{упр} , ГПа		
ПЭ	20	260		


0,2

3

Механические с	войства $\rho_{, \text{г/cm}^3}$	σ прочность на разрыв, кН/мм2	σ/ρ , удельная прочность
Сталь	7,8	2,7	0,35
Стекло	2,5	2,0	0,80
Найлон	1,14	0,8	0,70
Кевлар	1,45	2,5	1,72

ПЭТ

Тройные сополимеры - АБС-пластики

Свойства	Полистирол	АБС пластики
Ударная прочность, кДж/м ²	1.5 – 2.0	10 – 30
Удлинение, %	1 – 2	10 – 25

АБС-пластики используют для получения крупно-габаритных изделий — крылья и кузова автомобилей, корпуса радиоприемников, телевизоров, фото- и видеокамер, чемоданы и сумки и др.

ОСНОВНЫЕ ВИДЫ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ

Машиностроение;

ПЛАСТИКИ

Авиационная промышленность; **а**втомобилестроение;

Космическая промышленность;

Электротехника; электроника (DVD и CD диски)

Бытовая техника *(телевизоры, видеосистемы, компьютеры);*

Строительство; телекоммуникация

волокна

Текстильная и легкая промышленность;

Природные *(шерсть, хлопок)* и **и**скусственные *(нейлон,*

полиэфиры) волокна

ЭЛАСТОМЕРЫ

Авто- и **а**виационные, эластичные материалы

(КАУЧУКИ)

Упаковочные материалы; ПЛЕНКИ

Аудио-, видео- пленки;

Сельское хозяйство (парники)

ПОКРЫТИЯ

лакокрасочная промышленность;

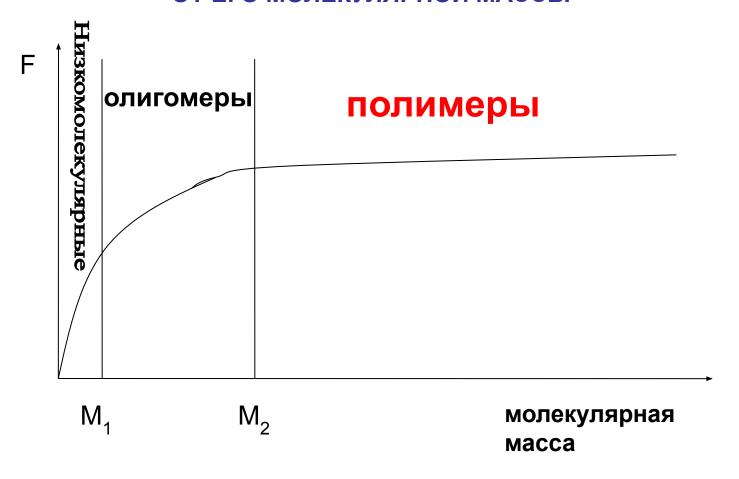
Мебельная промышленность

КЛЕИ Разнообразные виды промышленности

Целлюлозно-**б**умажная промышленность БУМАГА

17

Развитие химии высокомолекулярных соединений


• академик Валентин Алексеевич Каргин – основатель российской полимерной школы, в 1955 г. организовал и возглавил кафедру высокомолекулярных соединений в МГУ имени М.В.Ломоносова

<u>От макромолекулы до композиционных материалов – так</u> 1907-1969 <u>логически построен курс подготовки химика-полимерщика</u>

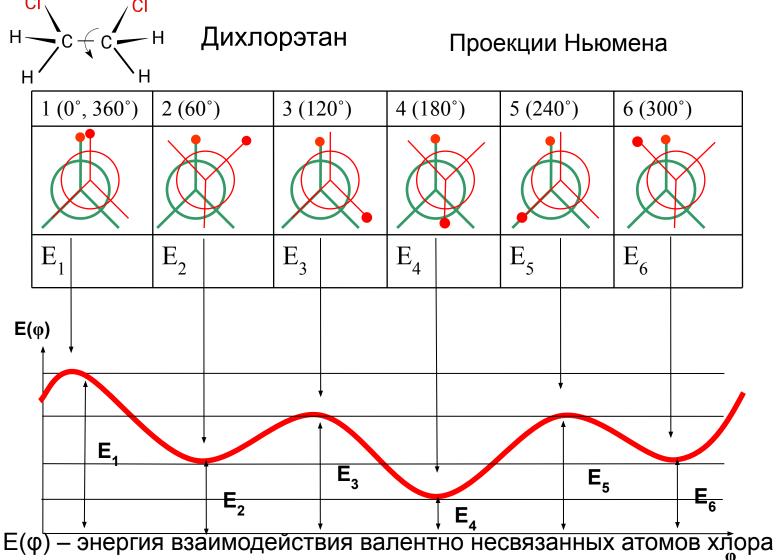
- Растворы полимеров, термодинамически обратимые системы, подчиняющиеся правилу фаз (Ф + С = К +1) (конец 1930-х г.)
- Исследования механических свойств полимеров выводы о природе физических и фазовых состояний полимеров.
- Идея о связи надмолекулярной (супрамолекулярной) структуры с физикомеханическими свойствами полимера.
- Синтез и химическая модификации макромолекул как средство целенаправленного создания полимерных материалов с требуемыми

ЗАВИСИМОСТЬ НЕКОТОРЫХ СВОЙСТВ ТВЁРДОГО ТЕЛА (ПОЛИМЕРА) ОТ ЕГО МОЛЕКУЛЯРНОЙ МАССЫ

F – характеристики твердого тела (полимера)

Т°пл.; Т°размягчения.; Е акт. вязкого течения; деформация и др.

Гибкость макромолекулы -


способность её изменять свою конформацию при тепловом движении в основном за счёт

внутреннего вращения вокруг одинарных связей в основной цепи,

а также слабых деформаций валентных углов и слабого изменения межатомных расстояний

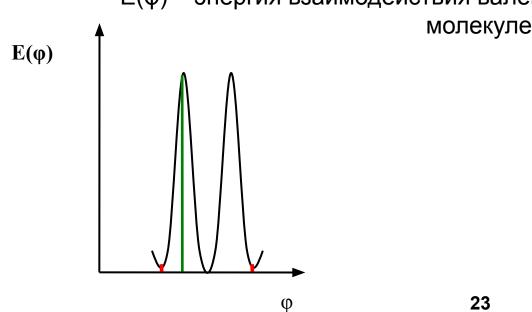
ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВНУТРЕННЕГО ВРАЩЕНИЯ

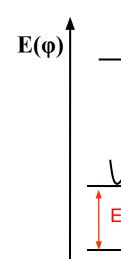
 $E_1 \approx 12,5$ ккал/моль $E_4 \approx 4,8$ ккал/моль $E_3 \sim E_5 \approx 8,5$ ккал/моль $E_2 \sim E_6 \approx 6,5$ ккал/моль

ТЕРМОДИНАМИЧЕСКАЯ ГИБКОСТЬ

10

характеризует потенциальную возможность макромолекулы принимать разные конформации (Етлг)


> <u>КИНЕТИЧЕСКАЯ ГИБКОСТЬ (**КГ**)</u> характеризует скорость перехода из


одной конформации в другую (Е___)

Фрагменты энергетических диаграмм макромолекул

Е(ф) – энергия взаимодействия валентно несвязанных атомов в

23

Факторы, уменьшающие гибкость (КГ и ТДГ) макромолекулы

- А. Наличие в основной цепи:
 - 1. кратных связей (-C=C-, -C=N-)
- 2. жёстких фрагментов (ароматические кольца, ангидридные циклы)
 - 3. объёмистых заместителей
- 4. внутримолекулярных взаимодействий (водородные связи, кулоновские взаимодействия)
- Б. Несимметричность строения основной цепи
- В. Нерегулярность строения цепи

Модель свободно-сочленённой цепи

- 1. Цепь состоит из **n** повторяющихся <u>сегментов</u>, имеющих скалярную величину (длину) I и направление (вектор)
- 2. Свободное (!) [от 0 до 360°] сочленение между сегментами

Для одной конформации:
$$h^{2} = \overset{\mathbb{N}}{h^{2}} = \sum_{i=1}^{n} \overset{\rightarrow}{l_{i}} \times \sum_{i=1}^{n} \overset{\rightarrow}{l_{i}} = \begin{pmatrix} \overset{\rightarrow}{l_{1}} \\ \overset{\rightarrow}{l_{1}} \end{pmatrix} = \begin{pmatrix} \overset{\rightarrow}{l_{1}} \\ \overset{\rightarrow}{l_{1}} \end{pmatrix} + \begin{pmatrix} \overset{\rightarrow}{l_{1}} \\ \overset{\rightarrow}{l_{2}} \end{pmatrix} + \begin{pmatrix} \overset{\rightarrow}{l_{2}} \\ \overset{\rightarrow}{l_$$

Проведём усреднение h² по всем конформациям, конформация задаётся набором углов I_i I_i .

$$\overline{h}^2 = nl^2$$

$$h^2 = h^2 = \sum_{i=1}^n \vec{l_i} \times \sum_{i=1}^n \vec{l_i} = \left(\vec{l_1} + \vec{l_2} + \vec{l_3} + \dots + \vec{l_n}\right) \times \left(\vec{l_1} + \vec{l_2} + \vec{l_3} + \dots + \vec{l_n}\right) =$$

$$l_i = \vec{l_1} \vec{l_1} + \vec{l_1} \vec{l_2} + \dots + \vec{l_1} \vec{l_n} + h^2 = \sum_{i=1}^n l_i^2 \cos l_i l_i + \sum_{i,j=1, i \neq j}^n l_i l_j \cos l_i l_j$$

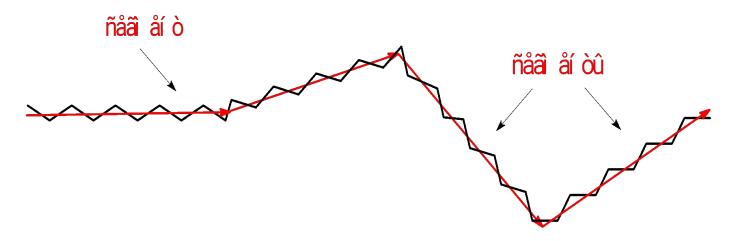
$$+ \vec{l_2} \vec{l_1} + \vec{l_2} \vec{l_2} + \dots + \vec{l_n} \vec{l_n} + \dots$$

$$\dots$$

$$+ \vec{l_n} \vec{l_1} + \vec{l_n} \vec{l_2} + \dots + \vec{l_n} \vec{l_n}$$

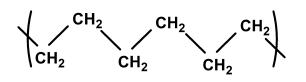
$$\text{We h}^2 \text{ по всем}$$

$$\langle h^2 \rangle = n l^2 + \sum_{i,j=1, i \neq j}^n l_i l_j \langle \cos l_i l_j \rangle$$


$$\text{Me h}^2 \text{ по всем}$$

Свободное сочленение=>

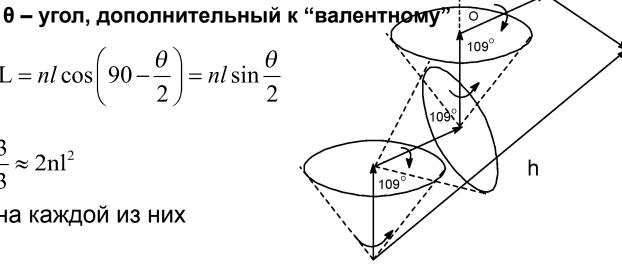
$$A = \frac{L}{\left(\overline{h}^2\right)^{1/2}} = \frac{nl}{\sqrt{nl}} = \sqrt{n}$$


СТАТИСТИЧЕСКИЙ СЕГМЕНТ (СЕГМЕНТ КУНА)

– модельный условный отрезок-вектор, соединяющий первое и *і* мономерные звенья реальной макромолекулы. На *і*–м звене теряется корреляция взаимного влияния звеньев при вращении вокруг связей основной цепи (сочленение между сегментами Куна свободное(!) - угол меняется от 0 до 360°).

$$\overline{h}^2 = ZA^2$$
 А-длина сегмента, Z – число сегментов в цепи

МОДЕЛЬ ЦЕПИ С ФИКСИРОВАННЫМИ ВАЛЕНТНЫМИ УГЛАМИ


валентный угол
$$CH_2$$
 = 109°, тогда θ = 71°

$$\overline{h}^2 = nl^2 \frac{1 + \cos \theta}{1 - \cos \theta}$$

$$\overline{h}^2 = nl^2 \frac{1 + \cos \theta}{1 - \cos \theta} \qquad L = nl \cos \left(90 - \frac{\theta}{2}\right) = nl \sin \frac{\theta}{2}$$

$$\overline{h}^2 = nl^2 \frac{1 + \cos 71^\circ}{1 - \cos 71^\circ} = nl^2 \frac{1 + 0.33}{1 - 0.33} \approx 2nl^2$$

n-число связей C-C, I – длина каждой из них

МОДЕЛЬ МАКРОМОЛЕКУЛЫ С УЧЁТОМ ВНУТРЕННЕГО ВРАЩЕНИЯ (Ф)

$$\overline{h}^2 = nl^2 \frac{\theta + \cos s}{\theta - \cos \theta} + \frac{\overline{\varphi}}{1 - \overline{\cos \varphi}}$$

каждого из углов вращения ф

$$\overline{h}^2 = nl^2 \frac{\theta + \cos s}{\theta - \cos} + \frac{-\varphi}{1 - \overline{\cos}\varphi}$$

$$\frac{\theta + \cos s}{1 - \overline{\cos}\varphi} + \frac{\varphi}{1 - \overline{\cos}\varphi}$$

$$\frac{\sin \varphi + \varphi}{\cos \varphi} = \frac{-\int_0^{2\pi} e^{-\frac{E(\varphi)}{kT}} \sin \varphi d\varphi}{\int_0^{2\pi} e^{-\frac{E(\varphi)}{kT}} d\varphi}$$

Зависимость гибкости макромолекулы от химического строения

Уменьшение гибкости макромолекул

$$\sim CH_{2} - CH_{2} - O - CH_{2} - CH_{2} \sim$$

$$\sim CH_{2} - C - O - CH_{2} \sim$$

$$\sim CH_{2} - NH - C - O - CH_{2} \sim$$

$$\parallel$$

$$0$$

$$\sim CH_{2} - NH - C - CH_{2} \sim$$

$$\parallel$$

$$0$$

$$\sim CH_{2} - NH - C - NH - CH_{2} \sim$$

$$\parallel$$

$$0$$

простой полиэфир

сложный полиэфир

полиуретаны

полиамиды

полимочевины

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

МАКРОМОЛЕКУЛА:

совокупность атомов или атомных групп, разных или одинаковых по химической природе, соединённых ковалентными связями в длинную, гибкую, цепную конструкцию

ПОЛИМЕРЫ: <u>особый</u> КЛАСС <u>ХИМИЧЕСКИХ</u> СОЕДИНЕНИЙ, <u>состоящих</u> из макромолекул, специфика свойств которых обусловлена большой длиной, цепным строением и гибкостью их макромолекул.

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

КОНФОРМАЦИЯ

макромолекулы — взаимное расположение атомов или атомных групп в макромолекуле, которое может изменяться без разрыва ковалентных связей основной цепи за счет внутреннего вращения вокруг химических связей основной цепи, а также упругости химических связей и валентных углов.

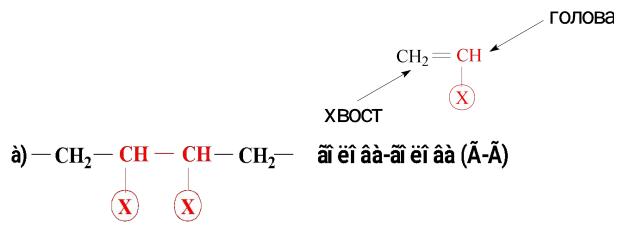
КОНФИГУРАЦИЯ

макромолекулы взаимное расположение атомов ИЛИ атомных групп в макромолекуле, которое формируется при синтезе не может полимера без изменяться разрыва связей ковалентных ОСНОВНОЙ (алгоритм, полимерной цепи согласно которому мономерные звенья соединены друг с другом в макромолекуле).

1. Геометрическая изомерия (цис-, транс-) для макромолекул с кратными -C=C- связями в основной цепи

$$CH=C$$
 CH_{2}
 CH_{2}
 CH_{2}

Öèñ-ï î ëèèqî ï ðåí

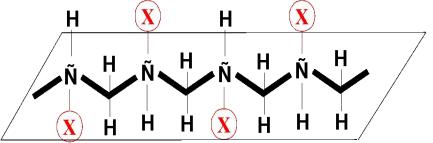

Êàó÷óê

$$CH=C$$
 CH_2
 CH_3

Òðaí ñ-ï î ëèèçî ï ðaí

Ãóòòàii åð÷à

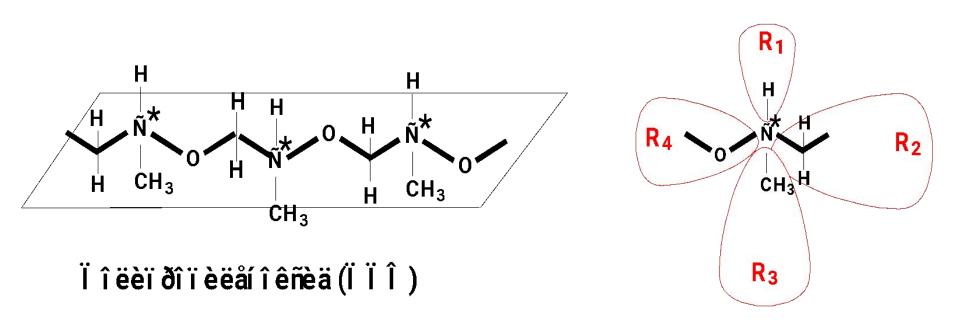
2. "Локальная" изомерия (на примере макромолекул винилового ряда для двух соседних мономерных звеньев)



á)
$$-CH_2 - CH - CH_2 - CH -$$
ãî ëî âà-õâî ñò (Ã-Õ)

$$\hat{\mathbf{a}}) - \underbrace{\mathbf{CH}}_{\mathbf{X}} - \underbrace{\mathbf{CH}}_{2} - \underbrace{\mathbf{CH}}_{2} - \underbrace{\mathbf{CH}}_{\mathbf{X}} - \underbrace{\mathbf{\tilde{o}\hat{a}\hat{i}} \ \tilde{\mathbf{n}\hat{o}} \cdot \tilde{\mathbf{o}}\hat{\mathbf{a}\hat{i}} \ \tilde{\mathbf{n}\hat{o}} \cdot \tilde{\mathbf{o}}\hat{\mathbf{a}\hat{i}} \ \tilde{\mathbf{n}\hat{o}} \cdot \tilde{\mathbf{o}}\hat{\mathbf{a}}\hat{\mathbf{i}} \ \tilde{\mathbf{n}}\hat{\mathbf{o}} \cdot \tilde{\mathbf{o}}\hat{$$

- 3. Стереоизомерия для макромолекул, имеющих асимметрический атом в основной полимерной цепи
- а) макромолекулы с *псевдоасимметрическим атомом углерода*,не проявляющие оптической активности


èçîòàêòè÷åñêèé èçîìåð

Заместители X располагаются по **одну** сторону от плоскости основной цепи

neí aei òàeòe÷aneèé ègì að

Заместители X располагаются по разные стороны от плоскости основной цепи

б) Стереоизомерия для макромолекул, имеющих асимметрический атом в основной полимерной цепи и проявляющие оптическую активность

C* - àñèì ì aòðè÷añêèé àòî ì óãëaðî äà

Задача 1: посчитать, сколько возможно конфигурационных изомеров для

ДВУХ соединённых ковалентной связью мономерных звеньев

1. акрилонитрила

2. бутадиена

полимеризация (цепной процесс)

Радикальная Анионная Катионная (актив. центр R^{-}) (актив. центр R^{-})

1. Инициирование (присоединение радикалов инициатора к кратной связи мономеров против правила Марковникова)

Инициирующий радикал <u>становится</u> сначала одной концевой группой <u>в</u> <u>макрорадикале</u>

Появление радикалов при окислительно-восстановительных реакциях

а)
$$H_2O_2 + Fe^{2+} \rightarrow HO^- + HO^- + Fe^{3+}$$
 реактив Фентона

Появление радикалов при гомолитическом разрыве связей, например, О-О

$$C_6H_5-C-O-O-C-C_6H_5 \xrightarrow{} 2C_6H_5-C-O$$
 $\xrightarrow{} 2C_6H_5^{\bullet} + 2CO_2$

2. Рост цепи (полимеризация – реакция присоединения радикала к кратной связи мономеров)

Какие еще возможны реакции в полимеризующейся системе?

3. Передача цепи на другие частицы

на молекулы растворителя, специально введённого вещества, на макромолекулы (в том числе макрорадикалы)

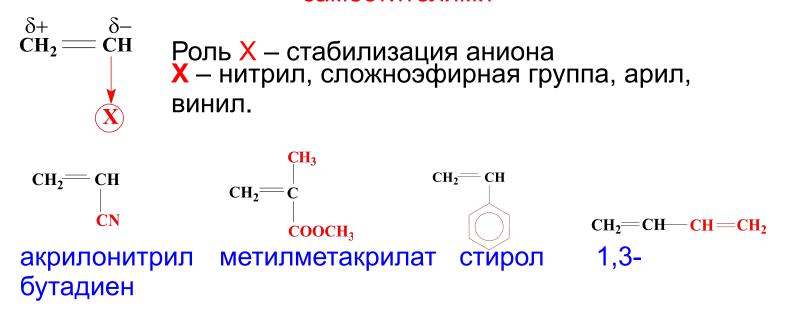
4. Обрыв цепи (квадратичный)

а) Рекомбинация

(из ДВУХ макрорадикалов образуется ОДНА макромолекула)

$$2 \stackrel{|}{\vdash} CH_2 \stackrel{|}{\lor} CH_2 \stackrel$$

б) Диспропорционирование


(ДВА макрорадикала превращаются в ДВЕ разных макромолекулы)

$$2 \vdash CH_{2} \vdash CH_{2}$$

АНИОННАЯ ПОЛИМЕРИЗАЦИЯ

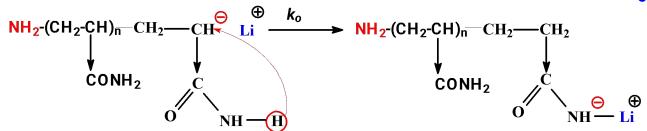
✓ Мономеры

ВИНИЛОВЫЕ мономеры с электроноакцепторными заместителями

Образование <u>обобщенной единой ароматической системы ПИ-связей (бензольного ядра)</u> приводит к значительному энергетическому повышению устойчивости системы примерно на 40 ккал\моль по сравнению с системой с тремя изолированными кратными связями. Это является одной из причин того, что в зависимости от конкретных условий реакции, ароматическое кольцо проявляет либо электроноакцепторные, либо электроно-донорные свойства

ИНИЦИИРОВАНИЕ ПОЛИМЕРИЗАЦИИ

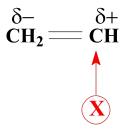
1) Инициирование алкилами металлов (Li, Na, K) V_{ин}=k_{ин}[C₄H₉Li][M]

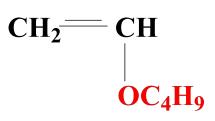

$$V_{\text{NH}} = k_{\text{NH}} [C_4 H_9 Li][M]$$

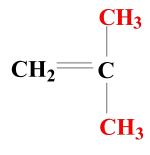
ОБРЫВ И ПЕРЕДАЧА ЦЕПИ **✓** Обрыв кинетической цепи

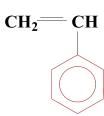
1. перенос гидрид-иона (энергетически невыгодно!)

2. перенос протона (энергетически невыгодно!)


$$V_o = k_o [P_n]$$

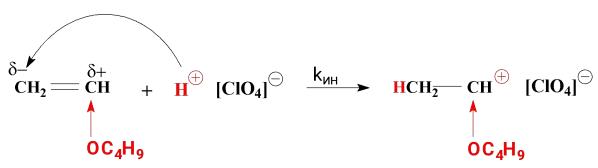

КАТИОННАЯ ПОЛИМЕРИЗАЦИЯ


✓ Мономеры


а) ВИНИЛОВЫЕ мономеры с электронодонорными заместителями

Роль X – стабилизация катиона X – алкил, алкокси-группа, арил.

винилбутиловый эфир


изобутилен

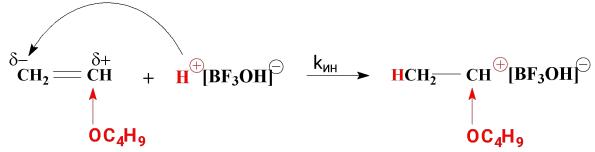
стирол

ИНИЦИИРОВАНИЕ ПОЛИМЕРИЗАЦИИ

а) В случае протонных кислот

$$HX + M \xrightarrow{k_{uh}} HM^+X^-$$

$$V_{\text{ин}} = k_{\text{ин}} [HX][M]$$


б) В случае кислот Льюиса

♦образование активного комплекса

$$BF_3 + H^+OH^- \rightarrow H^+[BF_3OH]^-$$

✓ Активность комплекса зависит от его способности отдавать протон.

♦образование активного центра (карбкатиона)

Более медленная стадия – образование карбкатиона! V_{ин}=k_{ин}[H⁺(BF₃OH)⁻][M]

ПОЛИКОНДЕНСАЦИЯ (ступенчатый

процесс)

Полиамиды $NH_2-R-NH_2 + C - R'-C \xrightarrow{\hat{E} \hat{a}\hat{o}., T^0}$

$$\qquad \qquad + \underbrace{NH - R - NH - C - R - C}_{O}$$

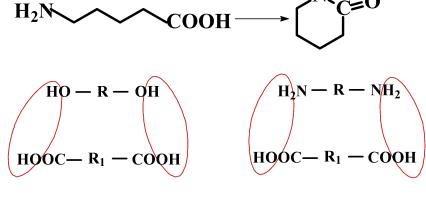
Простые ПОЛИэфиры

$$NH_{2}-R-NH_{2} + C-R'-C \xrightarrow{\hat{E} \grave{a}\grave{o},, T^{0}} -HCI$$

$$NH_{2}-R-NH_{2} + C-R'-C \xrightarrow{\hat{E} \grave{a}\grave{o},, T^{0}} -HCI$$

$$NH_{2}-R-NH_{2} + RO \xrightarrow{\hat{C} -R'-C} -ROH$$

$$HO-R-OH + HO-R-OH \xrightarrow{\hat{E} \grave{a}\grave{o},, T^{0}} -HOH$$

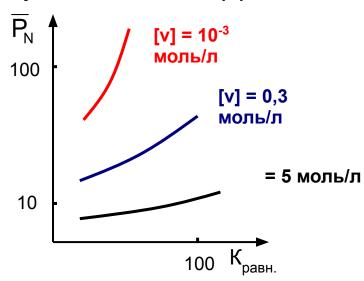

$$HO-R-OH + HO-R-OH \xrightarrow{\hat{E} \grave{a}\grave{o},, T^{0}} -HOH$$

$$HO-R-OH + HO-R-OH \xrightarrow{\hat{E} \grave{a}\grave{o},, T^{0}} -HOH$$

Сложные ПОЛИэфиры

Побочные реакции: внутри- и межмолекулярная циклизация

Устойчивые циклы: 5, 6, 12, 20-членные



ФАКТОРЫ, ВЛИЯЮЩИЕ НА СТЕПЕНЬ ПОЛИМЕРИЗАЦИИ

Концентрация низкомолекулярного вещества (v)

Для синтеза высокомолекулярно ГО полимера необходимо удалять низкомолекулярное вещество

$$\overline{P}_n = \sqrt{\frac{K_{paвH}}{v \cdot q}}$$

2. Образование циклов

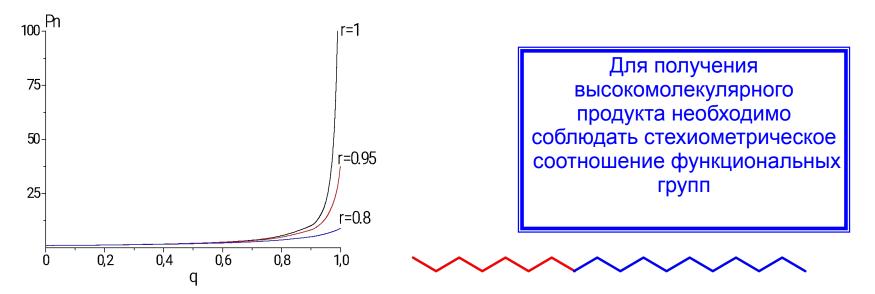
Устойчивые циклы: 5, 6, 12, 20-членные

′внутримолекулярная циклизация

V_{цикл.}~k[M] разбавление реакционной системы увеличивает вероятность циклизации

межмолекулярная циклизация

$$HO - R - OH$$


$$HOOC - R_1 - COOH$$

$$H_2N - R - NH_2$$

$$HOOC - R_1 - COOH$$

44

Реакции циклизации препятствуют образованию высокомолекулярного продукта

 $[C_A] < [C_B] \Rightarrow$ избыток HO-R'-OH приводит к композиционной неоднородности макромолекул

 $[C_{A}] > [C_{B}] \Rightarrow$ избыток HOOC-R-COOH приводит к обрыву цепей и прекращению

3. Если присутствуют монофункциональные примеси $\overline{1+r-2rq}$ r=1 Pn 100или при q=1 $HOOC-R-COOH \Rightarrow [C_{\Lambda}]$ $HO-R'-OH \Rightarrow [C_p]$ $r = \frac{2[C_A]}{2[C_B] + [A]}$ 75- $\overline{P}_n = \frac{1+r}{r}$ $HOOC-R" \Rightarrow [A]$ 50 r=0.95 r=0.93 25 (r=0.95+0.05 моль[COOH])42

0,2

0.4

0,6

0.8

1.0

СПЕЦИФИЧЕСКИЕ СВОЙСТВА ПОЛИМЕРОВ

- Невыполнение закона постоянства состава в ходе синтеза или химических превращений полимеров
- Способность кодировать, сохранять и передавать генетическую информацию (ДНК, РНК)
- Высокоэластические деформации (~ сотни %)
- Резкое изменение физико-механических свойств при добавлении небольших количеств низкомолекулярных веществ (пластификация, сшивание)

Невыполнение закона постоянства состава и, как следствие, полимолекулярность (полидисперсность) полимеров

Причиной этого являются:

- -вероятностный (случайный) характер элементарных стадий радикальной полимеризации реакций обрыва и передачи цепи;
- -использование инициатора полимеризации (радикальной, катионной и анионной), инициирующие частицы которого становятся концевыми группами в макромолекулах, но, как правило, отличаются по химической природе от мономерных звеньев макромолекул;
- -побочные реакции деструкции, внутри- и межмолекулярной циклизации в реакциях поликонденсации. 47

Образование очень вязких растворов при малых концентрациях

Способность к набуханию (ограниченное, неограниченное – раствор)

Способность к образованию анизотропных структур (волокна, плёнки)

Деструкция (деполимеризация)

Способность макромолекул превращать химическую энергию в механическую

СРЕДНИЕ МОЛЕКУЛЯРНЫЕ МАССЫ

49

-среднечисловая молекулярная масса **М**_п

-средневесовая молекулярная масса М

$$\overline{M}_n = rac{\sum M_i N_i}{\sum N_i} = \sum M_i n_i$$
 Числовая доля $n_i = rac{N_i}{\sum N_i}$

$$n_i = \frac{N_i}{\sum N_i}$$

 $\bar{M}_n < \bar{M}_w < \bar{M}_z$

$$\overline{M}_{\scriptscriptstyle W} = rac{\sum M_{i}^{2} N_{i}}{\sum M_{i} N_{i}} = \sum M_{i} W_{i}$$
 Массовая доля

$$w_i = \frac{M_i N_i}{\sum M_i N_i}$$

$$\overline{M}_z = \frac{\sum M_i^3 N_i}{\sum M_i^2 N_i}$$

Z-средняя молекулярная масса

Если все макромолекулы одной молекулярной массы – образец монодисперсный

$$\overline{M}_{n} = \overline{M}_{w} = \overline{M}_{z}$$
 $\overline{M}_{w} / \overline{M}_{n} = 1$

Определяется в экспериментах по седиментационнолиффузионному равновесию при упьтрацентрифугировании Задача. Образец полимера содержит: 10 молекул с мол. массой 100000

50 10000 40 1000

найти средневесовую (M_w) и среднечисловую (M_n) молекулярные массы

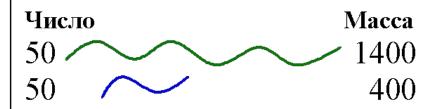
$$\overline{M}_{n} = \frac{\sum M_{i} N_{i}}{\sum N_{i}} \quad \overline{M}_{n} = \frac{\sum M_{i} N_{i}}{\sum N_{i}} = \frac{10*10^{5} + 50*10^{4} + 40*10^{3}}{10 + 50 + 40} = 15400$$

$$\overline{M}_{w} = \frac{\sum_{i} M_{i}^{2} N_{i}}{\sum_{i} M_{i} N_{i}} \quad \overline{M}_{w} = \frac{\sum_{i} M_{i}^{2} N_{i}}{\sum_{i} M_{i} N_{i}} = \frac{10 * (10^{5})^{2} + 50 * (10^{4})^{2} + 40 * (10^{3})^{2}}{10 * 10^{5} + 50 * 10^{4} + 40 * 10^{3}} = 75000$$

<u>Ответ:</u>

среднечисловая молекулярная масса 15400, средневесовая молекулярная масса 75000

Образец №1


$$\frac{50}{100} \bullet 1000 + \frac{50}{100} \bullet 800 = 900 = M_{n}$$

$$\frac{50 \cdot 1000}{90000} \bullet 1000 + \frac{50 \cdot 800}{90000} \bullet 800 =$$

$$= 555.6 + 355.5 = 911.1 = M_{w}$$

Полидисперсность $M_w/M_n = 1,01$

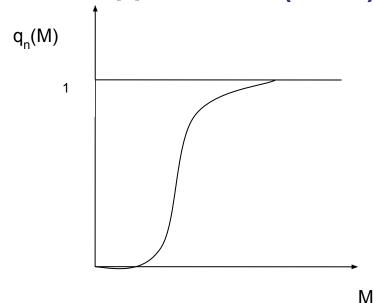
Образец №2

$$\frac{50}{100} \bullet 1400 + \frac{50}{100} \bullet 400 = 900 = M_{n}$$

$$\frac{50 \cdot 1400}{90000} \bullet 1400 + \frac{50 \cdot 400}{90000} \bullet 400 =$$
$$= 1088.9 + 88.9 = 1177.8 = M_{w}$$

Полидисперсность $M_w/M_n = 1.31$

МОЛЕКУЛЯРНО-МАССОВОЕ РАСПРЕДЕЛЕНИЕ (ММР)


(плотность вероятности того, что в образце есть строго определённое количество макромолекул строго определённой массы)

характеризует числовое или весовое распределение макромолекул по молекулярным массам

МОЛЕКУЛЯРНО-МАССОВОЕ РАСПРЕДЕЛЕНИЕ (ММР)

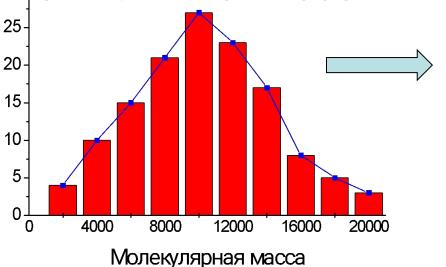
Дифференциальная числовая функция ММР — $\rho_n(M)$ — отношение числовой доли макромолекул dn, имеющих ММ в интервале от M до M+dM, к значению этого интервала dM

$$\rho_{\rm n}(M) = \frac{{\rm dn}}{{\rm dM}} \frac{1}{N_{\rm o}}$$

Интегральная числовая функция ММР определяет суммарную числовую долю всех макромолекул с массой ≤ М.

$$q_n(M) = \int_0^M \rho_n(M) dM$$

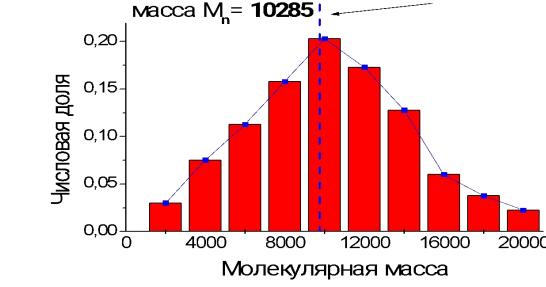
Задача. Сравнить средневесовые молекулярные массы полимеров 1 и 2



Ответ:

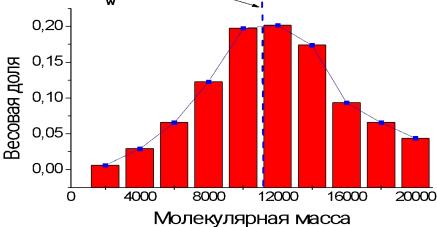
средневесовая молекулярная масса второго полимера больше, чем первого

$$(\overline{M}_w)_1 < (\overline{M}_w)_2$$

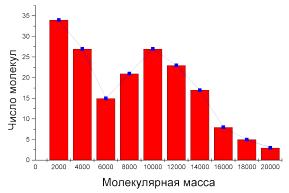

ЗМОЛЕКУЛЯРНО-МАССОВЫЕ ХАРАКТЕРИСТИКИ ПОЛИМЕРОВ

Число молекул

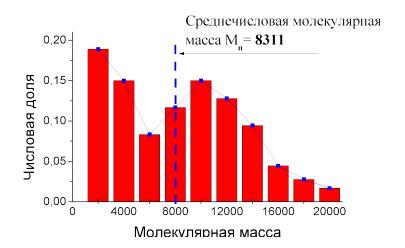
<u>Усреднение по числу частиц:</u> $M_n = M_1 * n_1 + ... + M_{10} * n_{10} = 10285$


Среднечисловая молекулярная

<u>Усреднение по весу частиц:</u>


$$M_w = M_1^* W_1^+ ... + M_{10}^* W_{10}^- = 11895$$

Средневесовая молекулярная масса M_w = **11895**

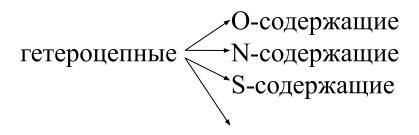

Полидисперсность: $M_w/M_n = 11895/10285=1.16$

МОЛЕКУЛЯРНО-МАССОВЫЕ ХАРАКТЕРИСТИКИ ПОЛИМЕРОВ

К образцу полимера добавили низкомолекулярную фракцию с массами в интервале от 2000 до 4000

В результате среднечисловая молекулярная масса (M_n) уменьшилась на 1974 (была 10285)

А средневесовая молекулярная масса (М_w) уменьшилась всего лишь на 746 (была 11895)


Полидисперсность $M_w/M_n = 11139/8311=1.34$ (была 1,16)

56

КЛАССИФИКАЦИЯ ПОЛИМЕРОВ

по типу атомов в основной цепи

задачи

- К каким типам полимеров (с точки зрения классификации) относится полиамид-6 ?
- 1. линейный
- 2. элементоорганический
- 3. гетероцепной
- 4. сложный полиэфир
- 5. гомоцепной
- 6. полиамид
- 7. карбоцепной
- 8. органический
- (дайте правильный ответ, который является суммой из предложенных вариантов классификации)

Ответы: **18 10**

задачи

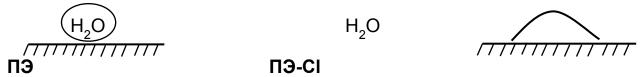
- Среди перечисленных полимеров выделите гетероцепные:
- 1. полиметилметакрилат
- 2. полиамид 6,14
- 3. целлюлоза
- 4. полиформальдегид
- 5. полиэтиленоксид
- 6. полиакриламид
- 7. полиакрилонитрил
- 8. полиэтилентерефталат
- Ответ: **22 16 11 все**
- (дайте правильный ответ)

ХИМИЧЕСКИЕ РЕАКЦИИ С УЧАСТИЕМ МАКРОМОЛЕКУЛ

(химическая модификация полимеров)

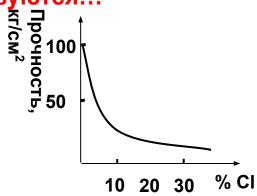
целенаправленная

- ✓придание негорючести
- ✓ потеря растворимости
- ✓ повышение смачиваемости
- ✓ улучшение адгезии
- ✔снижение молекулярной массы для облегчения переработки


"старение" (деструкция)

- ✓ потеря комплекса полимерных свойств
- ✔ снижение молекулярной массы

Изменение свойств ПЭ при хлорировании (Cl₂,


появление хлора в макромолекулах:

- повышает адгезию пленок к различным поверхностям;
- изменяет смачиваемость

нарушает регулярность строения исходных макромолекул полиэтилена

нерегулярные молекулы не кристаллизуются!!!			
	% CI	Т,°С размягчения	КГ/СМ ² 100 г
	0	~ 90	, oc.
	8	~ 70	ਜ਼ੋ 50
	28	~ 20	
	40	~ 10	

Изменение свойств ПЭ при хлорировании (CI₂,

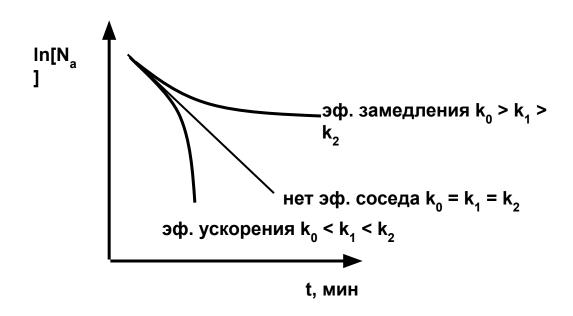
-Хлорированный полиэтилен легко "сшивается" при обработке ZnO (бессерная вулканизация) – потеря текучести

ПОЛИМЕРАНАЛОГИЧНЫЕ РЕАКЦИИ

- 1.В реакции с низкомолекулярным реагентом участвуют только функциональные группы макромолекул
- 2. Длина цепи (степень полимеризации) макромолекулы не изменяется

Цели и задачи:

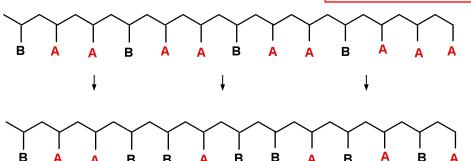
Получение полимеров, мономеры для которых не существуют или их синтез очень сложен


$$CH_2 = CH$$
 — $CH_3 - C$ H Виниловый спирт $(?)$ — нет мономера $!!!$

Поливинилацетат Поливиниловый спирт

Сложности при проведении полимераналогичных реакций:

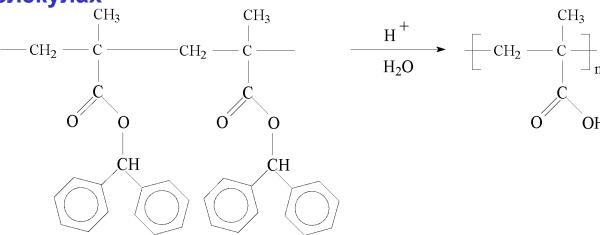
- трудно регулировать конверсию реакций
- невозможность разделения продуктов реакции и исходных полимеров по ходу процесса
- композиционная неоднородность макромолекул после реакции


Эффект соседних групп

1. Реакции без эффекта

соседа

$$\mathbf{k}_0 = \mathbf{k}_1 = \mathbf{k}_2$$

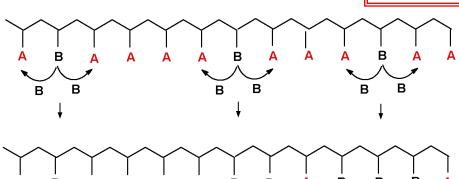


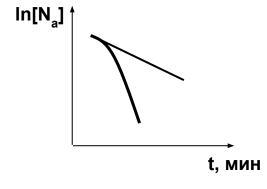
$$-\frac{d[N_A]}{dt} = k[N_A]^{In[N_a]}$$
$$[N_A]_t = [N_A]_0 e^{-kt}$$

$$\begin{bmatrix} \mathbf{N}_{\mathsf{A}} \end{bmatrix}_{\mathsf{t}} = \begin{bmatrix} \mathbf{N}_{\mathsf{A}} \end{bmatrix}_{\mathsf{0}} \mathbf{e}^{-\mathsf{k}\mathsf{t}}$$

статистическое распределение звеньев А и В в

макромолекулах




Гидролиз полидифенилметилметакрилата в кислой среде

2. Реакции с ускоряющим эффектом

соседа

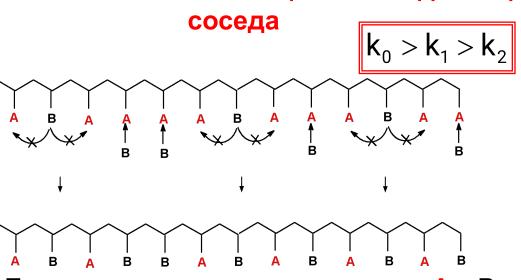
$$k_0 < k_1 < k_2$$

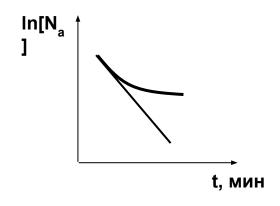
тенденция к блочному распределению звеньев В в

макромолекуле

Примеры:

1. Щелочной гидролиз полиакрилатов (NaOH, H2O+ C- CH3


$$\begin{array}{c|c} CH_3 & OH \\ \hline \\ CH_2 & CH_3 \\ \hline \\ NO_2 & NO_2 \end{array}$$


2. Дегидрохлорирование поливинилхлорида

Внутримолекулярная реакция с автоускорением за счёт сопряжения

3. Щелочной гидролиз поливинилацетата

3. Реакции с замедляющим эффектом

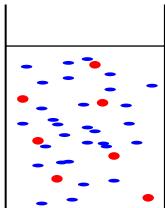
Тенденция к чередованию звеньев А и В в

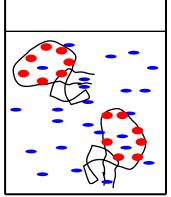
<u>макремо</u>лекуле

.Щелочной гидролиз

полиметакриламида

2. Хлорирование полиэтилена ПЭ (Cl₂,


лена ПЭ (
$$Cl_2$$
,


 $CH_2 - CH_2 \rightarrow CH_2 \rightarrow CH_2 - CH - CH_2 - CH - CH_2 -$

КОНЦЕНТРАЦИОННЫЙ ЭФФЕКТ

(на примере кислотного гидролиза в присутствии полистиролсульфокислоты)

сложный эфир+ п-толуолсульфокислота сложный эфир + полистиролсульфокислота

молекулы катализатора (п-толуолсульфокислоты) и молекулы субстрата равномерно распределены по реакционному объему

за счет концентрирования кислых групп в клубках (микрофазе) полистиролсульфокислоты достигается более эффективный катализ

КОНФОРМАЦИОННЫЙ ЭФФЕКТ

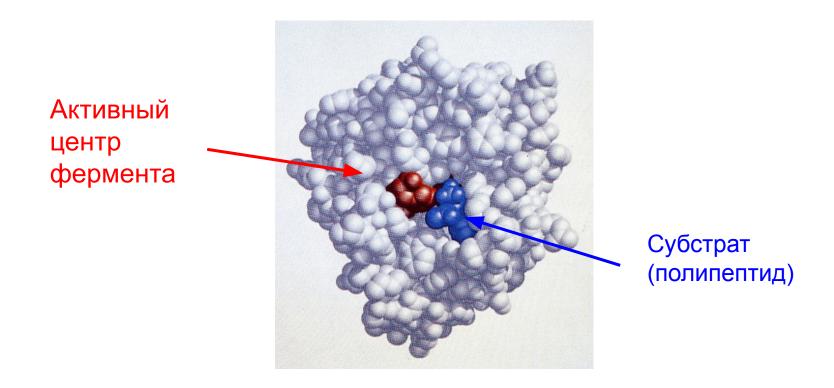
изменение доступности функциональных групп для низкомолекулярного реагента в результате изменения конформации макромолекулы в ходе реакции и возможность влияния на реакционную способность не только ближайших, но и удаленных по цепи групп

Примеры: 1. Щелочной гидролиз поливинилацетата (NaOH,

Н,О+ацетон)

доступ к реагирующим -OCOCH₃ -OCOCH₃

доступ к реагирующим


группам облегчен

группам затруднен

КОНФОРМАЦИОННЫЙ ЭФФЕКТ

изменение доступности функциональных групп для низкомолекулярного реагента в результате изменения конформации макромолекулы в ходе реакции и возможность влияния на реакционную способность не только ближайших, но и удаленных по цепи групп

Ферментативный катализ (на примере химотрипсина)

КОНФИГУРАЦИОННЫЙ ЭФФЕКТ

влияние конфигурации макромолекул на скорость и механизм реакции

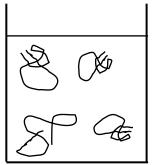
Ангидридизация полиакриловой кислоты (ПАК)

Такая реакция <u>возможна</u> для <u>изотактической</u> поликислоты, <u>невозможна</u> для синдиотактической и <u>менее вероятна</u> для <u>атактической</u> поликислоты

НАДМОЛЕКУЛЯРНЫЙ ЭФФЕКТ

обусловлен уменьшением доступности функциональных групп в гетерогенных системах, причем скорость реакции в значительной степени определяется морфологией полимера

1. Хлорирование полиэтилена в твердой фазе


Скорость реакции в аморфных участках выше, чем в кристаллических

2. Окисление полипропилена

Скорость уменьшается при предварительной ориентации полимера

3. Химическая модификация целлюлозы

разбавленный раствор гомогенная система

макромолекулы находятся в одной фазе с низкомолекулярным реагентом

концентрированный раствор гетерофазная

фрагменты макромолекул могут образовывать отдельную фазу, недоступную низкомолекулярному реагенту

Результатом надмолекулярного эффекта является композиционная неоднородность продуктов полимераналогичных превращений

реакции, приводящие к увеличению степени полимеризации

ДУБЛЕНИЕ БЕЛКОВ

(инактивация функциональных групп)

√Формалином (раствор формальдегида Н₂C=О в

✓Диальдегидами

a)
$$\left\langle \begin{array}{c} O \\ NH_2 \\ H \end{array} \right\rangle$$
 $\left\langle \begin{array}{c} O \\ C \\ H \end{array} \right\rangle$ $\left\langle \begin{array}{c} O \\ NH_2 \\ H \end{array} \right\rangle$ $\left\langle \begin{array}{c} O \\ MU \\ N = HC \\ -R' - CH = N \\ -R' - CH = N$

полиолефинов
<u>а) под действием</u>
<u>перекисей</u>

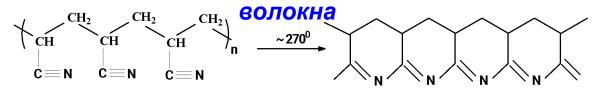
RO • +
$$\sim$$
 CH₂-CHR-CH-CHR \sim ROH + \sim CH₂-CHR-CH-CHR \sim

2 \sim CH₂-CHR-CH-CHR \sim

CMUGANUE

✓Сшивание полисилоксанов

1. введение двойных связей:


2. обработка полученного полимера

✓ серная вулканизация

✓ обработка радикальными инициаторами

ВНУТРИМОЛЕКУЛЯРНЫЕ РЕАКЦИИ

1. Термообработка полиакрилонитрильного

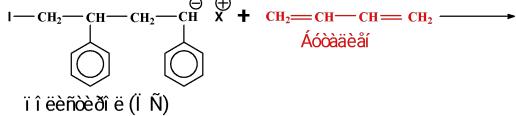
"Черный орлон" (1960 г. В.А. Каргин): легкий, прочный (~700 кг/мм2, E~7*104), термостабильный (800-1000°С)!!!

2. Синтез полиацетиленов (поливиниленов)

$$\begin{array}{c} \text{àëëèëüí î å} \\ \text{i î êi æåi èà} \\ + \text{CH}_2 - \text{CH} + \xrightarrow{\text{T,}^0\text{C}} - \text{CH}_2 - \text{CH} - \text{CH} = \text{CH} - \text{CH}_2 - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH}$$

Термостабильны; окрашены; электропроводны ~ 10⁻¹⁵-10⁻² ом⁻¹см⁻¹

ПРИВИТЫЕ И БЛОК-СОПОЛИМЕРЫ


МИКРОФАЗОВОЕ РАССЛОЕНИЕ

Каждая фаза проявляет свои свойства. Эти фазы обнаруживаются и структурно, и термодинамически.

В целом свойства блок- и привитых сополимеров суммируются из свойств компонентов.

МЕТОДЫ СИНТЕЗА БЛОК-СОПОЛИМЕРОВ

УКонденсация по концевым функциональным группам в макромолекулах сн₃

$$HO \leftarrow CH_2 - CH_2 - O \leftarrow H$$
 $HO \leftarrow CH_2 - CH - O \leftarrow H$
ПОЛИЭТИЛЕНОКСИД
ПОЛИПРОПИЛЕНОКСИД

плюроники: ПЭО +ППО

∕Использование макромолекулы с ненасыщенной концевой двойной связью в качестве макромономера

$$\begin{array}{c} \text{è\'i e\"o\'e\'a\'o \'i \'ð (I)} \\ \text{R} \longrightarrow \text{CH} \longrightarrow \text{C$$

МЕТОДЫ СИНТЕЗА ПРИВИТЫХ СОПОЛИМЕРОВ

✓ озонирование

CH₃—C — COOCH₃

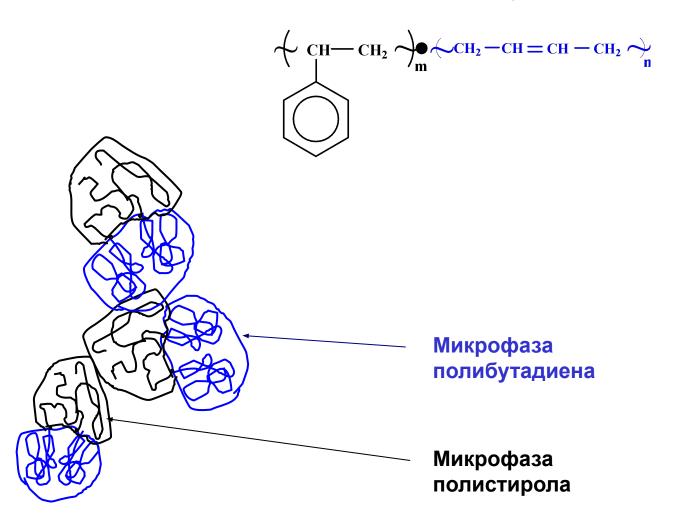
∕действие радикальными инициаторами на полимеры, содержащие

двойную связь в основной цепи

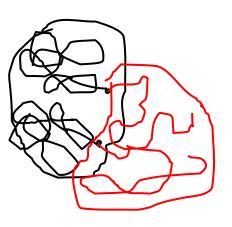
$$CH_2$$
— CH_2 —

конденсация по функциональным группам боковых заместителей и концевым функциональным группам макромолекул

86

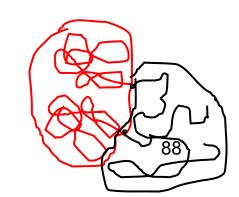

ПРИВИТЫЕ И БЛОК-СОПОЛИМЕРЫ

МИКРОФАЗОВОЕ РАССЛОЕНИЕ


В твердом состоянии в привитых- и блок-сополимерах происходит

микрофазовое расслоение (микрофазовая сегрегация)

Например: блок-сополимер полистирола с полибутадиеном

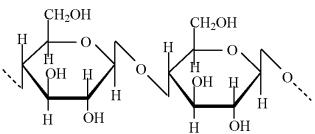


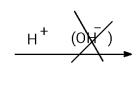
ПОВЕДЕНИЕ БЛОК- И ПРИВИТЫХ СОПОЛИМЕРОВ В РАСТВОРЕ

1) Добавляем **ГЕКСАН** (**C**₆**H**₁₄) – осадитель для **ПММА** компактные блоки **ПММА** и развернутые блоки **ПБ**Свойства осажденного таким образом блок-сополимера будут в основном определяться **ПБ** - это эластомер, но с повышенной прочностью от ПММА.

2) Добавляем **АЦЕТОН** – осадитель для **ПБ**: ситуация обратная! компактные блоки **ПБ** и развернутые блоки **ПММА** Осажденный таким образом блок-сополимер в основном пластик, как и ПММА, но с некоторой долей эластичности от **ПБ**

ДЕСТРУКЦИЯ


	Положительная роль (целенаправленная Д.)	Отрицательная роль (старение полимеров)
	снижение молекулярной массы для облегчения переработки в расплавах и растворах	потеря комплекса полимерных физико- механических свойств (эластичночть, упругость, прочность, ударостойкость)
	получение низкомолекулярных (мономерных) продуктов (аминокислоты, глюкоза)	выделение ядовитых или вредных низкомолекулярных веществ (деструкция поливинилхлорида)
•	утилизация и переработка полимерных отходов	
	получение трековых мембран (ускорителы и затем вымывание низкомолекулярных продуктов	


ХИМИЧЕСКАЯ ДЕСТРУКЦИЯ

Химической деструкции подвергаются гетероцепные полимеры (полиамиды, полиэфиры, полиацетали)

1. Гидролиз полиамидов (белков)

2. Гидролиз целлюлозы

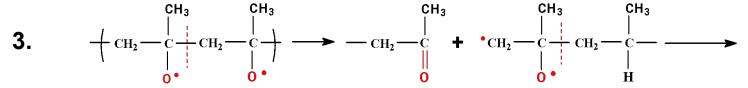
глюкоза

3. Алкоголиз полиэтилентерефталата

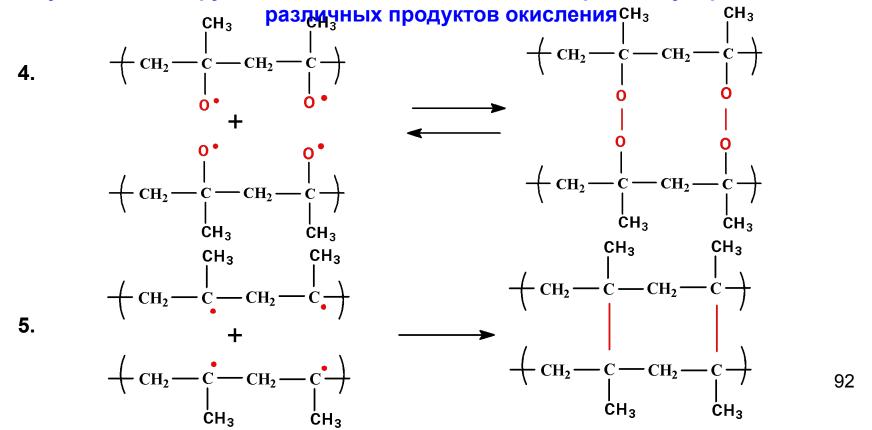
$$\longrightarrow \sim O - (CH_2)_4 - OH \quad + \quad HOCH_2CH_2O - C - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

Также возможны: ацидолиз, аммонолиз и т.д.

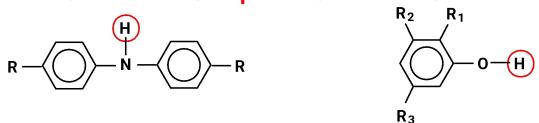
ТЕРМООКИСЛИТЕЛЬНАЯ ДЕСТРУКЦИЯ ПОЛИМЕРОВ


<u>Появление на макромолекулах активных центров</u>

1.
$$+ CH_2 - C - CH_2 - CH_2$$

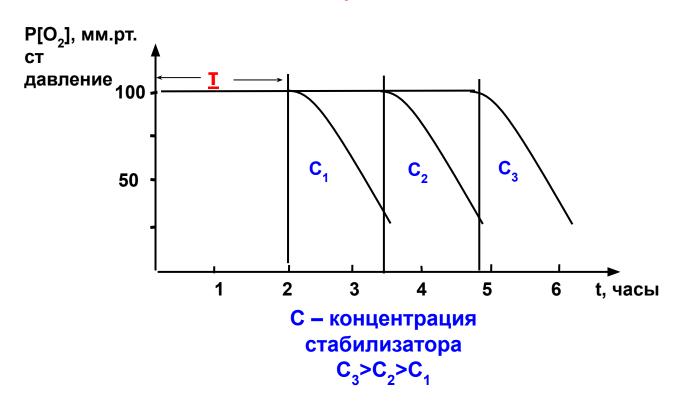

$$\begin{array}{c|c} & CH_3 & CH_3 \\ \hline & CH_2 - C - CH_2 - C \\ \hline & O & O \end{array}$$

ТЕРМООКИСЛИТЕЛЬНАЯ ДЕСТРУКЦИЯ ПОЛИМЕРОВ


<u>Возможные пути инактивации активных центров</u>

Результатом деструкции является появление межмакромолекулярных сшивок и

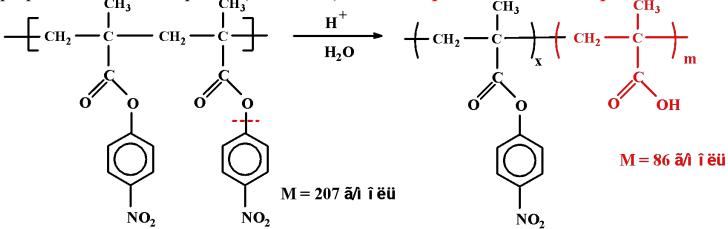
СТАБИЛИЗАЦИЯ ПОЛИМЕРОВ



Подвижные атомы Н из молекулы стабилизатора инактивируют макрорадикалы в полимерах.

Сами стабилизаторы превращаются в <u>неактивные</u> радикалы:

Деструкции (разрыва связей основной цепи) нет до тех пор, пока весь стабилизатор не израсходуется


СТАБИЛИЗАЦИЯ ПОЛИМЕРОВ

Стабилизатор увеличивает индукционный период (т) начала термоокислительной деструкции и не влияет на энергию активации деструкции

ЗАДАЧА Гидролиз

поли-п-нитрофенилметилметакрилат (п-НФМА) сополимер $H\Phi MA$ и метакриловой кислоты (МАК)

масса 345 г конверсия 30%

Задание: определить массу

сополимера

Решение:

1. 345 г. * 0.3 (30%) = **103.5 г** (учет 30% конверсии) 2. Согласно уравнению реакции:

из 207 г. (п-НФМА) образуется

86 г. (ПМАК)

тогда из 103.5 г образуется *X* г X = 43 r.образовалось СТОЛЬКО

ПМАК

3. 345 г. (было п-НФМА) – 103.5 г. = **241.5** г. (**осталось** непрореагировавших п-НФМА групп)

241.5 г. +43 г. =**284.5** (масса сополимера)

Ответ: масса сополимера 284.5 г.

95

ЗАДАЧА

$$\begin{array}{c|cccc}
-CH_2 - CH_2 - CH_2 - CH_2 - CH_2 \\
\hline
-CN - CI - CI
\end{array}$$

q = 9,46%

Масса исходного конеч**200**с.

масса

конеч**200**ст. 220 <u>Задание:</u> определить степень конверсии (q%) –CH=CH–

связей

Решение

- 1. 200*0.8 (80%) = **160** г. бутадиена в цепи, это **2,96** моль (160/54)
- 2. 220 200 = **20** г. привес за счёт хлора 20/71 (Cl₂) = **0,28** моль бутадиена прореагировало с хлором 2,96 моль бутадиена 100% конверсий моль оп толь о

Ответ: степень конверсии 9,46%

Полимерные материалы для контакта с живым организмом

Судьба синтетических полимеров в живом организме Два аспекта

1. <u>Изменение конкретной химии самого полимера в биологической среде, так называемое БИОСТАРЕНИЕ</u> (изменение молекулярной массы, ММР, деструкция, агрегация, сорбция специфическая и неспецифическая, изменение физико-механических свойств и т.д.) а также ПУТИ УТИЛИЗАЦИИ ПРОДУКТОВ МЕТАБОЛИЗМА.

Чтобы ответить на эти вопросы надо знать в каких органах и какое время функционирует, скорость и пути вывода продуктов распада, их токсичность.

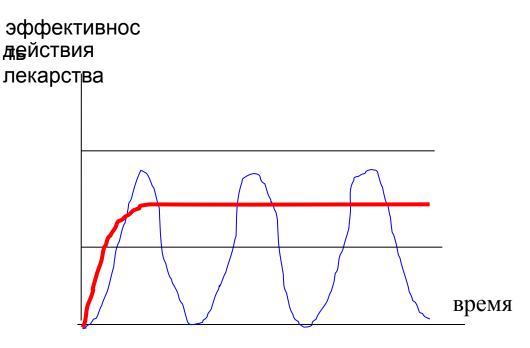
2. Реакция самого организма на появление чужеродного тела

- трансплантаты, протезы <u>длительного функционирования</u>.
- кровезаменители, шовные нити, лекарства <u>кратковременного</u> функционирования.

Организм отторгает чужеродное тело:

- -через метаболизм (разложение, фрагментация)
- -через несовместимость (заноза)
- -через почки или пищеварительный тракт
- -через локальное инкапсулирование соединительной тканью (металлические осколки в мягких тканях у ветеранов BOB)

Требования к полимерам медицинского назначения.


- 1.Химическая чистота (специальная технология синтеза и переработки в изделия).
- 2.Устойчивость в условиях стерилизации (гаммаоблучение, обработка водяным паром при 120°C, обработка диоксидом азота или оксидом этилена).
- 3. Нетоксичность.
- 4.Стабильность в среде организма (для долговременных протезов).
- 5.Способность рассасываться в организме без образования токсичных веществ (для кратковременных протезов и шовных нитей при внутренних швах).
- 6.Не должны вызывать иммунных, аллергических и воспалительных реакций организма.

Лекарства взаимодействуют с рецепторами клеток, активируют их и по различным механизмам внедряются в клетку.

Синтез, дизайн и создание лекарственной формы должны быть основаны на следующих принципах:

- 1. Должен быть известен молекулярный механизм действия лекарственного вещества в конкретном заболевании.
- 2. Лекарство должно самопроизвольно достигать места заболевания и накапливаться именно в этом месте.
- 3. Лекарство должно длительно (в разумных пределах) находиться в месте заболевания, не вызывая побочных токсических реакций.
- 4. Должен быть сравнительно простой и дешёвый способ получения и простой способ введения в организм.

Кинетика действия низкомолекулярных лекарств в организме

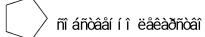
Природные физиологически активные вещества – лекарства

(гормоны, ферменты, антикоагулянты) – ФАВ.

Проблемы: чистота

препаратов; нестабильность в

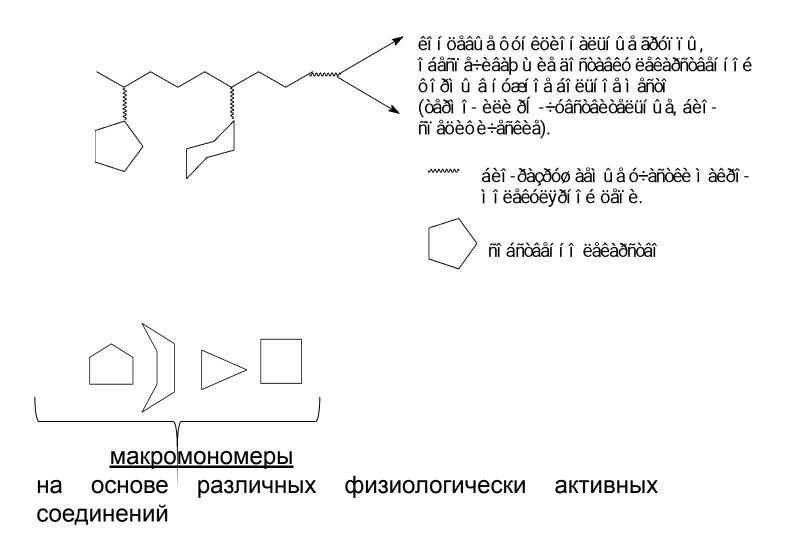
организме; высокая


антигенность; легкая

ингибируемость

Полимеры + ФАВ (модель)

êî í öåâû å ô óí êöèî í àëüí û å ãðóïïû, î áåñï å÷èâàþ ù èå äî ñòàâêó ëåêàðñòâåííî é ôî ðì û â í óæíî å áî ëüíî å ì åñòî (òåðìî-èëè ðí-÷óâñòâèòåëüíûå, áèîñï åöèôè÷åñêèå).


áèî-ðàçðóø àåì û å ó÷àñòêè ì àêðîì î ëåêóëÿðí î é öåï è. 101

Прививка физиологически активных веществ

$$\hat{O} \hat{A} \hat{A} \qquad \hat{a} \hat{e} \hat{\partial} \hat{e} \hat{e} \hat{o} \hat{e} \hat{o} \hat{e} \hat{a} \qquad \hat{A} \hat{A}$$

$$\hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A}$$

$$\hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A}$$

$$\hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A}$$

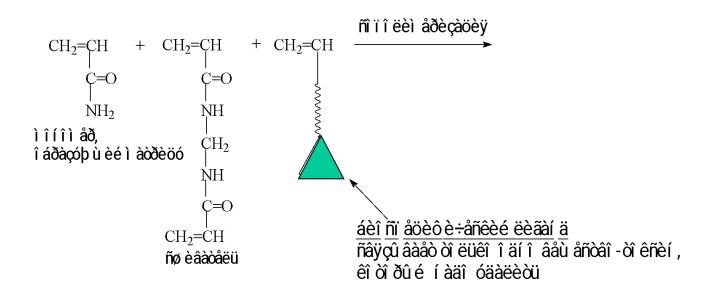
$$\hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A}$$

$$\hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A}$$

$$\hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A}$$

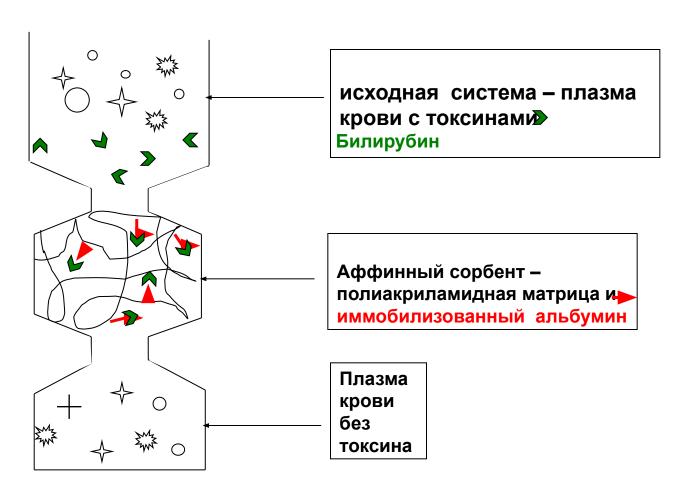
$$\hat{O} \hat{A} \hat{A} \qquad \hat{O} \hat{A} \hat{A} \qquad \hat{O}$$

Прививка смеси различных модификаторов

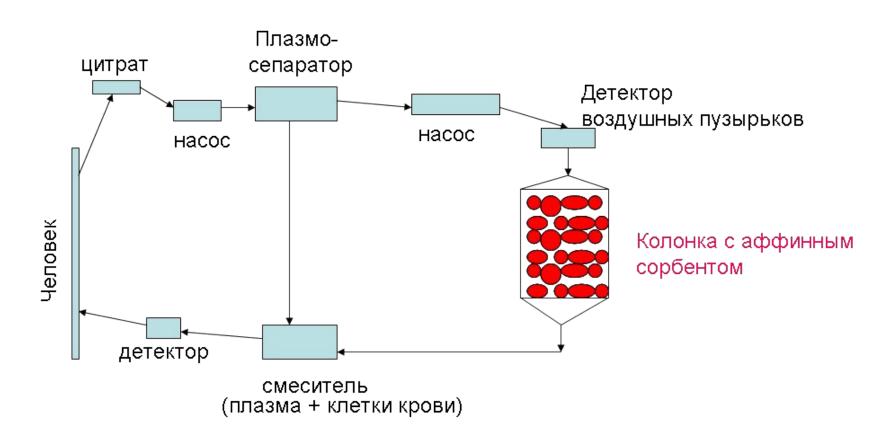

Аффинные сорбенты и операция гемосорбции

Панкреатит – нарушена функция поджелудочной железы и в организме создается большой избыток протеолитических ферментов.

Желтуха — нарушена функция печени по метаболизму билирубина (продукта распада эритроцитов) и в организме создается большой избыток билирубина.


Цирроз печени; перитонит; холецистит; нейродермит; волчанка; острые отравления.

Задача химиков-полимерщиков создать аффинный сорбент, который бы селективно из крови удалял только конкретный токсин и ничего другого.



104

Хроматографическая колонка с аффинным сорбентом

Схема операции гемосорбции (продолжительность 35-40 мин.)

Полипропилен – пористые полые волокна для искусственной почки

$$CH_2$$
 CH_1 n

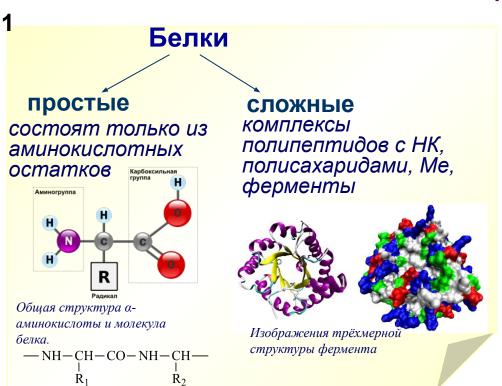
Полиэтилентерефталат и полиамиды - шовные

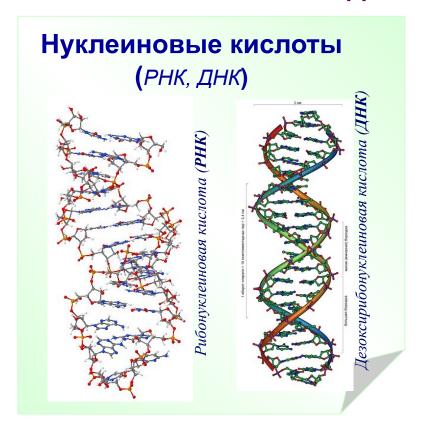
Поливиниловый спирт и поли-N-винилпирролидон - плазмозаменители при больших кровопотерях.

$$(-CH_2-CH-OH) \qquad (-CH_2-CH-OH) \qquad N = O$$

Сополимер этилакрилата(25-30%) и гидроксиэтилметакрилата (75-70%) - материал для контактных линз (полигема).

$$CH_3$$
 $CH_2 - C - CH_2 - CH - CH_2 - CH - CH_2 -$


Плазмозаменитель **ДЕКСТРАН** (полисахарид). 75% выводится с мочой через 24 часа, остальное метаболизируется в желудке и толстом кишечнике и выводится через 5-7 дней. НО! Образует комплексы с фибриногеном, выводя его из сферы реакции образования фибрина, - а это сильно повышает кровоточивость.


ПОЛИВИНИЛПИРРОЛИДОН (карбоцепной плазмозаменитель, а также носитель-пролонгатор для антибиотиков).

(15.000 мол.массы) 50% выводится через почки за 24 часа, остальное через 7-10 дней.

Более высокомолекулярные фракции (20.000 и более) задерживаются и накапливаются в тканях печени и селезенки, а это приводит к так называемой <u>«виниловой болезни» - постоянное повышенное выделение гистамина, раздражителя, вызывающего аллергическую реакцию.</u>

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ В ЖИВОЙ ПРИРОДЕ

Полисахариды

(целлюлоза, крахмал, декстраны, хитин и др .)

Целлюлоза в форме полимера β-глюкозы

Крахмал

Полиуглеводороды

(натуральный каучук, гуттаперча)

самосвалов

- К каким типам полимеров (с точки зрения классификации) относится полиамид-6 ?
- 1. линейный
- 2. элементоорганический
- 3. гетероцепной
- 4. сложный полиэфир
- 5. гомоцепной
- 6. полиамид
- 7. карбоцепной
- 8. органический
 Ответы: 7 18 10 14
- (дайте правильный ответ, который является суммой из предложенных вариантов классификации)

- Среди перечисленных полимеров выделите гетероцепные:
- 1. полиметилметакрилат
- 2. полиамид 6,14
- 3. целлюлоза
- 4. полиформальдегид
- 5. полиэтиленоксид
- 6. полиакриламид
- 7. полиакрилонитрил
- 8. полиэтилентерефталат
- Ответ: **22 16 11 все**
- (дайте правильный ответ)

Задача 3. Во сколько раз (максимально), но без разрыва химических связей, можно растянуть макромолекулу 1,2-полиизопрена с молекулярной массой 6,8*10⁵?

Принять модель свободно-сочленённой цепи.

Решение:

Надо найти отношение (A_C) длины предельно вытянутой макромолекулы (L) к расстоянию между концами (h).

Для модели свободно-сочленённой цепи

$$A_{C} = \frac{L}{\overline{h}} = \frac{nl}{\sqrt{nl}} = \sqrt{n}$$

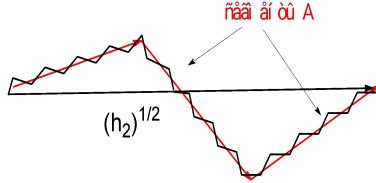
$$\sqrt{n} = 100$$

 CH_3 CH_2 CH_2 $CH=CH_2$ $CH=CH_2$ CH

$$\overline{h}^{2} = nl^{2}$$

$$L = nl$$

$$n = \frac{6.8*10^{5}}{68} = 10^{4}$$


Ответ: макромолекулу 1,2-полиизопрена можно растянуть в 100 раз

Задача 5. Какова величина статистического сегмента (A) для макромолекулы поливинилхлорида (ПВХ), если:

$$\overline{h}^2 = 2.4 \cdot 10^6 \cdot 1^2$$
 (I – длина мономерного звена),

молекулярная масса = $1,25*10^7$ г/моль

(сколько мономерных звеньев в этой части реальной макромолекулы ?)

Запишем выражение для контурной длины реальной макромолекулы и свободно-сочленённой

$$\mathbf{N} \cdot \mathbf{I} = \mathbf{Z} \cdot \mathbf{A}$$
 $N = \frac{Mon.macca}{M.звена}$

N – степень полимеризации ПВХ

Z – число сегментов длиной A в свободносочленённой цепи

Вспомним, что ħ² для свободно-сочленённой цепи равно

Вспомним, что
$$\bar{h}^2$$
 для свободно-сочленённой цепи равно $\bar{h}^2 = ZA^2$ $N \cdot l = Z \cdot A$ $N \cdot l \cdot A = Z \cdot A^2$ $\bar{h}^2 = Z \cdot A^2$ $\bar{h}^2 = Z \cdot A^2$ $\bar{h}^2 = Z \cdot A^2$ $A = \frac{\bar{h}^2}{Nl} = \frac{1,6*10^7*l^2}{1,25*10^7} \cdot 1$

Ответ: 12 звеньев

Задача 4. Во сколько раз (максимально), но без разрыва химических связей, можно растянуть макромолекулу 1,2-полиизопрена с молекулярной массой 6,8*10⁵?

Принять модель с фиксированными углами между _{ие:} сегментами (с фиксированными валентными углами)

$A_{\varphi} = \frac{L}{\overline{h}} \quad L = nlcos \left(90 - \frac{\theta}{2}\right) = nlsin \frac{\theta}{2} \qquad \left(\overline{h}^2\right)^{\!\!\frac{1}{2}} = l\sqrt{n}\sqrt{\frac{1+cos\theta}{1-cos\theta}}$

θ – угол, дополнительный к валентному

$$A = \frac{nl\sin\frac{\theta}{2}}{l\sqrt{n}\sqrt{\frac{1+\cos\theta}{1-\cos\theta}}} = \frac{\sqrt{n}\sin\frac{\theta}{2}}{\sqrt{\frac{1+\cos\theta}{1-\cos\theta}}}$$

Ответ: макромолекулу 1,2-полиизопрена можно растянуть в А раз.

(Посчитайте сами)

Конец вводного раздела