
Химия элементов. Лекция

Общая характеристика элементов IVA-группы. Углерод и кремний

Общая электронная формула внешнего слоя

+6C)2)4 +14Si)2)8)4 +32Ge)2)8)18)4 +50Sn)2)8)18)18)4 +82Pb)2)8)18)32)18)4

Р - элементы

Изменение свойств в группе

На внешнем слое 4 электрона, значит, являются неметаллами

C

Si

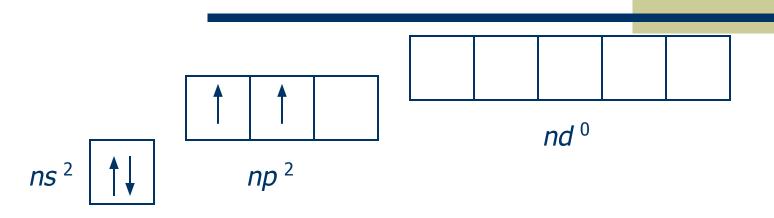
Ge

Sn

Pb

Металлические свойства увеличиваются

Элементы IVA-группы


	C	Si	Ge	Sn	Pb
Z	6	14	32	50	82
A_r	12	28,1	72,6	118,7	207,2
χ	2,50	2,25	2,02	1,72	1,55

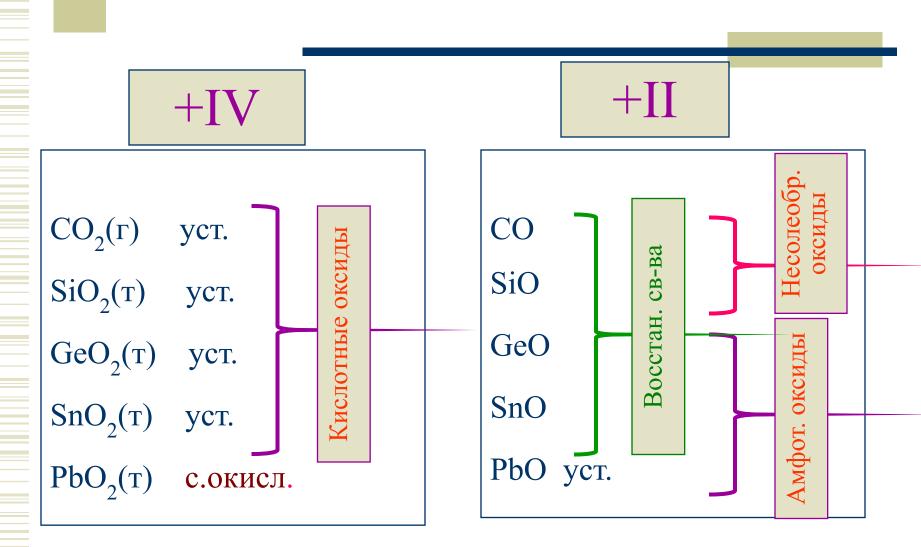
Неметаллы

Амфотерные элементы

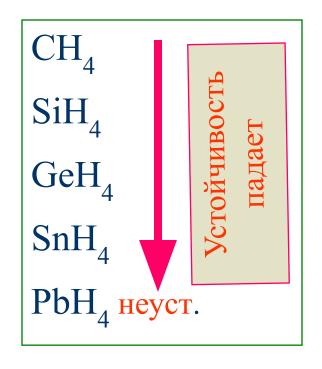
Рост металличности

Общая электронная формула: [...] $ns^2 (n-1)d^{10}np^2$

Валентные возможности:


C: 2, 4; Si, Ge, Sn, Pb: 2 ÷ 6

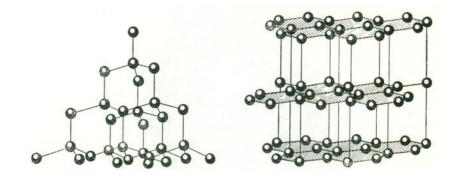
Степени окисления: -IV, 0, +II, +IV


Устойчивые ст.ок.: C, Si, Ge, Sn: +IV

(Pb^{IV} − сильн.окисл.). Уст. ст.ок.: Pb: +II

Оксиды элементов IVA-группы

Водородные соединения элементов IVA-группы



Простые вещества

Аллотропия

- Углерод: алмаз (sp^3) , графит (sp^2) , карбин (sp), фуллерен.
- Олово «белое» и «серое».

Структура алмаза и графита

Олово белое

Олово серое

Алмаз

Графит

Химические свойства

При комн. темп.

- **◆** C, Si, Ge + H₂O ≠
- ◆ Sn, Pb + H₂O ≠

Кремний

Германий

Свинец

Химические свойства

$$\bullet$$
 C(T) + KOH \neq

◆
$$Si + 4NaOH = Na_4SiO_4 + 2H_2$$
↑

Распространение в природе и важнейшие минералы

2. Si 25,80%

(27,72% в литосфере)

13. C 0,087%

(0,032% в литосфере)

31. Sn 0,0035%

35. Pb 0,0018%

46. Ge 6 · 10⁻⁴% (PPЭ)

Кремний: кварц, яшма, агат, опал, силикаты, алюмосиликаты

Аметист

Каолинит

Агат

Углерод: графит, алмаз, каменный уголь, нефть, природный газ, орг. в-ва, карбонаты

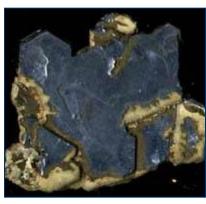
Графит

Кальцит

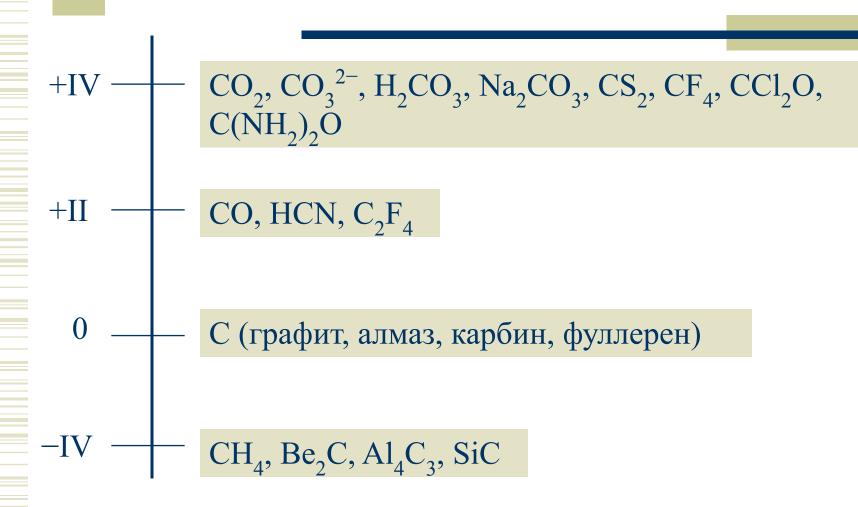
Газодобыча

Алмаз

Каменный уголь

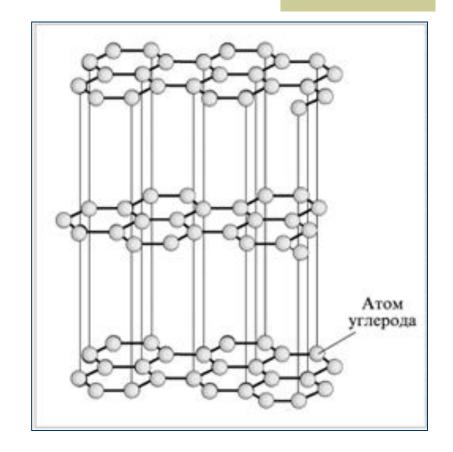

Германий, олово и свинец

Касситерит SnO₂



Галенит PbS

Германит ($Fe^{II}Cu_6^{\ I}Ge_2$) S_8


Шкала степеней окисления углерода

- ◆ Т. пл. 3800 °С, т. кип. 4000 °С, плотность 2,27 г/см³, электропроводен, устойчив.
- Типичный восст-ль (реагирует с водородом, кислородом, фтором, серой, металлами).

Углерод

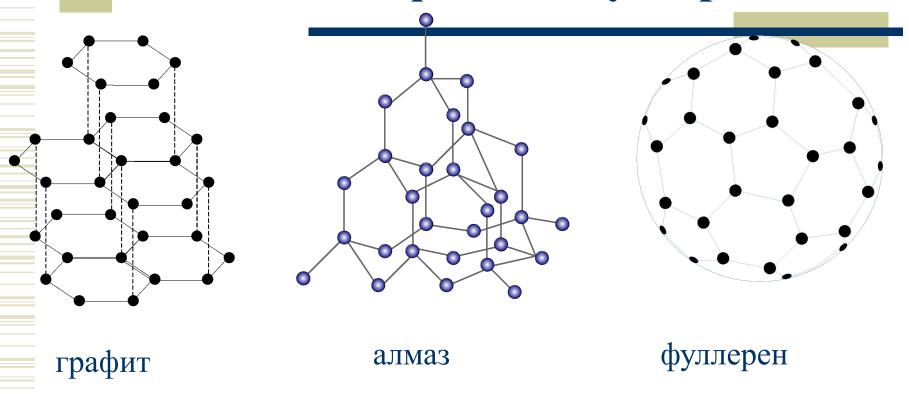
Окислитель восстанавливается

× Né

$$Al + C \rightarrow$$

$$Al + C \rightarrow$$

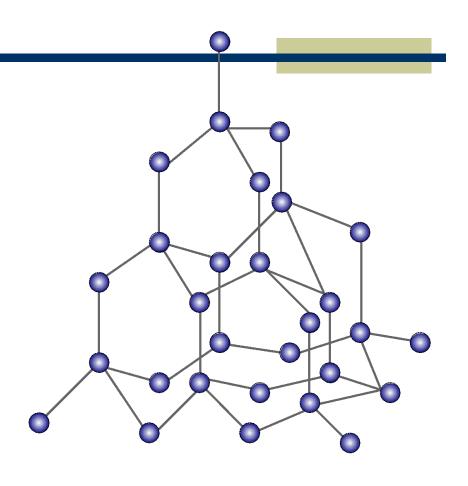
$$H_2 + C \rightarrow$$



$$\mathbf{C} + \mathbf{O}_2 \rightarrow$$

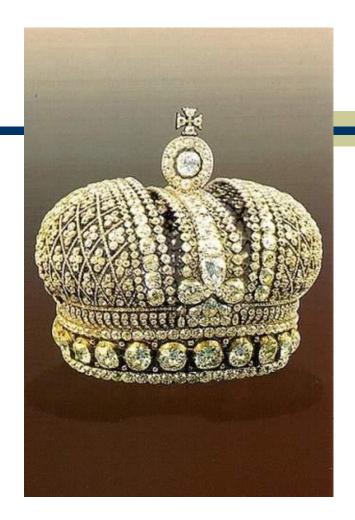
$$\mathbf{C} + \mathbf{F}_2 \rightarrow$$

$$C + F_2 \rightarrow$$

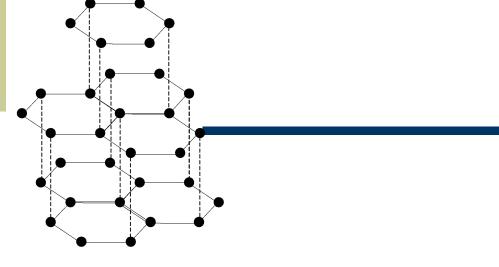

Аллотропные модификации углерода

АЛМАЗ

Звезда ордена Св. Андрея Первозванного

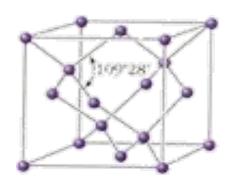

Алмаз «Шах»

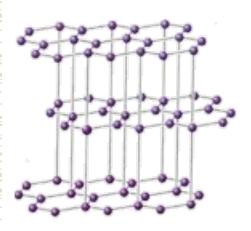
Скипетр императорский



Большая императорская корона

Малая императорская корона





- Электроды для электролиза
- Облицовка сопел ракетных двигателей с
- Смазка для трущихся поверхностей, работающих при очень высоких и очень низких температурах
- Стержни для карандашей

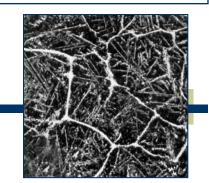
ПОЧЕМУ АЛМАЗ - очень твердый, ГРАФИТ – очень мягкий?

Алмаз имеет атомную кристаллическую решетку. Это очень симметричная и прочная решетка.

Графит имеет слоистую структуру. Связи между слоями малопрочны.

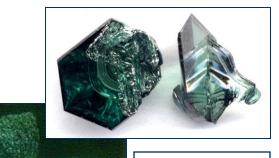
Угольные фильтры

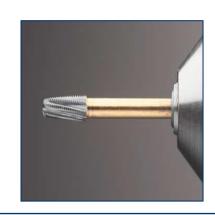
В бытовых фильтрах, в промышленном производстве, на очистных сооружениях — уголь поглощает вредные вещества из воды



Карбид кальция

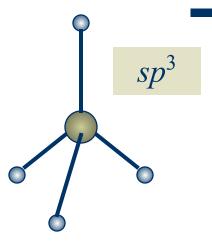
Карбиды


Поверхность стали под микроскопом


Солеобразные (CaC_2 , Al_4C_3)

CaC₂ + 2H₂O = $= Ca(OH)₂ + C₂H₂\uparrow$

 $Al_4C_3 + 12H_2O =$ = $4Al(OH)_3 + 3CH_4\uparrow$ Ковалентные (SiC)



Карбид кремния

Резец из победита (сплав на основе WC)

Водородные соединения. Метан СН₄

- ◆ СН₄ газ без цвета и запаха, горюч, главная сост. часть природного газа.
- Получение в лаборатории:

$$CH_3COONa + NaOH (+t) =$$

$$= Na_2CO_3 + CH_4\uparrow$$

• Горение:

$$\mathrm{CH_4} + \mathrm{O_2} = \mathrm{C} + 2\mathrm{H_2O}$$
 $\mathrm{CH_4} + 2\mathrm{O_2}$ (изб.) =
$$= \mathrm{CO_2} + 2\mathrm{H_2O}$$

Монооксид углерода CO – несолеобразующий оксид

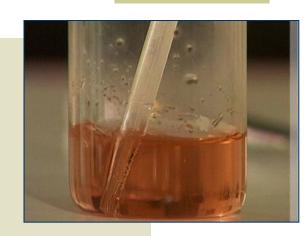
- Бесцветный газ, без запаха, легче воздуха, малорастворим в воде,
- ядовит («угарный газ»).
- Восстановительные свойства (t):

$$4CO + Fe_3O_4 = 3Fe + 4CO_2$$
 (пирометаллургия)

Диоксид углерода СО₂ (кислотный оксид)

«Сухой лед»

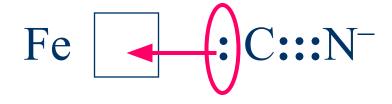
- ◆ Бесцветный газ, без запаха, тяжелее воздуха, умеренно растворим в воде (при комн. т-ре в 1 л воды — около 1,7 л СО₂).
- ◆ В тв. Сост. «сухой лёд»


Моногидрат $CO_2 \cdot H_2O$ и угольная кислота H_2CO_3

• В водном растворе:

$$CO_{2(\Gamma)} + H_2O \square CO_2 \cdot H_2O \square H_2CO_3$$

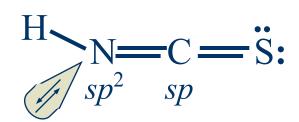
• H_2CO_3 — слабая двухосновная кислота:


$$H_2CO_3 + H_2O \square HCO_3^- + H_3O^+;$$

 $HCO_3^- + H_2O \square CO_3^{2-} + H_3O^+;$

- •Соли *карбонаты* и *гидрокарбонаты* M_2CO_3 и MHCO₃ подвергаются гидролизу (pH > 7).
- Термическое разложение гидрокарбонатов:

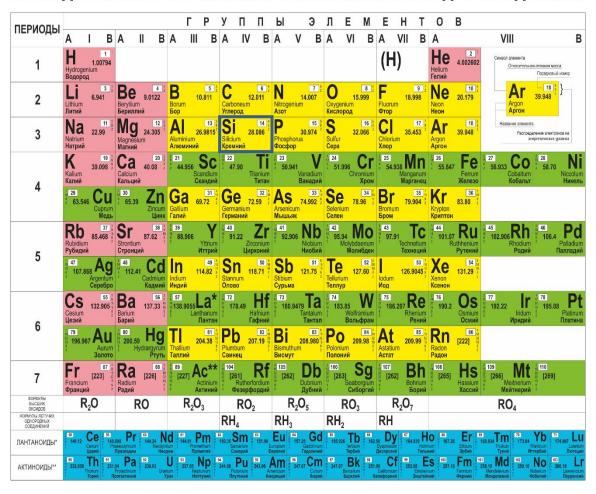
$$2NaHCO_3 = Na_2CO_3 + CO_2\uparrow + H_2O$$


Псевдогалогениды

- **Циановодород** HCN
- ◆ В водн. p-pe слабая «синильная кислота»: $HCN + H_2O \Box CN^- + H_3O^+;$
- ◆ Цианид-ион CN⁻: донорные св-ва, образует прочные комплексы, ядовит.

Псевдогалогениды

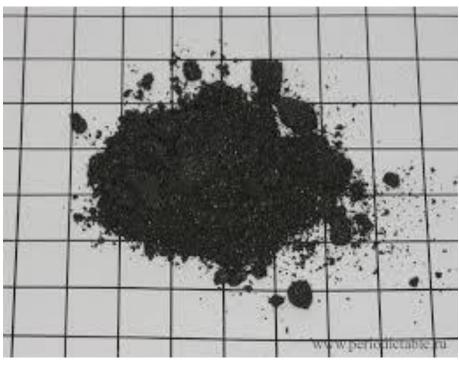
- ◆ Тиоцианат водорода HNCS («родановодород») не ядовит.
- ◆ В водном растворе HNCS
 - сильная к-та
- ◆ Ион NCS⁻ : слабые донорные свойства


HNCS

тиоцианато-N

тиоцианато-Ѕ

ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА


Кремний обладает меньшим значением электроотрицательности и большим радиусом атома, в отличие от углерода, что связано с большим количеством электронных слоёв.

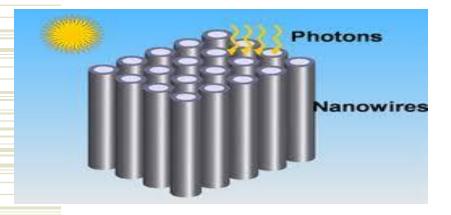
аллотропия КРЕМНИЯ

Кристаллический кремний

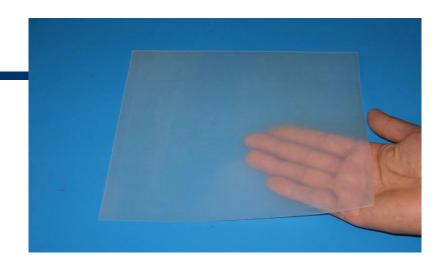
Аморфный кремний

Нахождение в природе

SiO2 кремнезём (песок) Al2O3· 2SiO2·2H2O каолинит (глина)



По распространенности занимает второе место после кислорода (26%)


ПРИМЕНЕНИЕ КРЕМНИЯ

Кремнистые стали

Фотоэлементы

Силиконовый каучук

Силиконовый герметик

Получение кремния

$$SiO_2 + 2C = Si + 2CO$$

$$SiO_2 + 2Mg = 2MgO + Si$$

Водородные соединения Si_nH_{2n+2} (силаны)

- ◆ Моносилан SiH₄:
- $SiH_4 + 2O_2 = SiO_2 + 2H_2O$

Получение силанов:

• $SiO_2 + 4Mg(u36) = Mg_2Si + 2MgO$

(силицид магния)

СОЕДИНЕНИЯ КРЕМНИЯ

ОКСИД КРЕМНИЯ

SiO₂

/ Si

КРЕМНЕВАЯ КИСЛОТА

H2SiO3

СОЛИ КРЕМНЕВОЙ КИСЛОТЫ

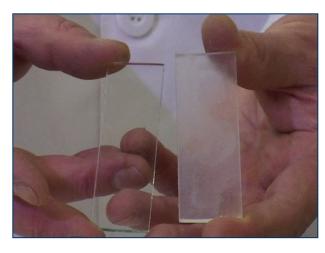
СИЛИКАТЫ

ОКСИД КРЕМНИЯ - SiO2

горный (кварц хрусталь)

Взаимодействие кремния с кислородом

$$Si + O_2 = SiO_2$$


Кислородные соединения -SiO₂ оксид кремния

$$SiO_2 + 2NaOH = Na_2SiO_3 + H_2O$$

(силикат натрия)

Травление стекла

• $SiO_2 + 6HF$ (изб.) = $H_2[SiF_6] + 2H_2O$ (гексафторосиликат водорода)

Травление — в технике, растворение поверхности твёрдых тел с практической целью

КРЕМНЕВАЯ КИСЛОТА H2SIO3

Кремниевая кислота — это слабая двухосновная кислота, которая в реакциях выпадает в осадок в виде студенистого вещества, которое иногда заполняет весь объём раствора, превращая его в массу похожую на студень, желе.

Получени

Na₂SiO₃ + 2HCl = 2NaCl + H₂SiO₃ ↓

Получение кремниевой кислоты

https://www.youtube.com/watch?v=hB6GOz
 NFEaA

СОЛИ КРЕМНЕВОЙ КИСЛОТЫ

Растворимые силикаты натрия и калия называют жидким стеклом

