

Изучение физико-химических свойств яблок разных сортов и влияние их на здоровье школьников

Выполнила: Маилян Кристина, ученица 8В класса, МБОУ СОШ №16, МО г. Красногорска

Научный руководитель: Малюга О.В. Учитель химии и биологии

- Цель работы: Изучить воздействие природных антиоксидантов на организм человека и целесообразность введения БАВ природного происхождения в лекарственные препараты.
- Задачи:
- 1) изучить химический состав яблок (отечественных, импортных).
- 2) Провести эксперименты по определению антиоксидантов, некоторых макромикроэлементов, сахаристых веществ.
- 3) Провести социологический опрос о выявлении взаимосвязи между здоровьем человека и частотой потребления яблок.
- **Объект исследования:** Отечественные яблоки (красные, «Семеренко»), импортные (желтые, «Гольден»).
- Методы исследования: Наблюдение, анализ источников, Интернет-ресурсов, постановка эксперимента, проведение социологического опроса.
- **Гипотеза:** Предположение, что содержание антиоксидантов, некоторых макро- и микроэлементов содержится больше в отечественных яблоках.

Актуальность

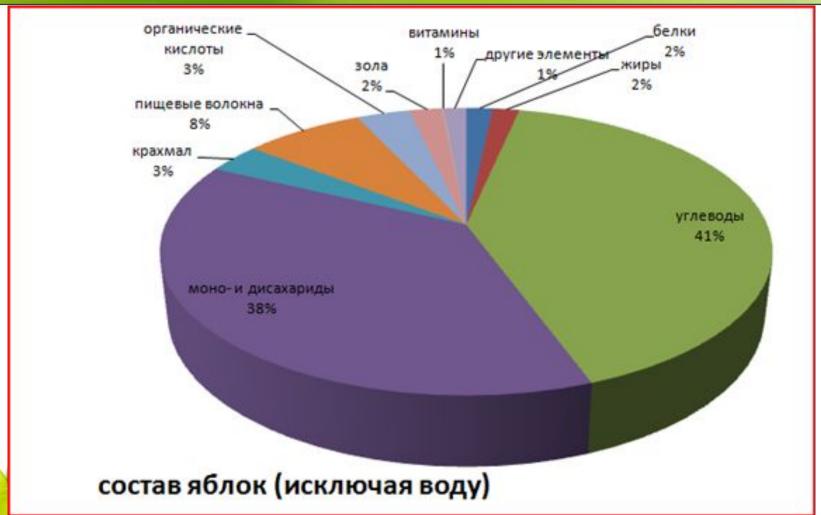
Актуальность выбранной работы состоит в рассмотрении одной из самых важных проблем современной медицины создании препаратов на основе природных компонентов отечественного происхождения. Наша страна имеет богатые природные ресурсы, которые могут служить на пользу человека

Антиоксиданты

- это вещества, которые препятствуют возникновению болезней и замедляют процесс старения организма.
- В числе известных источников антиоксидантов — фрукты, овощи, красное вино.

 Яблоня — род плодовых деревьев и кустарников семейства розоцветных подсемейства яблоневых. Обычно это деревья высотой от 3 до 15 м с шириной кроны 10-12 м или более, реже кустарники высотой 3-5 м. Средняя продолжительность жизни и активного плодоношения яблони - 25-35 лет. Однако в естественных условиях некоторые яблони доживают до 100 лет

В яблоках содержатся витамины С, В1, В2, Р, Е, каротин, калий, железо, марганец, кальций, пектины, сахара, органические кислоты. В составе плодов различных сортов яблони содержится в %: Сахаров 5—15, клетчатки 0,6, крахмала 0,8, пектиновых веществ 0,27, органических кислот 0,3—0,89 (яблочной 0,37, лимонной 0,11, винная и хлорогеновая кислоты). Яблоки очень богаты содержанием витаминов, в %: витамин С -8-22,4 витамин P - 60-400, витамин B1 - 0,8-2,3, витамин B2 - 0,05, витамин В6 0,08, каротина 0,02—0,03. В составе зеленых сортов яблони еще содержатся Bis 0,07; Е 0,63 мг% и биотин 0,30 мкг%. Также в состав яблок входит большое количество микроэлементов: калий, фосфор, магний, натрий, сера, алюминий, бор, ванадий, железо йод, медь, молибден, никель, фтор, хром и цинк. Кожура плодов яблони содержит флавоноиды. В составе плодов содержится 84—90% воды. В семенах яблони содержится до 15% жирного масла, гликозида амигдалина до 0,6%. В листьях содержатся витамин С 450 мг% и гликозид амигдалин.



Химический состав яблок

Химический состав яблок

Практическая часть

- Определение ионов Fe3+
- Fe3++3OH- =Fe(OH)3↓

Таблица 1.

Осадок бурого цвета

Сорт яблок	Изменение окраски	Выводы:
«Семеренко»-	Образуются хлопья	Ионы Fe ³⁺
зеленое яблоко	осадка темно- бурого	
зеленое яолоко	/ /	присутствуют в
	цвета	растворе
« Слава»- красное	Образуются хлопья	Ионы железа
яблоко	коричневого цвета	присутствуют в
		растворе
« Гольден» -	Окраска слабо	Ионы Fe ³⁺
желтое яблоко	изменилась, и осадок	присутствуют в
	слабо оранжево-	меньшем количестве
	хлопьевидный	

Определение ионов Са2+

• К растворам фильтрата добавили раствор карбоната калия (K₂CO₃). Наблюдали изменения цвета и образование осадков.

• $\operatorname{Ca}^{2+} + \operatorname{CO}_3^{2-} = \operatorname{CaCO}_3 \downarrow$

Сорта яблок	Изменение цвета	выводы
Acceptance	Определение катиона Ca ²⁺	
«Семеренко»-зеленое	Образовался густой осадок	Присутствуют ионы
яблоко	белого цвета	Са ²⁺ в большом
		количестве
«Слава»- красное яблоко	Образовался осадок белого	Присутствуют ионы
	цвета	Ca ²⁺
«Гольден»-желтое	Образовался слабый осадок	Присутствуют ионы
яблоко	белого цвета	Са ²⁺ в небольших
		количествах

Определение витаминов Е, В5

• К растворам фильтратов добавляли концентрированную азотную кислоту, нагрели и охладили полученные растворы. Наблюдали изменение цвета в каждом растворе.

 $C_{29}H_{50}O_2 + HNO_3 \rightarrow_{\textbf{охл}}^{\textbf{t}}$ красно-оранжевое окрашивание

	5
	< 5
00000	

	Сорта яблок	Изменение окраски	выводы
	«Семеренко»	Образуется раствор	Витамин Е
	(зеленое яблоко)	красного -	присутствует в
		оранжевого цвета	большом
			количестве
	«Слава»(красное	Образуется раствор	Витамин Е
	яблоко)	слабо красно-	присутствует в
N.		оранжевого цвета	данном сорте
			яблок
	«Гольден» (желтое	Образуется раствор	Витамин Е
1	яблоко)	слабо-розового	присутствует в
		цвета	небольшом
			количестве

- К растворам фильтрата добавили осадок голубого цвета гидроксид меди (II). Наблюдали изменения цвета в каждом растворе.
- Получение Си(ОН), :

•
$$CuSO_4 + 2NaOH = Cu(OH)_2 \downarrow + Na_2SO_4$$
 осадок голубого цвета

•
$$Cu^{2+} + 2OH^- = Cu(OH)_2 \downarrow$$

• $2C_6H_5O_7N + Cu(OH)_2\downarrow \rightarrow (C_6H_4O_7N)_2Cu\downarrow + 2H_2O$

V
6

Сорта яблок	Время изменения	вывод
	окраски	
«Семеренко»	Образуется осадок	В ₅ присутствует в
(зеленое яблока)	синего цвета	данном сорте
«Слава» (Красное	Осадок светло-синего	В ₅ присутствует в
яблоко)	цвета	данном сорте
«Гольден» (желтое	Осадок слабо-синего	В ₅ присутствует в
яблоко)	цвета	данном сорте в
		небольшом
		количестве

Определение сахаристых веществ

- К растворам фильтрата добавили раствор сульфата меди (II), раствор щелочи и наблюдали изменения цвета, потом нагрели и наблюдали за изменением их цвета.
- ${
 m C}_6{
 m H}_{12}{
 m O}_6 + {
 m Cu(OH)}_2{
 ightarrow}
 ightarrow {
 m C}_6{
 m H}_{10}{
 m O}_6{
 m Cu} + 2{
 m H}_2{
 m O}$ осадок голубого цвета раствор василькового цвета
- $C_6H_{12}O_6 + 2Cu(OH)_2 \downarrow \rightarrow^t C_6H_{12}O_7 + Cu_2O \downarrow + 2H_2O$
 - глюкоза осадок голубого цвета глюконовая кислота красный цвет

	Сорта яблок	Изменение окраски	вывод
	«Семеренко»	раствор ярко	Присутствуют
	(зеленое яблоко)	василькового цвета	сахаристые вещества
		→ раствор	
-09		оранжевого цвета	
MER A	«Слава» (Красное	Раствор ярко	Присутствуют
	яблоко)	василькового	сахаристые вещества
DERES IN		цвета→оранжевого	в большом
		цвета	количестве
	«Гольден» (желтое	Раствор василькового	Присутствуют
	яблоко)	цвета→ красного	сахаристые вещества
		цвета	в большом
			количестве

Определение рН среды

Сорта яблок	Изменение окраски	вывод
«Семеренко» (зеленое яблоко)	Цвет универсального индикатора ближе к бордо	рН=2,5 органические кислоты присутствуют в большом количестве
«Слава» (красное яблоко)	Цвет универсального индикатора – красного цвета	рН=3 органические кислоты присутствуют в большом количестве
«Гольден» (желтое яблоко)	Цвет универсального индикатора розовый	рН = 3,5 органические кислоты присутствуют

СОЦИОЛОГИЧЕСКИЙ ОПРОС

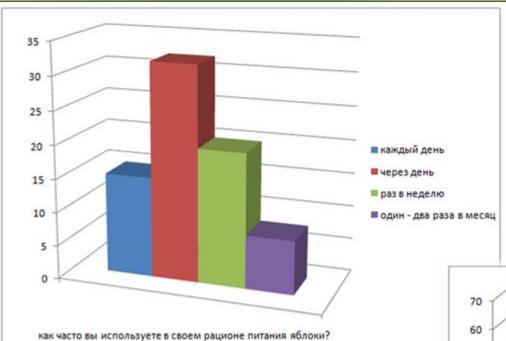
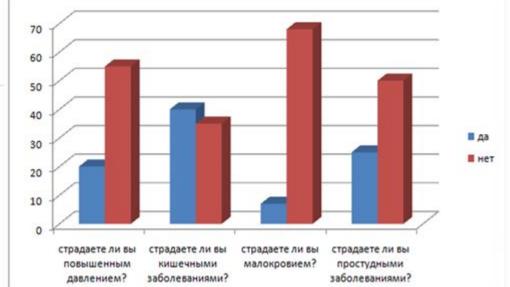
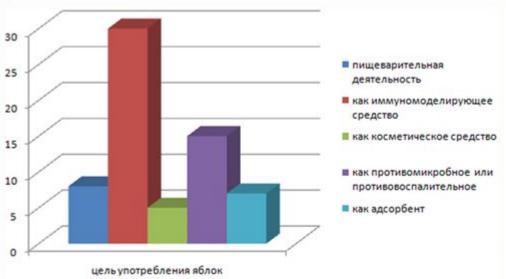



Диаграмма №2. Наличие заболеваний у опрашиваемых.

Диаграмма №1.

Частота употребления яблок



Социологический опрос

Диаграмма №3. Употребление различных сортов яблок.

Диаграмма №4. Цель употребления яблок.

ВЫВОД

- химический состав яблок очень разнообразен
- яблоко практически универсальный продукт в употреблении
- между употреблением яблок и здоровьем человека существует прямая зависимость

•Благодарю за внимание!

