

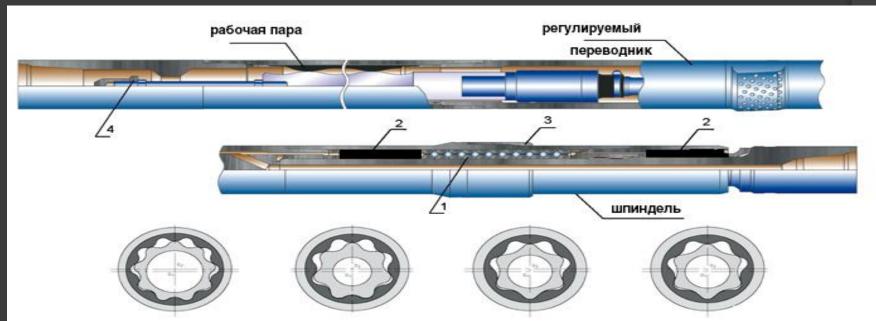
ВИНТОВЫЕ ЗАБОЙНЫЕ ДВИГАТЕЛИ

ВИНТОВЫЕ ЗАБОЙНЫЕ ДВИГАТЕЛИ

- Винтовые забойные двигатели предназначены для работы с буровыми раство- рами плотностью до 1500 кг/м3 при забойной температуре не более 100 °C, с содержанием нефтепродуктов до 10%, песка – менее 1%.
- Винтовые забойные двигатели (ВЗД) используются для:
 - бурения вертикальных, наклонно-направленных, горизонтальных нефтяных и газовых скважин;
 - проведения капитального ремонта в эксплуатационной колонне;
 - бурения боковых стволов; прокладки подземных коммуникаций;
 - бурения с использованием технологии колтюбинга. ВЗД рекомендуется использовать в комплекте с фильтром (шламоуловителем), обратным и (или) переливным клапаном. Порядок установки следующий («снизу вверх»): ВЗД, фильтр, обратный клапан, переливной клапан.

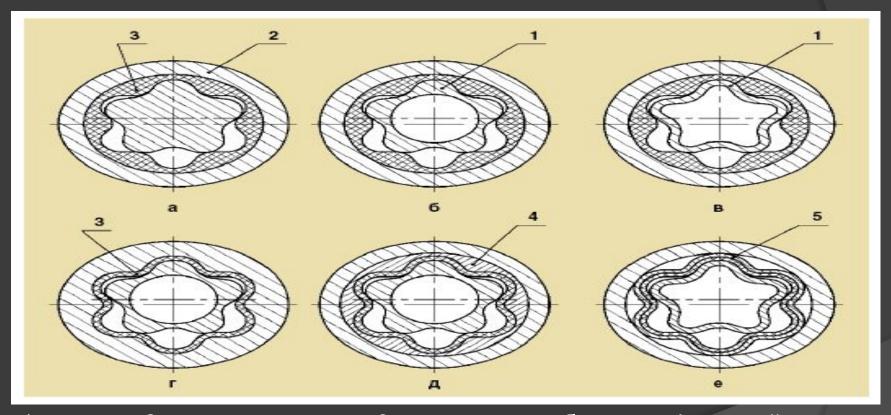
Порядок назначения шифров винтовых забойных двигателе

- Например: Шифр ДР-190.6/7.56
- Типы выпускаемых двигателей в габаритах 42-240 мм:
 - -"Д"(ДП) двигатели прямые;
 - -"ДР" двигатели с регулируемым узлом искривления;
 - -"ДГР" двигатели с укороченным шпинделем;
 - -"ДВ" двигатели с повышенной частотой вращения.
 - 190 наружный диаметр
 - 6/7 заходность винтовой пары (количество зубьев ротора/статора)
 - 56 число шагов винтового зуба статора х 10 (5 целых 6 десятых)
 - Д1 цифра обозначает номер модели двигателя.
- Шифры двигателей могут содержать дополнительные литеры, обозначающие опции, реализованные в двигателе (например, "П" с профилированной секцией рабочих органов, "Н" -гибрид (Hybrid), "С" с системой стабилизации ротора, "Т" с термостойким эластомером, "К" керноотборный и др.).


Конструкция ВЗД

- Винтовой забойный двигатель представляет собой симметричный роторный агрегат с применением зубчатого косого зацепления, приводимый в действие за счёт давления подаваемой жидкости.
- Конструктивно состоит из:
 - Двигательного узла.
 - Рабочей части.
- Двигательный узел
 - Двигательная секция ВЗД основной силовой компонент двигателя и поэтому определяет его основные технические характеристики, такие как мощность, крутящий момент, КПД и частота вращения ротора. Состоит из роторного механизма в виде корпуса (статора), внутри которого закреплена эластомерная вставка с винтовой поверхностью, за которую зацепляется ротор и затем под давлением подаваемой жидкости начинает вращаться.

- Эластичная оболочка позволяет разделить две полости камер с высоким градиентом давления. Она изготавливается из износостойкой резины, которая пластична, но в то же время способна выдерживать значительные силы трения при попадании абразивных частиц на её поверхность.
- Ротор имеет конструкцию похожую на сверло, но с высокопрочным износостойким покрытием, так как предназначен для передачи крутящего момента. Его изготавливают из высокопрочной легированной стали.
- Количество зубьев у него меньше на одну единицу, чем у статора. Двигательный узел выполняют с определённым натяжением зубчатого зацепления, который зависит от параметров рабочей жидкости, свойств эластомера, температуры эксплуатации, а также других характеристик. От того, насколько точно они будут подобраны зависит прочность двигателя в целом и его ресурс работы.


Общий вид ВЗД

- Винтовой забойный двигатель состоит из следующих рабочих органов:
 - -шпиндельного узла;
 - -регулятора угла.

1 – осевой подшипник; 2 – твердосплавная радиальная опора; 3 – центратор; 4 – противоаварийный бурт

Поперечные сечения рабочих органов ВЗД (варианты исполнения)

1 – ротор, 2 – корпус статора, 3 – резиновая обкладка, 4 – литой (кованый) вкладыш, 5 – тонкостенная винтовая оболочка

Основные особенности ВЗД, влияющие на его технические параметры

- Скорость потока жидкости должна соответствовать типу используемого двигателя и его технических параметров рабочей пары. Чем больше лопастей на роторе и витков на статоре, тем больше поток жидкости, но при этом повышается и износ за счёт увеличения сил трения. Поэтому для конкретных условий бурения нужно варьировать эти параметры для достижения нужного результата.
- Во время отсутствия нагрузки на забойную часть в ней происходит падение давления: когда ротор находится в подвешенном состоянии нужно затратить огромную энергию на приведение его в движение. При этом потеря давления будет пропорциональна скорости потока рабочей жидкости. Обычно она составляет примерно 7 атм.
- При нагрузке на винтовой забойный двигатель в момент начала забоя происходит падение давления в системе, но со временем восстанавливается по мере раскручивания ротора.

- Для двигателя существует предельное давление, которое возникает при бурении в рабочем узле. При необходимости увеличении усилия на долото требуется увеличить давление в системе, что приводит к деформации эластомера и потере крутящего момента. В результате полезной работы не производится, а рабочая жидкость просто протекает через двигатель.
- Чем больше площадь поперечного сечения долота, тем меньше потери рабочего давления. При уменьшении размеров долота происходит быстрый износ подшипников, так как потока жидкости не хватает, чтобы их охладить.
- Использование насадок на сопло ротора позволяет изменять поток жидкости через ВЗБ и, таким образом, учитывать особенности бурения конкретного вида горных пород при минимальном износе деталей и узлов.

Технические характеристики ВЗД

Характеристики забойных двигателей	Показатель		
	ДР-76.BR.4/5-20	ДР-76.2000.45	ДОТ-75.4/5.22
Расход промывочной жидкости, л/с	3-5	3-5	3-5
Вращение вала на холостом режиме, об/мин	215-358	240-396	219-365
Вращение вала при макс. мощности, об/мин	145-245	175-320	161-268
Момент силы при макс. мощности, кг/м	35-60	61-82	49
Перепад давления при макс. мощности, атм	30-50	80-100	49
Диапазон углов перекоса регулятора угла, град	0-3	0-2,30	1-1,30
Мощность, кВт	10-15	11-25	8-13
Допустимая осевая нагрузка, кг	5000	2000	5000
Длина двигателя, мм	3600	3675	3760
Длина нижнего плеча, мм	780	892	1110
Длина двигательной секции, мм	2200	2200	2200
Присоединительная резьба к долоту	3-66	3-66	3-66
Присоединительная резьба к бурильному инструменту	3-66	3-66	3-66

Почему забойные двигатели ДР-76.BR.4/5-20

- высокий межремонтный период (200 часов)
- использование в конструкции современных радиальных твердосплавных опор обеспечивает более длительную, бесперебойную эксплуатацию двигателей
- использование в конструкции современных укороченных осевых подшипников позволяет обеспечить при производстве двигателя укороченное нижнее плечо между долотом и регулятором угла
- более прочные, в сравнении с обычными конструкциями, вал шпинделя и карданный вал за счет увеличения их диаметров обеспечивают более длительный срок службы
- короткое нижнее плечо обеспечивает более высокую интенсивность набора угла при проводке ствола скважины и беспрепятсвенные спуско-подъемные операции с максимальным углом перекоса на регуляторе угла

- два противоаварийных узла, расположенных в верхней и нижней частях двигателей, позволяют, в случае аварии, произвести полный подъем двигателя и долота с забоя скважины без оставления деталей в скважине
- оснащение двигателей импортными рабочими парами производства лидирующих компаний-производителей двигательных секций
- усиленные корпусные резьбы, позволяют обеспечить повышенный момент затяжки резьб, увеличенную усталостную выносливость и снижают вероятность поломки или отворота резьбового соединения
- простота конструкции обеспечивает оперативность и безошибочность производства ремонтов двигателей

Модернизация ВЗД – требование времени

- Отечественные производители в последние годы проводят систематическую работу по модернизации и усовершенствованию конструкций ВЗД.
- Введены противоаварийные бурты для исключения «полета» на забой частей ВЗД при его разрушении;
- По согласованию с заказчиком применяются радиальные опоры со сплошным и сегментным твердосплавным покрытиями, а также сменные корпусные центраторы;
- Двигатели, предназначенные для привода моментоемких долот, оснащаются шарнирным соединением повышенной надежности или титановым торсионом;