
Boundary Value Testing Technique
Training

Yanina Hladkova

Agenda

1. Introduction

2. Technique

3. Examples

4. Applicability and Limitations

5. Summary

6. Practice

7. References

Introduction

Equivalence class testing is the most basic test
design technique. It helps testers choose a small
subset of possible test cases while maintaining
reasonable coverage.

Equivalence class testing has a second benefit. It
leads us to the idea of boundary value testing, the
second key test design technique to be presented.

Introduction

What is boundary value testing?
Why do we need it?

Boundary value testing focuses on the
boundaries simply because that is where so
many defects hide.

Introduction: Situation 1

We are writing a module for a human resources
system that decides how we should process
employment applications based on a person's age.
Our organization's rules are:

0-16 – Don't hire

16-18 – Can hire on a part-time basis only

18-55 – Can hire as a full-time employee

55-99 – Don't hire

Introduction: Edge

Notice the problem at the boundaries – the "edges"
of each class. The age "16" is included in two different
equivalence classes (as are 18 and 55).

The first rule says don't hire a 16-year-old. The
second rule says a 16-year-old can be hired on a
part-time basis.

Introduction: Solution 1

If (applicantAge >= 0 && applicantAge <=16)
hireStatus="NO";

If (applicantAge >= 16 && applicantAge <=18)
hireStatus="PART";

If (applicantAge >= 18 && applicantAge <=55)
hireStatus="FULL";

If (applicantAge >= 55 && applicantAge <=99)
hireStatus="NO";

Of course, the mistake that programmers make is coding inequality tests
improperly.

Writing > (greater than) instead of ≥ (greater than or equal) is an example.

The interesting values on or near the boundaries in this example are:

{-1, 0, 1}, {15, 16, 17}, {17, 18, 19}, {54, 55, 56}, and {98, 99, 100}.

Introduction: Inspection

The most efficient way of finding
such defects, either in the
requirements or the code, is
through inspection.

However, no matter how
effective our inspections, we will
want to test the code to verify its
correctness.

Introduction: Situation 2

Perhaps this is what our organization meant:

0-15 – Don't hire

16-17 – Can hire on a part-time basis only

18-54 – Can hire as a full-time employee

55-99 – Don't hire

What about ages -3 and 101? Note that the
requirements do not specify how these values
should be treated. We could guess but "guessing the
requirements" is not an acceptable practice.

Introduction: Solution 2

The code that implements the corrected rules is:

If (applicantAge >= 0 && applicantAge <=15)
hireStatus="NO";

If (applicantAge >= 16 && applicantAge <=17)
hireStatus="PART";

If (applicantAge >= 18 && applicantAge <=54)
hireStatus="FULL";

If (applicantAge >= 55 && applicantAge <=99)
hireStatus="NO";

The interesting values on or near the boundaries in this example are:

{-1, 0, 1}, {14, 15, 16}, {15, 16, 17}, {17, 18, 19}, {53, 54, 55}, {54, 55, 56}, and {98, 99, 100}.
Other values, such as {-42, 1001, FRED, %$#@} might be included depending on
the module's documented preconditions.

Boundary values: -1, 0, 15, 16, 17, 18, 54, 55, 99, 100.

Technique

Technique: Steps

1. Identify the equivalence classes.

2. Identify the boundaries of each equivalence class.

3. Create test cases for each boundary value by
choosing one point on the boundary, one point
just below the boundary, and one point just
above the boundary.

Technique: Examples

"Below" and "above" are relative terms
and depend on the data value's units.

If the boundary is 16 and the unit is
"integer"

then the "below" point is 15 and the
"above" point is 17.

Technique: Examples

If the boundary is $5.00 and the unit is "US
dollars and cents"

then the below point is $4.99 and the above
point is $5.01.

On the other hand, if the value is $5 and the
unit is "US dollars"

then the below point is $4 and the above
point is $6.

What if user can enter anything in the field
as there’s no UI limitation? How will we
define boundary values?

$4,(9); 5 and 5,(0)1

Technique: Examples

Which boundary values will we use if we
test casino, coffee machine or Fibonacci
numbers system?

Technique: Examples

Why do we need to test one value above and
one value below the boundary?

x>=2

Test: 1, 2 – everything is OK

x>2

Test: 1, 2 – you will find a defect. But do you now
why it happens? Which test you will do next? 10,
999, 5 or 3?

x=2

Test: 1, 2 – gives the same result but you won’t
find a defect, but 1, 2, 3 will gain confidence and
find a defect

Technique: Tips

Note that a point just above one boundary may be in another
equivalence class. There is no reason to duplicate the test. The
same may be true of the point just below the boundary.

You could, of course, create additional test cases farther from the
boundaries (within equivalence classes) if you have the
resources. These additional test cases may make you feel warm
and fuzzy, but they rarely discover additional defects.

Technique: Continuous

Boundary values for a continuous range of inputs.

Test data input of {$999, $1,000, $1,001} on the low end and
{$83,332, $83,333, $83,334} on the high end.

Technique: Discrete

Boundary values for a discrete range of inputs.

Test data input of {0, 1, 2} on the low end and {4, 5, 6} on the
high end.

Technique: Fractional

What are boundary values here if we may have fractional numbers?
Do we have points below and above the boundary?

Test data input of {0,(9); 1; 1,(0)1} on the low end and {4,(9); 5; 5,(0)1}
on the high end. But no exact points.

Technique: Fractional

We need to have here several solutions what to do in such cases:

1) Use only edge value for testing, don’t use above\below edge
values

2) Get UI requirements\limitations for this field – 4.99 is closest to
5 from UI point of view

3) Get business requirements\limitations for this field

4) Find out closest above\below values to the identified edge

Technique: Array

What are boundary values here?

No boundaries.

Technique: Combination

Rarely we will have the time to create individual tests for
every boundary value of every input value that enters our
system. More often, we will create test cases that test a
number of input fields simultaneously.

A set of test cases containing combinations of valid (on the
boundary) values and invalid (off the boundary) points.

Technique: Combination

Monthly
Income

Number of
Dwellings

Result Description

$1,000 1 Valid Min income, min dwellings

$83,333 1 Valid Max income, min dwellings

$1,000 5 Valid Min income, max dwellings

$83,333 5 Valid Max income, max dwellings

$1,000 0 Invalid Min income, below min dwellings

$1,000 6 Invalid Min income, above max dwellings

$83,333 0 Invalid Max income, below min dwellings

$83,333 6 Invalid Max income, above max dwellings

$999 1 Invalid Below min income, min dwellings

$83,334 1 Invalid Above max income, min dwellings

$999 5 Invalid Below min income, max dwellings

$83,334 5 Invalid Above max income, max dwellings

Technique: Usage

Why do we need values above and below edge?
1) Higher test coverage
2) ECP replacement
3) Time & Budget constraints
4) Quicker defect location identification
5) High quality requirements for the project from Customer\Domain

Why don’t we need\want to use below\above edge values?
1) Time & Budget constraints
2) Less probability to discover defects
3) Good enough test coverage for project

Examples

Examples: 1

Input to this field can be between one and four numeric
characters (0, 1, ..., 8, 9).

A set of boundary value test cases for the length
attribute would be {0, 1, 4, 5} numeric characters.

Examples: 2

34,4; 34,5; 42; 42,1

A thermometer can have values between 34,5 and 42.

34,4(9); 34,5; 42; 42,(0)1

Applicability and
Limitations

Applicability and Limitations

▪ Boundary value testing can significantly reduce the number
of test cases that must be created and executed. It is most
suited to systems in which much of the input data takes on
values within ranges or within sets.

▪ Boundary value testing is equally applicable at the unit,
integration, system, and acceptance test levels. All it
requires are inputs that can be partitioned and boundaries
that can be identified based on the system's requirements.

Summary

Summary

▪ While equivalence class testing is useful, its greatest
contribution is to lead us to boundary value testing.

▪ Boundary value testing is a technique used to reduce the
number of test cases to a manageable size while still
maintaining reasonable coverage.

▪ Boundary value testing focuses on the boundaries because that
is where so many defects hide. Experienced testers have
encountered this situation many times. Inexperienced testers
may have an intuitive feel that mistakes will occur most often at
the boundaries.

▪ Create test cases for each boundary value by choosing one
point on the boundary, one point just below the boundary, and
one point just above the boundary. "Below" and "above" are
relative terms and depend on the data value's units.

Practice

Practice

▪ ZIP Code – five numeric digits. Legitimate ZIP Codes in
the United States.

▪ Last Name – one through fifteen characters (including
alphabetic characters, periods, hyphens, apostrophes,
spaces, and numbers).

▪ User ID – eight characters at least two of which are
not alphabetic (numeric, special).

▪ Course ID – three alpha characters representing the
department followed by a six-digit integer which is
the unique course identification number. The possible
departments are:

o PHY - Physics

o EGR - Engineering

o ENG - English

o LAN - Foreign languages

o CHM - Chemistry

o MAT - Mathematics

o PED - Physical education

o SOC - Sociology

Practice: Answers 1

▪ ZIP Code – five numeric digits. Legitimate ZIP Codes in the United
States.

Length

4, 5, 6

Legitimate

01000, 01001, 99929, 99930

http://www.city-data.com/zipDir.html

Practice: Answers 2

▪ Last Name – one through fifteen characters (including alphabetic
characters, periods, hyphens, apostrophes, spaces, and numbers).

Length

0, 1, 15, 16

Example Result Comment

Co.- 1”qwoptyBd Valid Length max

G Valid Length min

Invalid Length < min

ABCDEFghijklmnop Invalid Length > max

Practice: Answers 3

▪ User ID – eight characters at least two of which are not alphabetic
(numeric, special).

Length

7, 8, 9

Number of numeric and special characters

1, 2, 8, 9

Example Result Comment

1!abcDYZ Valid Length, number min

@#$%^.,) Valid Length, number max

1!abcDY Invalid Length < min, number min

0#?(cyzag Invalid Length > max

abcptu6w Invalid Number < min

“(/\,.123 Invalid Number > max, length > max

Practice: Answers 4

▪ Course ID – three alpha characters representing the department followed by a six-digit integer
which is the unique course identification number. The possible departments are:

Length Alpha

2, 3, 4

Characters position

first 3, 2d and 3d and 4th

Example Result Comment

PHY123456 Valid Length, position

EG9876541 Invalid Length Alpha < min, Length Digit > max

EN987654 Invalid Length Alpha < min, Length General < min

LAND12345 Invalid Length Alpha > max, Length Digit < min

CHMQ345678 Invalid Length Alpha > max, Length General > max

1MAT36974 Invalid Characters

PED12345 Invalid Length Digit < min, Length General < min

SOC6987451 Invalid Length Digit > max, Length General > max

Length Digit

5, 6, 7

Length General

8, 9, 10

o PHY - Physics
o EGR - Engineering
o ENG - English
o LAN - Foreign languages
o CHM - Chemistry
o MAT - Mathematics
o PED - Physical education
o SOC - Sociology

Practice: Answers 5
N ZIP Code Last Name User ID Course ID Result

1 01001 Co.- 1”qwoptyBd 1!abcDYZ PHY123456 Valid

2 99929 G @#$%^.,) CHM997410 Invalid

3 01000 [any valid] [any valid] [any valid] Invalid

4 99930 [any valid] [any valid] [any valid] Invalid

5 0174 [any valid] [any valid] [any valid] Invalid

6 [any valid] [any valid] [any valid] Invalid

7 [any valid] ABCDEFghijklmnop [any valid] [any valid] Invalid

8 [any valid] [any valid] 1!abcDY [any valid] Invalid

9 [any valid] [any valid] 0#?(cyzag [any valid] Invalid

10 [any valid] [any valid] abcptu6w [any valid] Invalid

11 [any valid] [any valid] “(/\,.123 [any valid] Invalid

12 [any valid] [any valid] [any valid] EG9876541 Invalid

13 [any valid] [any valid] [any valid] EN987654 Invalid

14 [any valid] [any valid] [any valid] LAND12345 Invalid

15 [any valid] [any valid] [any valid] CHMQ345678 Invalid

16 [any valid] [any valid] [any valid] 1MAT36974 Invalid

17 [any valid] [any valid] [any valid] PED12345 Invalid

18 [any valid] [any valid] [any valid] SOC6987451 Invalid

References

