Тема 3. Лекция 6 по дисциплине «Пассажирские перевозки» Кандидат технических наук, доцент САВИНОВСКИХ Андрей Геннадьевич

Тема 3. Лекция 6. Подвижной состав пассажирского автотранспорта

Вопросы

- 1. Транспортная классификация автомобилей
- 2. Технико-эксплуатационные качества автомобилей и требования к ним.

1. Транспортная классификация автомобилей

Многообразие сфер применения автомобильного транспорта вызывает необходимость наличия разнообразных моделей подвижного состава, отвечающих условиям его эксплуатации. Поэтому конструкции пассажирских автомобилей непрерывно развиваются, увеличивается число типов и моделей автомобилей. В связи с этим естественным является необходимость классификации автомобилей по ряду признаков.

Согласно транспортной классификации, все автомобили прежде всего подразделяются на *три основные группы по дорожным огра*ничениям.

К первой (группа А) отнесены автомобили и автопоезда дорожного типа, предназначенные для использования только на дорогах высших технических категорий с ровным усовершенствованным покрытием, допускающие осевые нагрузки до 12 т от одиночной оси и полную массу автопоезда до 60 т. К ним относятся автобусы всех марок ЛАЗ, ЛиАЗ-677, ЛиАЗ-5256, "Икарус"-250, -255, -260, -280.

Ко второй (группа Б) принадлежат автомобили и автопоезда дорожного типа, разрешенные к эксплуатации на всей сети дорог общего пользования, допускающие осевые нагрузки до 6 т от одиночной оси. Максимально допустимая полная масса автопоезда -30 т. Сюда относятся автобусы ПАЗ, КАВЗ, РАФ, ГАЗель и все легковые автомобили.

К третьей (группа В) относятся наиболее тяжелые автомобили, которые не предназначены и не могут допускаться к эксплуатации на дорогах общего пользования даже с капитальным покрытием. Их осевая нагрузка превышает предельные дорожные ограничения. Это внедорожные карьерные и лесовозные автомобили. Среди пассажирских автомобилей таких нет.

Все автомобили подразделяются на транспортные, используемые для перевозок пассажиров или грузов, и специального назначения – нетранспортные (автомобили скорой помощи, пожарные и т. д.). Транспортные автомобили и автопоезда могут быть грузовыми и пассажирскими. Пассажирские в свою очередь делятся на автобусы (пассажирский автомобиль, предназначенный для перевозки 9 и более человек) и легковые автомобили.

Каждая из трех основных разновидностей автомобилей (грузовые, автобусы, легковые) подразделяется по конструктивным схемам, типу кузова, размерности, виду перевозок, типу применяемого двигателя и по проходимости.

Автобусы по своим конструктивным схемам могут быть одиночными, сочлененными (тягач и полуприцеп с поворотным кру-

гом, дающим возможность свободного перемещения из салона-тягача в салон-полуприцеп) (рис. 2.1) в виде автопоезда (автобус и автобусный прицеп). Одиночные могут быть исполнены в виде одноэтажного, полутора- и двухэтажного транспортного средства (рис. 2.2). По типу кузова автобусы бывают капотными (КАВЗ-685) и вагонными (ЛиАЗ, ЛАЗ, "Икарус"). По расположению двигателя автобусы бывают с передним расположением, задним и размещением его под полом автобуса.

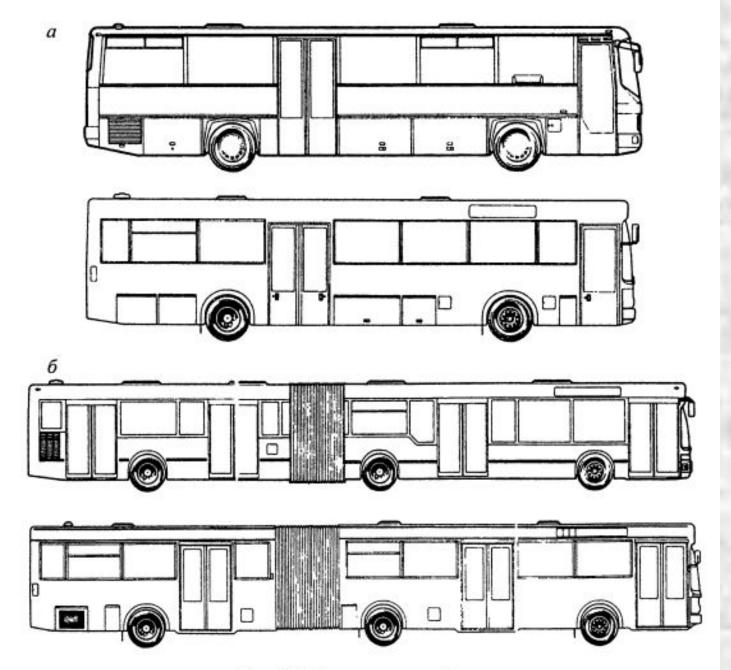


Рис. 2.1. Городские автобусы: a – одиночные; δ – сочлененные

По размерности автобусы подразделяются на пять групп в зависимости от их длины. Для работников автомобильного транспорта естественнее будет различать автобусы не по длине, а по вместимости, выраженной числом пассажирских мест. В зависимости от назначения вместимость одинаковых по длине автобусов может быть различной. В табл. 2.1 приведены данные по длине и вместимости всех пяти групп автобусов, а именно: І – особо малые автобусы (микроавтобусы), II - малые, III - средние, IV - большие и V -

особо большие автобусы.

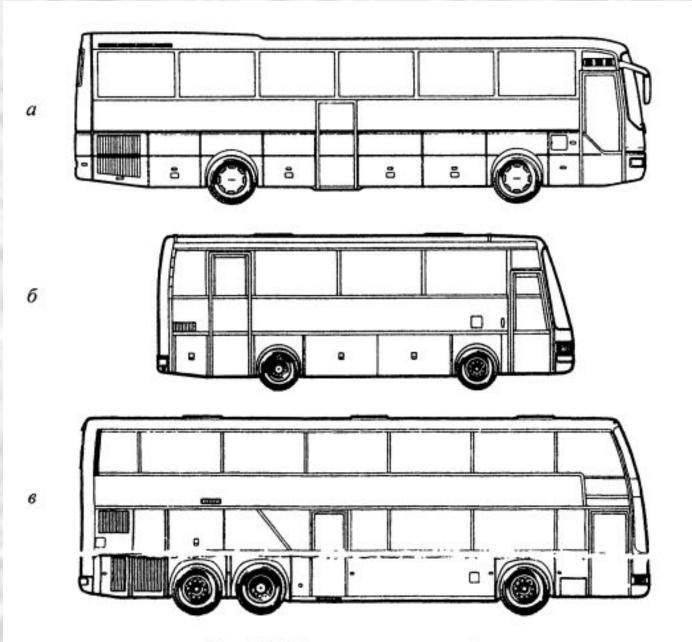


Рис. 2.2. Междугородные автобусы: a – одноэтажный; δ – полутораэтажный; ϵ – двухэтажный

Таблица 2.1

Груп -па	Габарит- ная дли- на, м	Городские			Прі	Междуго-		
		Мест для сидения	Мест для проезда стоя	Всего	Мест для сидения	Мест для проез- да стоя	Всего	родные, ту- ристские, экскурси- онные; всего мест
I	До 5	10	-	10	-	-	-	10
II	6-7,5	18-22	10–15	28-37	20-25	5	25-30	20-25
III	8-9,5	20-25	30-35	50-60	25-35	10	35-45	25-35
IV	10-15	25-35	55-75	80-110	35-40	15	50-55	35-40
V	16,5 и более	35–45	85–100	120 и более	-	-	-	-

По виду перевозок и, следовательно, назначению согласно определенным условиям эксплуатации автобусы могут быть: городскими, пригородными (рис. 2.3), междугородными (рис. 2.4), местных (внутрирайонных, сельских) сообщений, туристскими, экскурсионными, школьными.

Рис. 2.3. Городской автобус

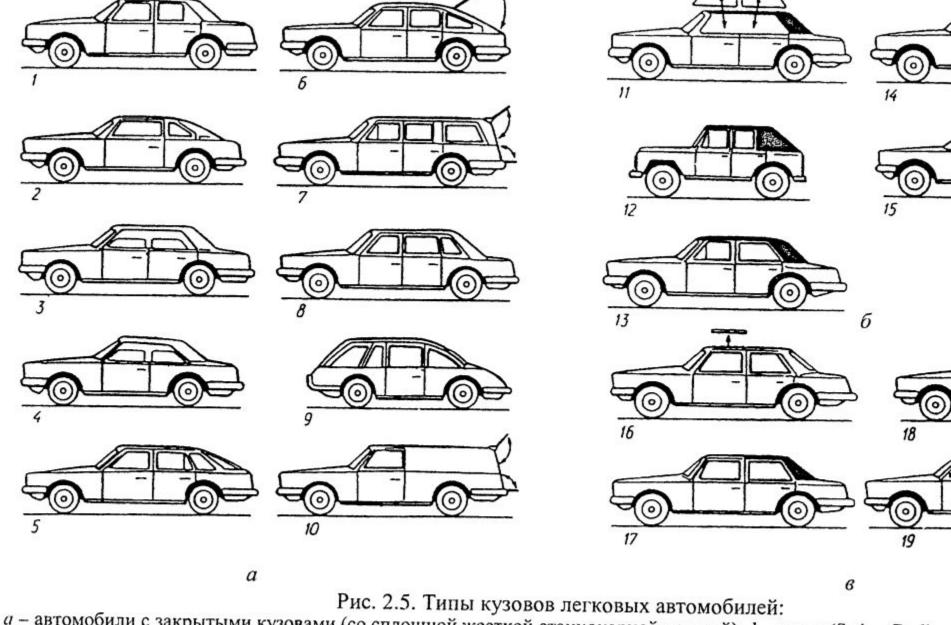


Рис. 2.4. Междугородные автобусы

Легковые автомобили по конструктивным схемам подразделяются на автомобили с классической компоновкой (переднее расположение двигателя и задние ведущие колеса), переднеприводные (переднее расположение двигателя и передние ведущие колеса) и с задним расположением двигателя.

По типу кузова они могут быть выполнены в виде купе (двухдверная модель), седана (четырехдверная модель), универсала (пяти-, реже трехдверная модель с расположением одной двери сзади), лимузина (с внутренней перегородкой), кабриолета (с открывающимся верхом), фаэтона (со снимающимся верхом и боковинами дверей) и др. (рис. 2.5).

 а – автомобили с закрытыми кузовами (со сплошной жесткой стационарной крышей): 1 – седан (Sedan, Berline) 2 - купс (Coupe, Gran turismo); 3 - хардтоп-седан (Sedan-Hardtop, Sport-Sedan); 4 - хардтоп-купе (нет данных); 5 -

Fliessheck); 6 - комби или хетч-бек (Hatchback, Heckklap-penlimousine); 7 - универсал (Kombi, Break, S 8 - лимузин (Limousine, Pullman Van. Kastenwagen); 9 - бескапотный кузов (нет данных); 10 - фургон (нет даннь

с открытыми кузовами: 11 - фаэтон (Phaeton, Convertible): 12 - фаэтон-универсал (Universal, Mehrzwech): 13 - каб

По размерности легковые автомобили различаются в соответствии с рабочим объемом двигателя (литражом) и числом мест. Критерий "рабочий объем двигателя" принят во всех странах в качестве основного. Он используется для установления налога на автомобиль, а также в спортивной классификации. Все легковые автомобили подразделяются по размерности на пять классов: особо малые, малые, средние, большие, особо большие. Особо большие в транспортную классификацию включать нецелесообразно. Первые три класса разбиты в свою очередь на две группы каждый. При предельном между группами или классами рабочем объеме двигателя определяющей является сухая масса автомобиля (табл. 2.2).

Таблица 2.2

Класс автомоб	билей	Рабочий объем	Число	Сухая масса автомобиля, кг	
Наименование	Группа	двигателя, л	мест		
Особо малые	I	Менее 0,9	2 или 4	Менее 700	
Octoo Manble	II	0,9-1,2	Z nan +	700–850	
Малые	I	1,2-1,5	4 или 5	850-950	
Малыс	II	1,5-1,8	4 nan 3	950-1150	
Сполица	I	1,8-2,5	5 или 6	1150-1250	
Средние	II	2,5–3,5	Ј или О	1250-1500	
Большие	-	Более 3,5	7 или 8	1500 и более	

По виду перевозок легковые автомобили могут быть автомобилями общего пользования (такси), ведомственными, автомобилями личного пользования, прокатными.

По типу применяемого двигателя автомобили подразделяются на автомобили с карбюраторными двигателями, работающими на

бензине; с дизельными двигателями; с двигателями, работающими на газе, и на автомобили с газотурбинными и электрическими двигателями.

По проходимости автомобили могут быть дорожного исполнения (с ограниченной проходимостью) для движения по дорогам, а также повышенной и высокой проходимости (для работы в тяжелых дорожных условиях и при относительном бездорожье).

Транспортная классификация не исключает существования других классификаций более узкого, специального назначения.

2. Технико-эксплуатационые качества автомобилей и требования к ним.

Автомобиль обладает комплексом свойств, определяющих степень его пригодности к использованию в определенных условиях эксплуатации. Оценка конструкции автомобиля осуществляется путем теоретического и экспериментального определения количественных значений прежде всего тех свойств, которые в большей степени влияют на эффективность его использования. Исследование зависимости эффективности использования автомобиля от его конструкции позволяет определить основные технико-эксплуатационные качества для комплексной оценки совершенства конструкции. Ниже показано влияние технико-эксплуатационных качеств на определенные показатели эффективности:

Технико-эксплуатационные качества автомобиля	Показатели эффективности использования автомобиля
Габаритные размеры и масса	Материалоемкость, энергоемкость перевозок. Затраты на перевозки
Пассажировместимость	Трудоемкость перевозок. Производительность. Затраты на перевозки
Скоростные свойства	Энергоемкость. Затраты на перевозки. Производительность
Безопасность движения	Материалоемкость. Затраты на перевозки
Удобство использования	Трудоемкость перевозок. Материалоемкость. Затраты на перевозки
Топливная экономичность	Энергоемкость. Затраты на перевозки
Проходимость	Материалоемкость, энергоемкость перевозок. Производительность

В табл. 2.3 приведена техническая характеристика отечественных легковых автомобилей, а в табл. 2.4 — краткая характеристика автобусов, эксплуатирующихся в нашей стране.

Таблица 2.3

		Двигатель		, K	83	" 等	ъ/,	
Годы выпуска	Марка автомобиля	Рабочий объ- ем, л	Мощность, кВт	Длина автомобиля, м	Собственная масса автомобиля, кг	Эксплуатационный расход топлива, л/100 км	Время разгона с места до 100 км/ч	Максимальная скорость, км/ч
1970– 1974	ЗАЗ-968 ВАЗ-21011 АЗЛК-408 ГАЗ-24	1,20 1,30 1,36 2,45	29,5 50,7 37,0 70,0	3,73 4,04 4,25 4,74	790 955 1080 1420	8,0 9,5 11,0 13,0	38.0 20,0 33,0 20,2	116 140 120 147
1980– 1982	3A3-968M BA3-2105 A3ЛК-2140 ГА3-24	1,20 1,30 1,48 2,45	30,2 50,7 55,2 70,0	3,77 4,13 4,25 4,76	840 995 1045 1420	8,5 10,0 10,5 13,0	30,0 18,0 19,0 20,2	118 145 142 147
1988– 1990	ЗАЗ-1102 ВАЗ-2109,8 АЗЛК-2141 ГАЗ-3102	1,09 1,50 1,57 2,45	37,6 54,0 56,0 77,2	3,71 4,01 4,35 4,96	710 900 1070 1470	6,8 8,6 10,0 10,5	20,0 16,0 16,1 16,2	140 155 155 152
	BA3-1111 "OKA" BA3-1121 "OKA"	0,80	23,0 54,0	3,00 3,45	655 790	3,5 5,5	23 13	120 180
	BA3-2110	1,50	57,0	4,11	1035	5,5	12,5	185
	ВАЗ 2120- такси	1,77	58,0	4,50	1500	8,2	20	130
1990-	ВАЗ-2121 "Нива"	1,69	58,0	3,74	1210	8,3	19	160
2003	ИЖ-2126	1,57	55,0	4,07	1080	8,4	20	170
	УАЗ-3160	2,70	98,0	4,63	2040	10,4	19,9	150
	ГАЗ-3110 "Волга"	2,29	96,0	4,87	1450	8,8	14,2	170
	ГАЗ-3111 "Волга"	2,50	114,0	4,85	1550	8,2	12,9	180
	ЗИЛ-41047	7,69	232,0	6,33	3335	18,8	13	190

		Чи	Число мест для				
Тип автобуса	Назначение		проезда стоя		венная масса	Расход топлива,	
		сиде- ния	Норма	Допус- кается	автобуса, т	л/100 км	
РАФ-9203 "Латвия"	Общего типа	11	_	-	1,7	10,8	
КАВ3-685 (Курган)	Пригородный	21	7	-	4,1	19,6	
ПАЗ-672 (Павловск)	Городской	23	15	20	4,5	24,0	
ПАЗ-3205	Общего типа	28	8	12	4,4	23,0	
ЛА3-695 (Львов)	Общего типа	34	67	-	6,8	35,0	
ЛАЗ-697	Туристический	33	_		7,5	35,0	
ЛАЗ-699Р	Междугородный	41	_	-	8,9	41,0	
ЛАЗ-4202	Городской	25	69	75	8,6	19,0-24,	
ЛиАЗ-677		25	74	85	8,4	39,0	
(Ликино)			200		10.000		
ЛиАЗ-5256		24	92	98	9,6	21,0	
"Икарус-280"	"	37	115	162	12,5	24,0	
"Икарус-260"		22	75	107	9,1	18,0	
"Икарус-246"	Междугородный, туристический	46	-	-	10,4	26,0	
"Волжанин- 5270"	Городской	32	68	75	1,5	30,0	
ПАЗ-5272	Городской	33	75	80	9,6	24,0	
"Волжанин- 52701"	Пригородный	41	34	41	11,5	30,0	
ЛиАЗ-52565	Пригородный	46	41	45	9,8	21,0	
AKA-5225	Городской	38	90	95	18,0	25,0	
AKA-6226	Городской	38	166	140	28,0	30,0	
Сармат-6221	Городской	32	124	130	25,7	36,0	
ЛиАЗ-6212	Городской	33	145	150	15,2	23	
Typ A171	Туристический	40(48)	_	_	13,0	24	
"Икарус-386"	Туристический	46	_	_	12,8	24	
"Волжанин- 5285"	Междугородный	51	_	-	14,7	24	
MAH FRH-403	Междугородный	39-44	-	-	18,0	23	

Окончание табл. 2.4

Тип автобуса		Чи	сло мест	Собст- венная масса	Расход топлива,	
	Назначение	CHILD	проезда стоя			
		сиде- ния	Норма	Допус- кается	автобу- са, т	л/100 км
Сармат- 42191	Городской	21	67	72	9,2	22
ЗИЛ-325010 "Бычок"	Общий	15	-	-	4,6	12
КАв3-3976	Общий	16	27	27	4,7	13
ГАЗ-2752 "Соболь"	Общий	10		-	2,8	10
ГАЗ-3221 "Газель"	Общий	13	-	-	2,6	11

Габаритные размеры и масса являются важными технико-эксплуатационными качествами автомобилей. Габаритными размерами являются наибольшие размеры внешних очертаний подвижного состава (рис. 2.6). Максимальные габаритные размеры для движения на дорогах ограничиваются следующими значениями:

длина одиночного автомобиля L_a не более 15 м, автопоезда L_{an} в составе тягача с полуприцепом или одним прицепом 20 м и автопоезда с двумя и более прицепами 24 м; высота H не более 3,8 м; ширина неподрессоренных частей B_H не более 2,65 м.

Использование габаритных размеров автомобиля оценивается коэффициентом использования габарита η_r и коэффициентом компактности η_k .

Коэффициент использования габарита есть отношение площади предназначенной для пассажиров, ко всей площади, занимаемой автомобилем:

$$\eta_r = ab/(L_a B), \qquad (2.1)$$

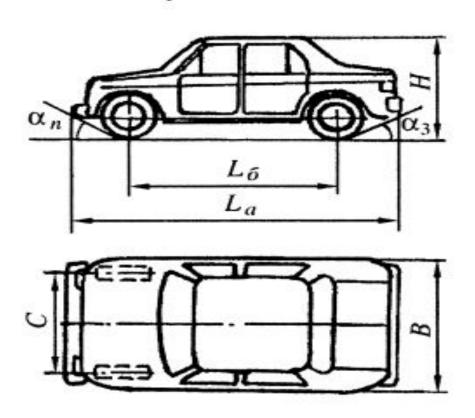


Рис. 2.6. Габаритные размеры автомобиля: L_a – длина автомобиля; L_6 – база автомобиля; B – ширина; C – расстояние между колесами (колея) автомобиля; H – высота; α_n – угол переднего свеса; α_n – угол заднего свеса

где a и b – соответственно внутренняя длина и внутренняя ширина пассажирского салона.

Коэффициентом компактности называется отношение габаритной площади, занимаемой автомобилем, к его номинальной вместимости:

$$\eta_{\kappa} = L_{\rm a} B / q, \tag{2.2}$$

где q — номинальная вместимость.

Массовая характеристика автомобиля включает в себя массу автомобиля в снаряженном состоянии, его полную массу, сухую и максимальную.

Снаряженная (собственная) масса G_0 – это масса полностью заправленного автомобиля с запасным колесом, инструментом и водителем.

Полная масса G_a включает в себя снаряженную массу и расчетную массу пассажиров q_n : $G_a = G_o + q_n$.

Сухая масса G_c — это масса незаправленного автомобиля без инструмента и запасного колеса.

Максимальная масса G_{max} представляет собой сумму нагрузок на оси, ограничивается предельно допустимой нагрузкой на ось и не должна превышать 60 т для группы A и 30 т – для группы Б.

Массовые характеристики оцениваются коэффициентом снаряженной массы η_q . Им называется отношение собственной (снаряженной) массы автомобиля к номинальной вместимости:

$$\eta_q = G_o / q. \tag{2.3}$$

Пассажировместимость определяется общим числом мест в пассажирских автомобилях. Вместимость легковых автомобилей определяется, как и вместимость автобусов, по площади салона, приходящейся на одного пассажира. Для городских и пригородных автобусов в число мест включаются места, предназначенные для проезда стоя. Номинальную пассажировместимость назначает завод-изготовитель. Номинальная вместимость городских автобусов в России может быть определена суммой мест для проезда сидя и мест для следования стоя из расчета 5 чел на 1 м2 площади пола, не занятой сидениями (для пригородных автобусов -3 чел. на 1 м² площади пола). Максимальная вместимость может быть определена из расчета 8 чел. на 1 м² площади пола, не занятой сидениями. Для междугородных автобусов вместимость определяется по количеству сидений.

Вместимость автобуса находится в прямой зависимости от его полезной площади, т. е. внутренней площади салонов автобуса, не-

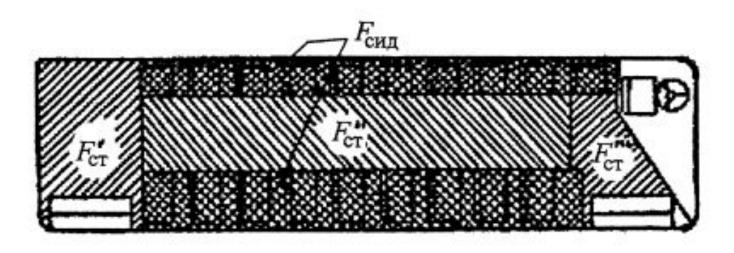
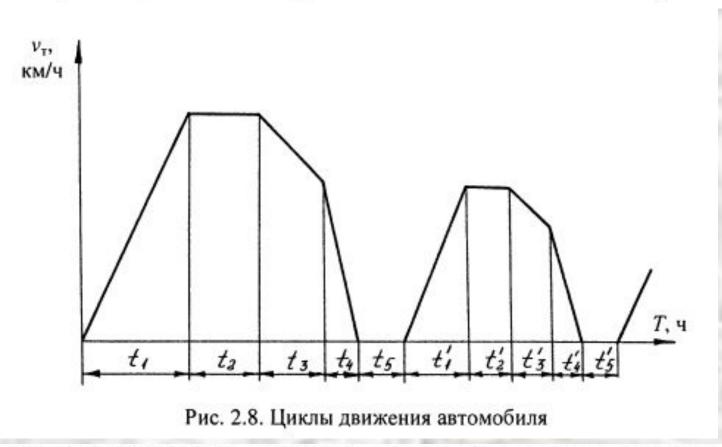


Рис. 2.7. Полезная площадь городского автобуса (заштрихована)

посредственно предназначенной для размещения пассажиров, едущих сидя $F_{\text{сид}}$ и стоя $F_{\text{ст}}$. Полезная площадь городского автобуса $F_{\text{п}} = F_{\text{сид}} + F_{\text{ст}}$ (рис. 2.7). В каждый конкретный момент в автобусе может быть меньше, а иногда и больше пассажиров, чем это определено номинальной вместимостью. Поэтому для оценки степени использования вместимости вводят коэффициент наполнения (использования вместимости) γ , который равен отношению фактического числа пассажиров в автобусе к его номинальной вместимости q:

$$\gamma = Q_{\phi} / q. \tag{2.4}$$

Скоростные свойства автомобилей оцениваются следующими показателями: технической скоростью, максимальной скоростью, интенсивностью разгона и динамическим фактором.


Техническая скорость наиболее полно характеризует скоростные свойства при движении в определенных условиях эксплуатации. Под технической скоростью понимают условную среднюю скорость за время движения.

В свою очередь время движения подвижного состава может быть представлено как время движения с постоянной скоростью t_2 , время разгона t_1 , замедления t_3 , торможения t_4 и кратковременных остановок в пути (перед светофорами, железнодорожными переездами и др.) t_5 , время следующего разгона t_1 и т. д. (рис. 2.8). В общем виде техническая скорость

$$v_{\tau} = L/(\sum t_1 + \sum t_2 + \sum t_3 + \sum t_4 + \sum t_5), \qquad (2.5)$$

где L – пройденный путь.

Различными методами можно определить элементы времени движения автомобиля за исключением времени вынужденных остановок. Если при расчетах учесть необходимые уменьшения скорости движения по условиям безопасности движения и назвать полученную скорость расчетной v_p , то можно с известным приближе-

нием считать техническую скорость пропорциональной расчетной,

$$v_{\rm T} = \eta_{\rm c} \cdot v_{\rm p}$$
,

где η_c – скоростной коэффициент (по имеющимся данным, для междугородных перевозок можно принять равным 0,8–0,9, а при движении в городах – 0,7–0,8). Следует учесть, что чем лучше дорога, тем большее значение должен иметь коэффициент η_c .

Значение технической скорости зависит от конструкции подвижного состава, его технического состояния, степени использования пассажировместимости, дорожных условий, интенсивности транспортного потока, квалификации водителя, организации перевозок. Повышение технических скоростей движения - одна из важных задач при организации перевозок пассажиров.

Максимальная скорость определяет предел скоростных возможностей подвижного состава. При расчетах могут иметь место неточности, поэтому большое значение имеет экспериментальное определение максимальной скорости.

В настоящее время установлены минимальные пределы значений максимальных скоростей для автобусов. Максимальная скорость при номинальной вместимости должна быть не ниже: для городских автобусов — 70 км/ч; местных автобусов длиной 6–6,5 м — 85 км/ч; длиной 7–7,5 м — 90 км/ч; междугородных — 100 км/ч; экскурсионных и туристских — 90 км/ч.

Интенсивность разгона характеризует приспособленность автомобиля к быстрому троганию с места и разгону, что имеет особенно большое значение в условиях городского движения. Интенсивность разгона для автобусов измеряется в секундах до достижения скорости 60 км/ч с номинальной нагрузкой на горизонтальном участке, а для легковых автомобилей - 100 км/ч. У автобусов интенсивность разгона не должна быть выше для сочлененных - 50 с, для всех остальных - 35 с.

Динамический фактор Д позволяет оценивать тяговые качества (а, следовательно, и возможность реализации скоростей) автомобилей для случаев движения по дорогам с разным сопротивлением. Динамическим фактором автомобиля называют отношение свободной окружной силы $P_{\rm cs}$ (равной разности тяговой силы $P_{\rm t}$ на ведущих колесах и силы сопротивления воздуха $P_{\rm B}$) к собственной массе автомобиля G_0 :

$$\Pi = \frac{P_{\rm cr}}{G_{\rm o}} = \frac{P_{\rm T} - P_{\rm B}}{G_{\rm o}}.$$
(2.7)

Безопасность автомобиля должна рассматриваться как одно из основных эксплуатационных качеств, так как от нее зависит жизнь и здоровье людей, сохранность транспортных средств и багажа. Безопасность является комплексным показателем и может характеризоваться устойчивостью, надежностью органов управления, тормозными свойствами.

Устойчивость – это способность двигаться по дороге без бокового скольжения и опрокидывания. Как и надежность органов управления она связана и определяется конструкцией конкретного транспортного средства.

Гормозные качества оцениваются возможностью остановить автомобиль на минимальном расстоянии. Эффективность действия тормозов оказывает влияние на техническую скорость, особенно в условиях городского движения. Тормозные свойства определяются длиной тормозного пути с разных начальных скоростей при разном состоянии дорожного покрытия. Теоретически длина тор-

$$L_{\rm t} = \frac{K_{\rm s} v_0^2}{254(\varphi \cos \alpha \pm i)},$$
 (2.10)

где К. - коэффициент эффективности торможения, принимаемый 1,1-1,2 для легковых автомобилей и 1,4-1,6 для автобусов;

 v_0 — начальная скорость торможения автомобиля; ф - коэффициент сцепления шин с дорогой;

α – угол продольного уклона дороги;

мозного пути

i – продольный уклон дороги, равный $tg \alpha$.

Расстояние безопасности, на котором автомобили должны двигаться в полосе движения или колонне,

$$L_6 = v + L_T + 2M, \qquad (2.11)$$

где v – скорость движения в м/с, т. е. расстояние, проходимое автомобилем за 1 с (время реакции водителя).

Как правило, безопасность подразделяется на активную, пассивную, послеаварийную и экологическую.

Активная безопасность - это свойство автомобиля снижать вероятность возникновения дорожно-транспортного происшествия (ДТП). Она характеризуется возможностью изменения характера движения автомобиля в начальной фазе ДТП. Для ее оценки применяются удельные показатели по пробегу Бак, равные отношению числа ДТП, происшедших из-за неудовлетворительной работы конкретного механизма $N_{\rm M}$ к пробегу L:

$$\mathbf{E}_{\mathsf{a}\mathsf{K}} = N_{\mathsf{M}} / L \,. \tag{2.12}$$

Пассивная безопасность - это свойство автомобиля снижать тяжесть последствий ДТП. Пассивная безопасность проявляется в период, когда водитель не может предотвратить происшествие (кульминационная фаза). Пассивная безопасность автомобиля, уменьшающая степень травмирования пассажиров и водителя, называется внутренней, а уменьшающая вероятность нанесения повреждений другим участникам движения – внешней безопасностью.

Для оценки пассивной безопасности служит показатель $Б_n$, определяющий тяжесть ДТП:

$$B_{n} = \sum_{i=1}^{m} n_{i} K_{pi} / m, \qquad (2.13)$$

где n_i — число пострадавших водителей и пассажиров в каждом ДТП; K_{pi} — коэффициент тяжести ранений в данном ДТП; m — общее число водителей и пассажиров, участвующих в ДТП.

Послеаварийная безопасность — это свойство автомобиля снижать тяжесть последствий ДТП после остановки транспортного средства (конечная фаза), т. е. возможность быстро ликвидировать ДТП и предотвратить возникновение новых происшествий.

Экологическая безопасность - это свойство автомобиля снижать негативные последствия влияния эксплуатации автомобиля на участников движения и окружающую среду. Если перечисленные выше виды безопасности проявляются при совершении ДТП, то экологическая безопасность связана с ежедневной работой автомобиля и направлена на снижение токсичности отработанных газов, уменьшение шинной пыли, уменьшение шума, снижение радиопомех при движении автомобиля.

Топливная экономичность характеризует приспособленность автомобиля к осуществлению перевозок при наименьшем расходовании топлива на каждый пассажиро-километр. Стоимость топлива составляет значительную часть приведенных затрат. Показателями топливной экономичности являются экономическая характеристика, удельный расход, средний расход топлива.

Удобство использования пассажирских транспортных средств характеризуется удобством посадки-высадки и поездки пассажиров. Комфортабельность при поездке, кроме такого конструктивного качества, как плавность хода, зависит от размеров и мягкости сидений, их расположения по отношению к направлению движения, размера проходов, ширины дверей, высоты подножек, герметичности кузова, эффективности отопления и вентиляции, освещенности в темное время суток и т. д.

Степень удобства сидения характеризуется его мягкостью и размерами (рис. 2.12): высотой h_c , шириной, глубиной l_1 , шагом l_2 , наклоном подушки α_1 и спинки α_2 , размером места для ног l_3 .

Большое значение для удобства пассажиров, особенно в городских условиях, имеют размеры проходов (высота и ширина), ширина входных и выходных дверей, высота ступенек

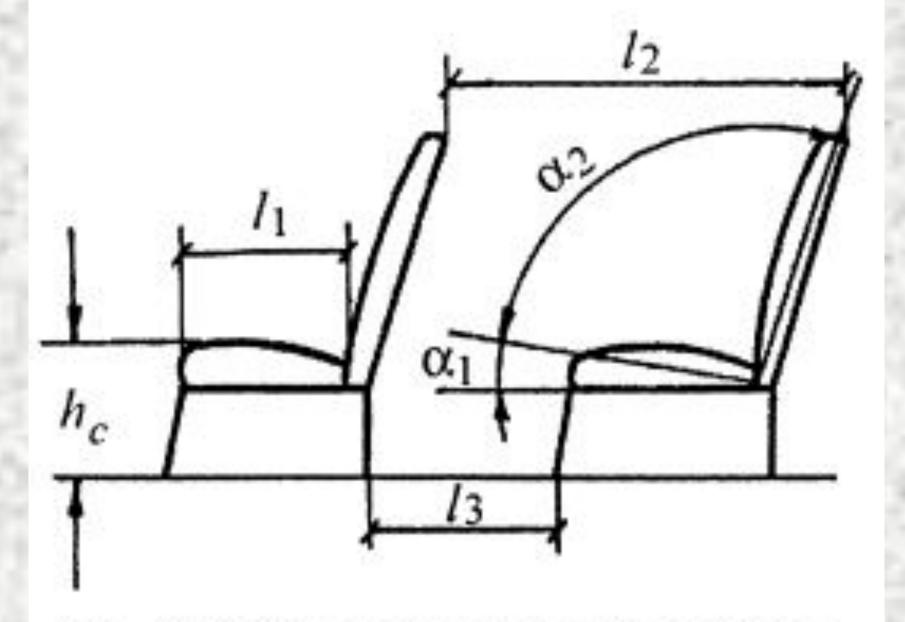


Рис. 2.12. Размеры сидений автобусов

Ниже приведены примерные данные, мм.

Тип автобуса	Городской	Междугородный
Высота сидения	475	400
Глубина "	400	450-500
Ширина "	450	500-600
Глубина места для ног	280	300-400
Шаг сидений	750	800-900
Ширина прохода	800-1000	400-500
	(3-рядные)	(4-рядные)
Высота "	1900-2000	1600-1800
Высота подножки (не более)	350	-
Ширина дверей (не менее)	700	-
20 1,000 00 3201 20		

В современных автобусах обязательными являются принудительная вентиляция и отопление в зимнее время. Для обеспечения нужной комфортности большое значение имеет хорошая освещенность салона. Система отопления должна обеспечить в салоне междугородных и туристских автобусов температуру +15°C при температуре окружающего воздуха -25°C, а в салонах других автобусов +10°C. Освещенность на уровне 1 м от пола должна быть не менее 60 лк при лампах накаливания и 100-150 лк при люминесцентном освещении. Подножки и ступени должны иметь освещенность не менее 10 лк. В междугородных автобусах предусматриваются дополнительные устройства, повышающие комфортность поездки на большие расстояния.

Проходимость автомобиля – это приспособленность его к движению в различных дорожных условиях и по бездорожью. Хорошей проходимостью должны обладать все автомобили, но степень проходимости требуется неодинаковая для разных по назначению транспортных средств. Наиболее показательными факторами проходимости являются: просветы под низшими точками (клиренс), углы свеса при номинальной загрузке (передний α_п и задний α3), радиус продольной проходимости и поворота, распределение массы по осям, тип и размер шин, совпадение следов передних и задних колес. Клиренс для городских автобусов должен быть не менее 200 мм, а для всех остальных не менее 240 мм. Углы свеса для большинства автобусов (не менее): передний $\alpha_n \ge 12^\circ$, задний $\alpha_3 \ge 9^\circ$, а для автобусов местных сообщений $\alpha_n \ge 40^\circ$, $\alpha_3 \ge 24^\circ$.

Рекомендуемый список литературы:

- 1. Ларин О.Н. Организация пассажирских перевозок: Учебное пособие. –Челябинск: Изд-во ЮУрГУ, 2005. 104 с..
- 2. Спирин И.В. Организация и управление пассажирскими автомобильными перевозками: Учеб. М.: Издательский центр «Академия», 2003. 400 с.
- 3. Пассажирские автомобильные перевозки: Учебник для вузов / В. А. Гудков, Л. Б. Миротин, А. В. Вельможин, С. А. Ширяев; Под ред. В. А. Гудкова. М.: Горячая линия Телеком, 2010.

Спасибо за внимание