Тема: **ХИМИЧЕСКАЯ СВЯЗЬ**

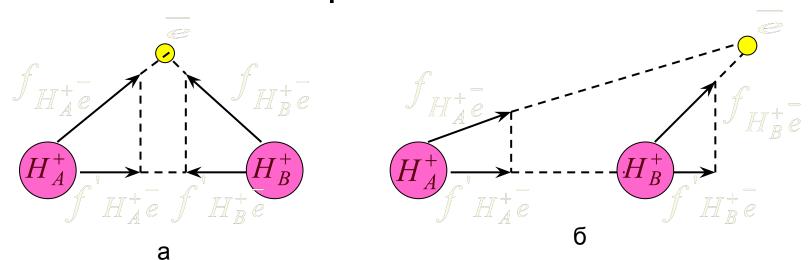
- 1. Основные виды и характеристики химической связи.
- 2. Ковалентная связь. Методы описания ковалентной связи: 1) метод валентных схем (ВС) и 2) метод молекулярных орбиталей (ММО).
- 3. Ионная связь. Понятие степени ионности связи.
- 4. Металлическая связь. Понятие о зонной теории.
- 5. Химическая связь в комплексных соединениях (КС). Элементы теории кристаллического поля (ТКП).
- 6. Межмолекулярные взаимодействия (силы Ван-дер-Ваальса): дисперсионные, индукционные и ориентационные.
- 7. Водородная связь.
- 8. Агрегатные состояния вещества. Типы кристаллических решеток.

Химическая связь

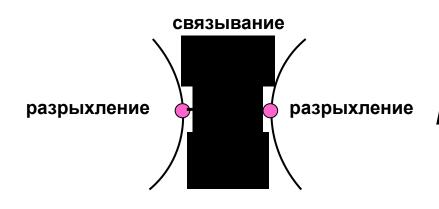
- совокупность сил, удерживающих атомы в молекуле, радикале, ионе;
- совокупность взаимодействий между электронами и ядрами атомов, приводящих к соединению этих атомов;
- любое взаимодействие частиц, которое сопровождается выделением энергии ~ 21 кДж/моль.

Основные типы химической связи:

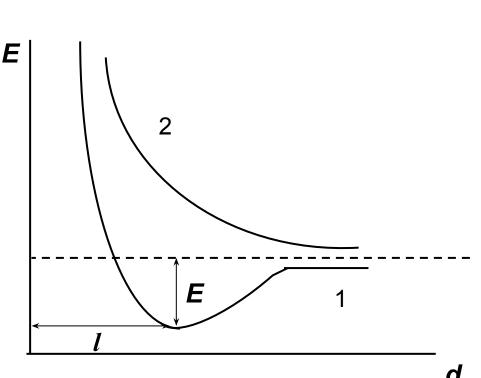
ковалентная $(H_2, O_2, CI_2, H_2O, NH_3, SF_6, \partial p.)$ ионная $(NaCI, KOH, Na_2SO_4, NH_4NO_3, \partial p.)$ металлическая (Na, Mg, AI, Zn, Au, Ag, сплавы) водородная $(между молекулами H_2O, HF, спиртов, \partial p.)$


ПРИРОДА ХИМИЧЕСКОЙ СВЯЗИ

Образование молекулярного иона H_2^+ l=0,106 нм; $E_{cs}=255,7$ кДж/моль


силы отталкивания

силы притяжения



Природа химической связи

Теория В. Гейтлера и Ф. Лондона – метод ВС (1927 г.):

- Условие образования химической связи — уменьшение потенциальной энергии системы взаимодействующих атомов.
- ✓ Чем больше выделяется энергии при образовании химической связи, тем связь прочнее.

1. КОВАЛЕНТНАЯ ХИМИЧЕСКАЯ СВЯЗЬ

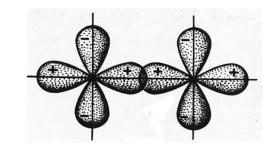
Ковалентная химическая связь – это связь, которая возникает между атомами за счет образования общих (одной или нескольких) электронных пар

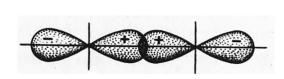
Ковалентная связь а) <u>локализована</u> между двумя связанными атомами, **б)** осуществляется между атомами элементов, не сильно отличающихся по электроотрицательности, как правило, – между атомами элементов-неметаллов.

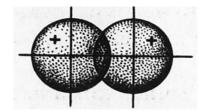
Теории химической связи:

- Мето∂ валентных схем (ВС),
 - В. Гейтлер и Ф. Лондон (1927 г.)
- □ Метод молекулярных орбиталей (МО, ЛКАО),
 - Т. Гунд, Дж. Леннард-Джонс и Р. Малликен (1928-1932 гг.)
 - *** Оба метода правильно отражают природу взаимодействий между валентными электронами и ядрами связывающихся атомов

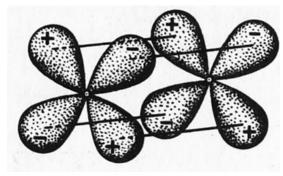
МЕТОД ВАЛЕНТНЫХ СХЕМ (метод ВС) Основные положения:

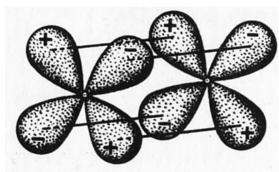

- **1.** Химическая связь это результат перекрывания внешних атомных орбиталей (АО) путем обобщения двух электронов, находящихся на этих орбиталях. Химическая связь, осуществляемая за счёт общих электронных пар, называется ковалентной.
- **2.** Ковалентная связь (К. с.) осуществляется двумя электронами <u>с</u> <u>противоположно направленными спинами</u>. Комбинация таких пар называется двухцентровой связью.
- **3.** В образовании связей участвуют <u>электроны только валентных</u> орбиталей. При этом электронная структура каждого атома (кроме валентных орбиталей) сохраняется.
- **4.** Ковалентная связь тем прочнее, чем <u>в большей степени</u> <u>перекрываются электронные облака</u> взаимодействующих атомов. Перекрывающиеся электронные облака должны обладать подходящей симметрией.

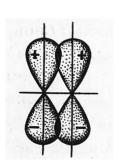

Основные положения метода ВС:


- **5.** Образование общей электронной пары связи может происходить за счет:
 - **а**) обмена неспаренными электронами атомов (<u>обменный механизм</u>);
- **б**) электронной пары одного атома (донора) и вакантной орбитали другого атома (акцептора) (<u>донорно-акцепторный механизм</u>).
- **6.** Ковалентная связь обладает свойствами <u>насыщаемости</u> и <u>направленности</u>.

Hасыщаемость — способность атомов участвовать в образовании ограниченного числа ковалентных связей (примеры: атом H — одна связь; атомы B, C, N — четыре связи).

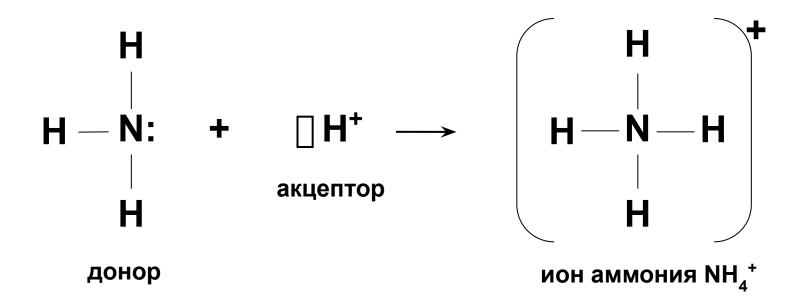

Направленность – перекрывание атомных орбиталей (АО) происходит в наиболее выгодном направлении (например: а) вдоль линии, проходящей через ядра атомов – σ -связь; б) по обе стороны от этой линии – π -связь). ***Взаимное направление нескольких ковалентных связей в многоатомной молекуле определяет её геометрию (пространственную конфигурацию, форму).




о - связь

π - связь

б - связь



МЕХАНИЗМЫ ОБРАЗОВАНИЯ КОВАЛЕНТНОЙ СВЯЗИ

Обменный механизм:

$$\mathbf{H}\uparrow + \downarrow \mathbf{H} = \mathbf{H}\uparrow\downarrow \mathbf{H}$$
 или $\mathbf{H}:\mathbf{H} = \mathbf{H}-\mathbf{H}$ молекула \mathbf{H}_2

Донорно-акцепторный механизм:

*** Длина, энергия, кратность, полярность связи зависят от свойств химически связанных атомов и типа перекрывающихся АО

1. Длина химической связи (l, м, нм, ${A}$) – межъядерное расстояние между химически связанными атомами

$$l_{A-B} = \frac{1}{2} (l_{A-A} + l_{B-B})$$

 $l_{\mathsf{A-B}}$ зависит от величины атомных радиусов $(r_{\mathsf{A}},\,r_{\mathsf{B}})$ и от кратности связи

атом	$r_{a au}$, $lpha$	Связь	длина связи $\emph{\emph{l}}_{ extsf{H-}\Gamma}$, \acute{A}
$\boldsymbol{\mathit{F}}$	0,64	$H\!\!-\!\!F$	0,92
Cl	0,99	H–Cl	1,27
Br	1,14	H–Br	1,41
I	1,33	$H\!\!-\!\!I$	1,61
H	0,53	$H\!\!-\!\!H$	0,74

 ${A}$ (Ангстрем) – единица атомной длины; **10** ${A}$ = **1 нм**

$$l_{\text{H-}\Gamma} < r_{\text{H}} + r_{\Gamma}$$

2. Энергия химической связи (E_{A-B}, кДж, ккал) – энергия, которая выделяется при образовании молекул из одиночных атомов

$$H + H = H_2 + 435 \ кДж;$$
 $H + CI = HCI + 431,6 \ кДж$ $E_{H-H} = 435 \ кДж/моль$ $E_{H-CI} = 431,6 \ кДж/моль$ $CI + CI = CI_2 + 243,4 \ кДж$ $N + N = N_2 + 940 \ кДж$ $E_{CI-CI} = 243,4 \ кДж/моль$ $E_{N=N} = 940 \ кДж/моль$

***Для двухатомных ковалентных молекул энергия связи (E_{св}) численно равна энергии диссоциации (E_{дис}) молекул на атомы, но имеет противоположный знак

$$E_{_{\mathrm{CB}}}$$
 (F–F) = 159 кДж/моль $E_{_{\mathrm{ДИС}}}$ (F–F) = -159 кДж/моль $E_{_{\mathrm{ДИС}}}$ (N \equiv N) = 940 кДж/моль $E_{_{\mathrm{ДИС}}}$ (N \equiv N) = -940 кДж/моль

Для многоатомных молекул типа AB_n средняя энергия связи E_{A-B} равна 1/n части полной энергии диссоциации соединения AB_n на атомы

$$AB_n = A + nB$$

$$E_{A-B} = \frac{E_{\text{дис}}}{n}$$

<u>Пример</u>: Энергия, поглощаемая в процессе:

$$H_2O = 2H + O - 924$$
 кДж,

– на 1 моль воды Н₂О;

в молекуле воды обе связи О–Н равноценны, поэтому средняя энергия связи О–Н равна:

$$E_{\text{O-H}} = \frac{E_{\text{дис}}}{2} = \frac{924}{2} = 462 \text{ кДж/моль}$$

Энергия химической связи $E_{\mathrm{A-B}}$ зависит от длины $l_{\mathrm{A-B}}$ и от кратности связи

3. Кратность химической связи — число химических связей между двумя атомами; — число общих электронных пар между связанными атомами

Связь	длина связи l , нм	энергия связи E , к \square ж/моль
C-C	0,154	348
C=C	0,135	635
C≡C	0,120	830

4. Полярность химической связи — зависит от электроотрицательности связанных атомов

Связь ковалентная неполярная – между атомами <u>с одинаковой</u> электроотрицательностью **(H–H, CI–CI, O=O, N≡N, C–C, ∂р.)**

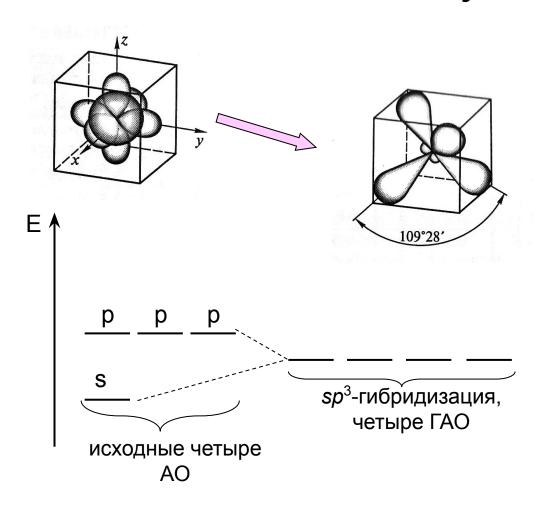
Связь ковалентная полярная – между атомами с разной электроотрицательностью (H–CI, H–O, C–CI, N–O, B–F, др.)

Дипольный момент (\mu, D – Дебай) – количественная характеристика полярности связи: $\mu = \delta \cdot l = q \cdot d$,

 $(\delta$ — абсолютное значение заряда на атоме; l — длина диполя; q — абсолютное значение заряда электрона; d — межъядерное расстояние)

5. Валентный угол — угол между воображаемыми линиями, проходящими через ядра химически связанных атомов

ГИБРИДИЗАЦИЯ АТОМНЫХ ОРБИТАЛЕЙ и пространственная конфигурация ковалентных молекул


Подходы к рассмотрению геометрии (пространственной конфигурации) ковалентных молекул:

- 1. В образовании молекулы могут участвовать «чистые» (негибридизованные) атомные орбитали (АО) центрального атома (ц. а.)
- 2. В образовании молекулы могут участвовать «гибридизованные» атомные орбитали (ГАО) центрального атома (ц. а.)

Автор концепции ГАО – **Л. Полинг,** американский ученый, физик, математик <u>Суть концепции ГАО</u>

При рассмотрении образования химической связи в многоатомных молекулах несколько различных АО ц. а., не сильно различающихся по симметрии (форме) и энергии, заменить тем же числом одинаковых по симметрии и энергии ГАО

ГИБРИДИЗАЦИЯ АТОМНЫХ ОРБИТАЛЕЙ и пространственная конфигурация ковалентных молекул

Геометрия ковалентных молекул определяется пространственным расположением ГАО со связывающими (поделенными, п.п.) и несвязывающими (неподеленными, н.п.) электронными парами

ВИДЫ ГИБРИДИЗАЦИИ АТОМНЫХ ОРБИТАЛЕЙ

Тип гибри- дизации	Число ГАО	Число поделенных электронных пар (п.п.)	Конфигу- рация молекул	Угол между связями	Расположение ГАО в пространстве
sp	2	2	линейная	180°	180°
sp ²	3	3	плоский треуголь- ник	120°	True True
sp ³	4	4	тетраэдр	109°28′	109.28

ВИДЫ ГИБРИДИЗАЦИИ АТОМНЫХ ОРБИТАЛЕЙ

Тип гибри- дизации	Число ГАО	Число поделенных электронных пар	Конфигурация молекул	Примеры молекул, ионов	
<i>sp</i> ³ d	5	5	Тригональная бипирамида	PCI ₅ , SbF ₅	
<i>sp</i> ³ d ²	6	6	Тетрагональная бипирамида (октаэдр)	SF ₆ , [SiF ₆] ²⁻	