
Сквозное автоматизированное проектирование электронной аппаратуры

Лекция 11.

Введение в инженерный анализ методом конечных элементов. Реализация в Solid Edge Simulation/Express

Анализы на механические воздействия (структурные анализы)

- □ Линейный статический анализ: определение перемещений, деформаций, напряжений и сил реакций от приложенных статических нагрузок
- ☐ Динамический анализ: ... от нагрузок, зависящих от времени и порождающих инерцию или демпфирование.
- □ Анализ устойчивости: определение нагрузки, при которой конструкция становится неустойчивой
- □ <u>Модальный анализ</u>: вычисление собственных частот и форм колебаний

Анализ тепловых режимов

□ Анализ стационарного теплообмена: расчет разницы температур для одного или нескольких элементов при равновесии (в стационарном состоянии).

При проектировании электрики и электроники можно:

- Рассчитать электрический нагрев разных компонентов.
- Смоделировать радиаторы охлаждения.
- Определить необходимые расстояния между критическими деталями.
- Определить области рециркуляции воздуха и места перегрева.
- Прогнозировать температуру, при которой компонент или печатная плата могут перегреваться и выходить из строя.

Дополнительные сценарии использования теплового анализа:

- Естественная или принудительная конвекция от передней и задней поверхностей.
- Проводимость от краев печатной платы до стенок корпуса.
- Проводимость через жесткие или гибкие контакты с другими печатными платами.
- Проводимость между печатной платой и монтажной рамой.
- Проводимость радиатора охлаждения.

Анализ тепловых режимов

Анализ стационарного теплообмена

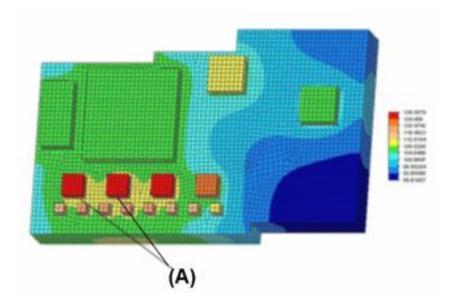


График распределения температуры на печатной плате

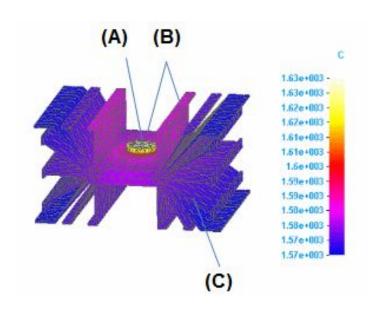


График распределения температуры радиатора и источника тепла

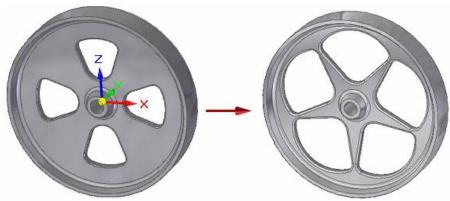
Связанный анализ

Использование результатов одного типа анализа в качестве исходных данных для другого типа анализа (например, влияние тепловых режимов на структурные напряжения и перемещения в детали).

Стационарный теплообмен + Линейная статика Стационарный теплообмен + Линейная устойчивость

(1) (1) (2) (3) (3)

Расчет стационарного теплообмена (1)


Расчет перемещений (2) и напряжений (3), вызванных температурной нагрузкой

Связанный

Оптимизация конструкции Улучшение результатов структурного или теплового анализа модели детали или сборки с изменением геометрии, выбранной для анализа.

Примеры:

- Найти решение линейного статического анализа и затем использовать команду "Оптимизировать" для оптимизации напряжений, перемещений и запаса прочности для геометрии.
- Найти решение анализа стационарного теплообмена и затем оптимизировать его для минимизации теплоотдачи.
- Найти решение модального анализа и затем оптимизировать его для нахождения максимальной и минимальной резонансной частоты.

Минимизация веса детали (**целевой проектный параметр**) при обеспечении уровня напряжений меньше предела текучести (**проектное ограничение**) в условиях изменения одного или нескольких размеров (**проектные переменные**).

Solid Edge Simulation Express

- Основан на Femap
- ▶ Встроен в Solid Edge
- Однозадачность, только детали
- Статика/собственные формы
- ▶ Решатель NX Nastran
- Пользователь инженерконструктор

Solid Edge Simulation

- Основан на Femap
- ▶ Встроен в Solid Edge.
- Несколько задач
- Статика/собственные формы/устойчивость
- Контроль над созданием
 КЭ сетки
- ▶ Решатель NX Nastran
- Пользователь инженерконструктор

Femap

- ▶ Не зависит от САD
- Анализ всего изделия
- Статика, собственные формы/устойчивость, динамика/температурный анализ...
- Использует любой решатель,
 NX Nastran предпочтителен
- Пользователь инженерконструктор или расчетчик

Сложность задачи

Средства Solid Edge для решения задач инженерного

Дополнительные возможности Solid Edge Simulation по сравнению с Simulation Express:

- Встроенная поддержка пользователя в виде справочной системы и средств самообучения.
- Полный набор функций КЭ-анализа на специальной вкладке "Симуляция" в ленте команд Solid Edge, а не отдельная команда, чтобы "сделать все".
- Множество вариантов анализа для одной модели, а не единственный анализ.
- Полный набор структурных, тепловых нагрузок и нагрузок на тело для расчета разных типов напряжения, включая силу, давление, перемещение, силу тяжести, вращение, температуру, излучение и тепловыделение.
- Полный набор ограничений для симуляции многих граничных условий для детали, включая фиксацию, запрет перемещения и вращения, скольжение вдоль грани и цилиндр.
- Постоянная видимость нагрузок и ограничений в модели, а не только при определении анализа.
 Нагрузки и ограничения можно посмотреть в любое время и создать картинки и отчеты, показывающие их.
- Экспорт в Femap с помощью команды "Сохранить файл модели Femap".
- Уникальная встроенная среда "Результаты симуляции" для оценки данных, представления результатов и генерации отчетов.
 - о Результаты остаются после расчета, и их можно открыть и посмотреть в среде "Результаты симуляции" в любое время.
 - о Широкое множество вариантов графического представления результатов напряжений, перемещений, приложенных сил и ограничений в модели.
 - Можно использовать пробу, чтобы отобразить данные в узлах модели и координаты областей напряжений. Эта команда также автоматически добавляет координаты в таблицу пробных значений.
 - Можно выбрать отображение исходной, деформированной и недеформированной модели для анимации в приложении Разнесение-Закраска-Анимация. Выходная документация включает HTML-отчеты, картинки и фильмы.

Типовая процедура подготовки анализа

Упрощение модели

Задание единиц измерения

Задание материалов

Создание анализа

Задание типа сетки

Задание дополнительных параметров (опция)

Выбор геометрии для анализа

Задание нагрузок

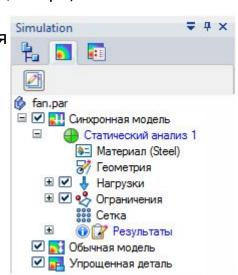
Наложение ограничений

Идеализация/упрощение модели для облегчения проведения анализа.

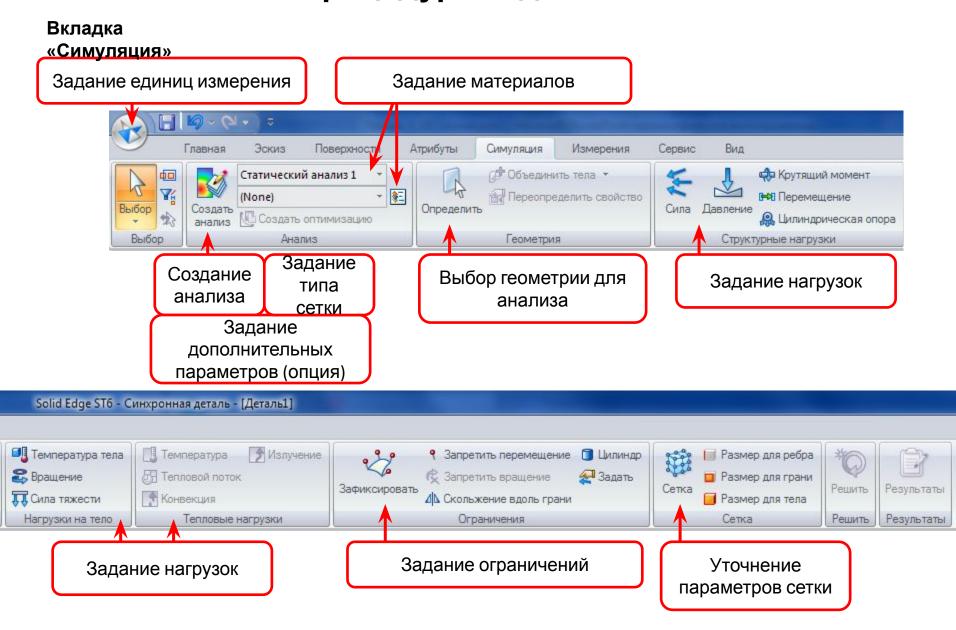
Проверка/задания единиц измерения для анализа, используемых по умолчанию.

Задание/выбор материалов деталей.

Выбор типа анализа: структурный, тепловой, связанный.

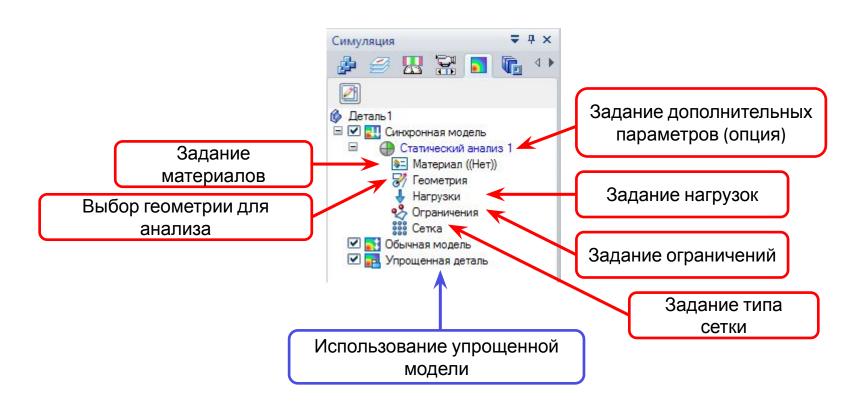

Задание типа сетки: тетраэдральная, поверхностная, общие тела.

Параметры выполнения анализа (процессора) и параметры обработки результатов (постпроцессора).

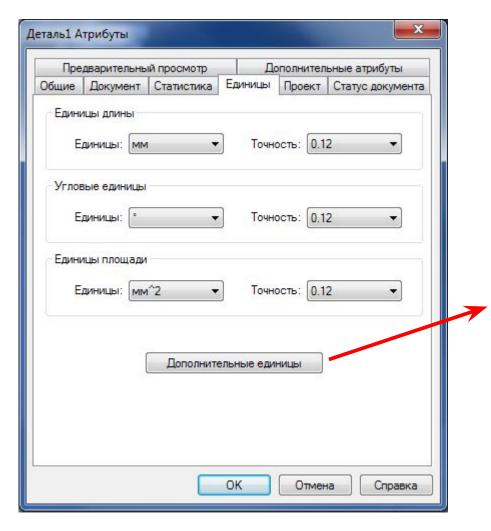

Выбор геометрии для включения анализ в зависимости от типа модели и типа сетки.

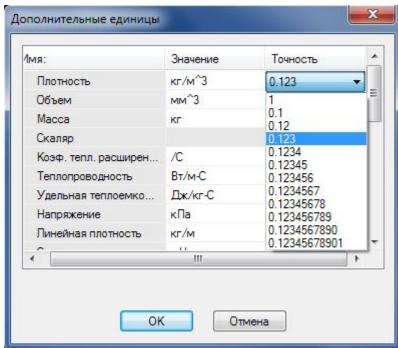
Приложение механических (тепловых) нагрузок.

Наложение ограничений, лишающих детали/сборки определенных степеней свободы.

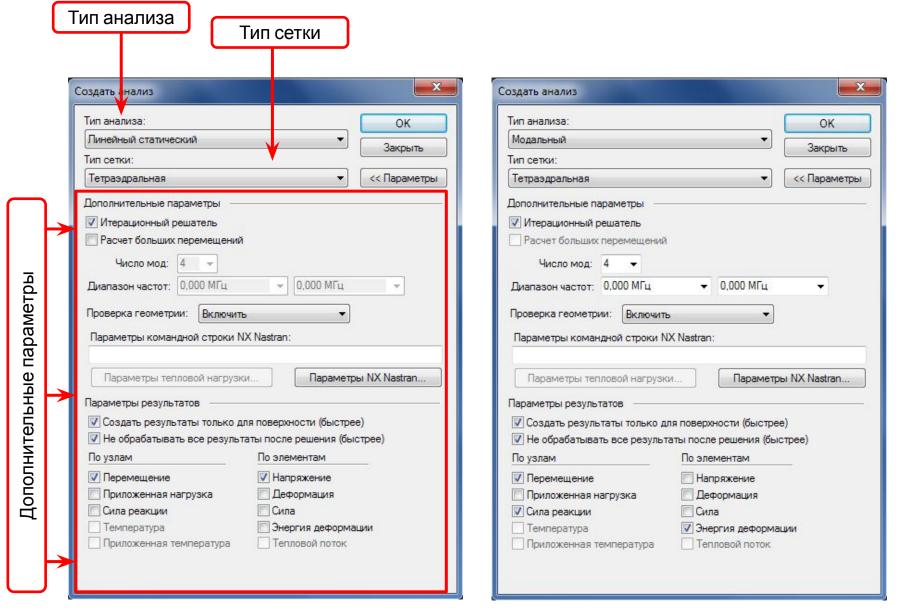


Типовая процедура подготовки анализа



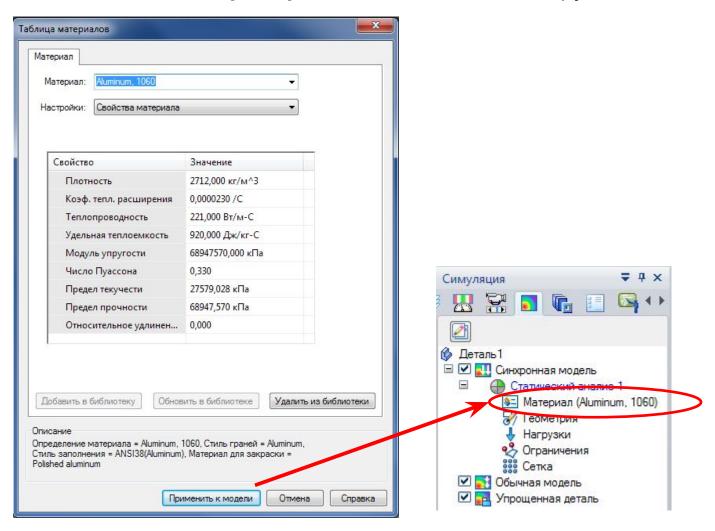

Типовая процедура подготовки анализа

Дерево симуляции

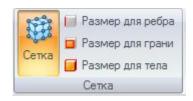


Подготовка анализа. Задание единиц измерения

Подготовка анализа. Создание анализа, задание сетки


Линейный статический анализ

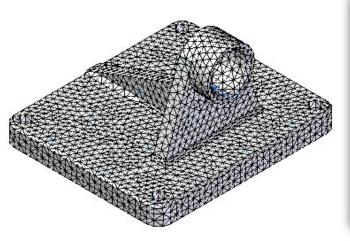
Модальный анализ

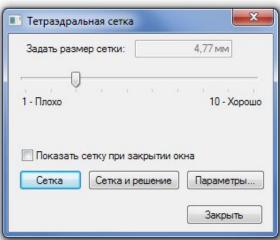

Подготовка анализа. Задание материала детали

- Команда **Таблица материалов** из группы **Анализ**;
- Команда Изменить материал контекстного меню дерева симуляции;
- Команда Переопределить свойство из группы Геометрия.

Подготовка анализа. Задание сетки

Группа команд Сетка

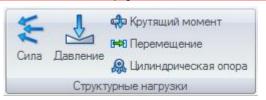

Запрос для выбора геометрии зависит от:


типа модели

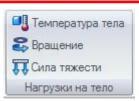
сборка, деталь, листовая деталь

выбранного типа сетки

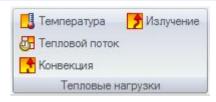
тетраэдральная, поверхностная, смешанная, объединенные тела...



Подготовка анализа. Задание нагрузок

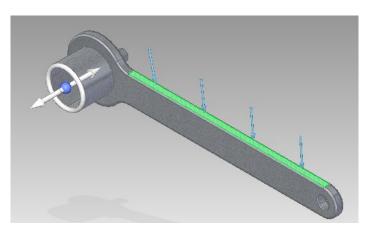

1. Выбрать тип нагрузки

В группе Структурные нагрузки


- Сила
- Давление
- Момент вращения
- Перемещение
- Цилиндрическая опора
- Момент (для сетки типа Балка)

В группе Нагрузки на тело

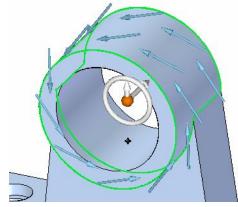
- Температура тела
- Вращение
- Сила тяжести

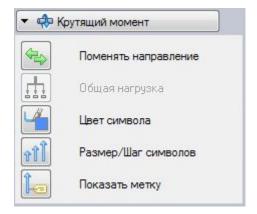

В группе Тепловые нагрузки

- Температура
- Тепловой поток
- Тепловыделение
- Конвекция
- Излучение

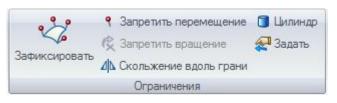
Подготовка анализа. Задание нагрузок

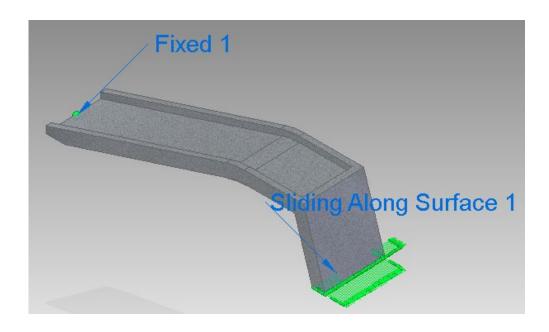
2. Выбрать объекты модели или элементы для приложения нагрузки


Можно выбрать:


- Грани или набор граней
- Поверхности
- Ребра
- Точки
- Конструктивные элементы или рабочие тела
- Узлы (только для сетки Балка)

3. Ввести нужное значение нагрузки в динамическом поле ввода


- 4. Задать направление нагрузки:
 - с помощью колеса управления направлением нагрузки
 - с помощью меню команды нагрузки



Подготовка анализа. Наложение ограничений

1. Выбрать тип ограничений в группе Ограничения

- Зафиксировать
- Запретить перемещение
- Запретить вращение
- Скольжение вдоль грани
- Цилиндр
- Другая
- 2. Выбрать один или несколько геометрических элементов для наложения ограничения

