
Python Data Structures

By Greg Felber

Lists

• An ordered group of items

• Does not need to be the same type
– Could put numbers, strings or donkeys in the same

list

• List notation
– A = [1,”This is a list”, c, Donkey(“kong”)]

Methods of Lists

• List.append(x)
– adds an item to the end of the list

• List.extend(L)
– Extend the list by appending all in the given list L

• List.insert(I,x)
– Inserts an item at index I

• List.remove(x)
– Removes the first item from the list whose value is

x

Examples of other methods

• a = [66.25, 333, 333, 1, 1234.5] //Defines List
– print a.count(333), a.count(66.25), a.count('x') //calls method
– 2 1 0 //output

• a.index(333)
– //Returns the first index where the given value appears
– 1 //ouput

• a.reverse() //Reverses order of list
– a //Prints list a
– [333, 1234.5, 1, 333, -1, 66.25] //Ouput

• a.sort()
– a //Prints list a
– [-1, 1, 66.25, 333, 333, 1234.5] //Output

Using Lists as Stacks

• The last element added is the first element retrieved
• To add an item to the stack,

 append() must be used
– stack = [3, 4, 5]
– stack.append(6)
– Stack is now [3, 4, 5, 6]

• To retrieve an item from the top of the stack, pop must
be used
– Stack.pop()
– 6 is output
– Stack is now [3, 4, 5] again

Using Lists as Queues

• First element added is the first element
retrieved

• To do this collections.deque
 must be implemented

List Programming Tools

• Filter(function, sequence)
– Returns a sequence consisting of the items from

the sequence for which function(item) is true

– Computes primes up to 25

Map Function

• Map(function, sequence)
– Calls function(item) for each of the sequence’s

items

– Computes the cube for the range of 1 to 11

Reduce Function

• Reduce(function, sequence)
– Returns a single value constructed by calling the

binary function (function)

– Computes the sum of the numbers 1 to 10

The del statement

• A specific index or range can be deleted

Tuples

• Tuple
– A number of values separated by commas
– Immutable

• Cannot assign values to individual items of a tuple
• However tuples can contain mutable objects such as lists

– Single items must be defined using a comma
• Singleton = ‘hello’,

Sets

• An unordered collection with no duplicate
elements

• Basket = [‘apple’, ‘orange’, ‘apple’, ‘pear’]

• Fruit = set(basket)

• Fruit
– Set([‘orange’, ‘apple’, ‘pear’])

Dictionaries

• Indexed by keys
– This can be any immutable type (strings, numbers…)

– Tuples can be used if they contain only immutable objects

Looping Techniques

• Iteritems():
– for retrieving key and values through a dictionary

Looping Techniques

• Enumerate():
– for the position index and values in a sequence

• Zip():
– for looping over two or more sequences

Comparisons

• Operators “in” and “not in” can be used to see
if an item exists in a sequence

• Comparisons can be chained
– a < b == c

• This tests whether a is less than b and that b equals c

