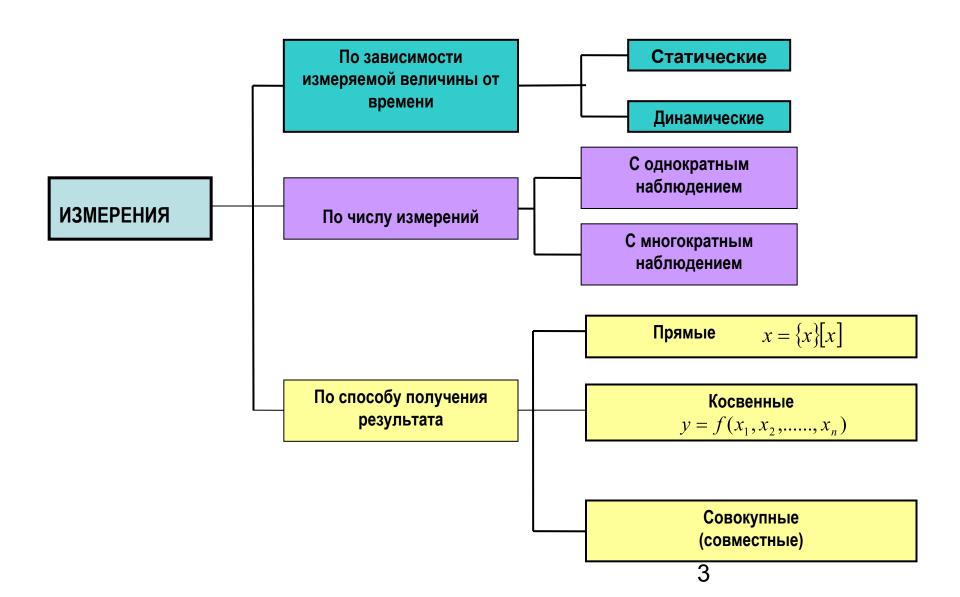

МЕТРОЛОГИЯ - наука о получении количественной информации опытным путём, то есть экспериментально, посредством измерения

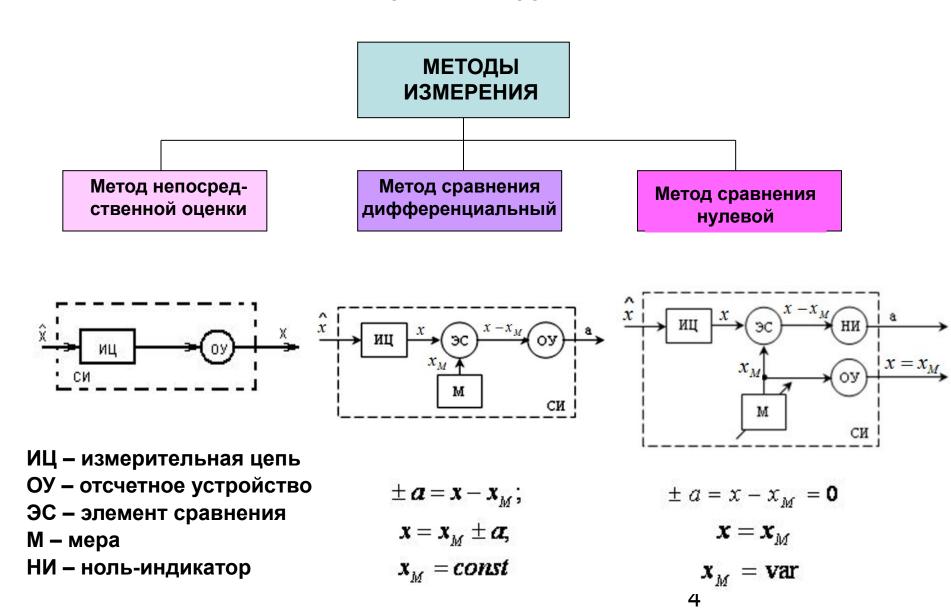
μετρό + λόγόξ

измерение, мера + учение, слово

МОДЕЛЬ ПРОЦЕССА ИЗМЕРЕНИЯ


Физическая величина (ФВ)
Объект измерений (ОИ)
Средство измерений (СИ)
Принцип измерений
Метод измерений

ЗНАЧЕНИЕ ФВ (РЕЗУЛЬТАТ ИЗМЕРЕНИЯ)


$$X = \{X\} [X]$$

- Физическая величина (ФВ) одно из свойств физического объекта общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.
- Значение ФВ выражение размера ФВ в виде некоторого числа принятых для нее единиц.
- Истинное значение ФВ значение ФВ, которое идеальным образом характеризует в качественном и количественном отношении соответствующую ФВ.
- Действительное значение ФВ значение ФВ, полученное экспериментальным путем близкое к истинному значению.
- **Результат измерения ФВ** значение ФВ полученное путем ее измерения.
- Измерение ФВ совокупность операций по применению технического средства, хранящего единицу ФВ и обеспечивающее нахождение соотношения измеряемой величины с ее единицей.

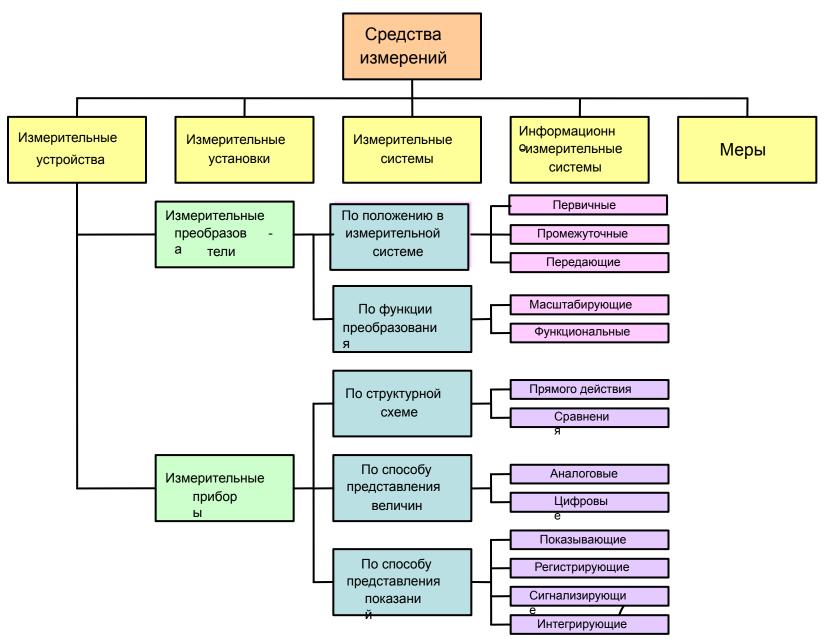
КЛАССИФИКАЦИЯ ИЗМЕРЕНИЙ

КЛАССИФИКАЦИЯ МЕТОДОВ ИЗМЕРЕНИЯ

РЕАЛИЗАЦИЯ РАЗЛИЧНЫХ МЕТОДОВ ИЗМЕРЕНИЯ ПРИ ВЗВЕШИВАНИИ

Метод непосредственной оценки

Метод сравнения дифференциальный **Метод сравнения нулевой**


Средство измерения (СИ) - техническое средство, предназначенное для измерений, имеющие нормированные метрологические характеристики (МХ), воспроизводящее и (или) хранящее единицу ФВ, размер которой принимают неизменным (в пределах установленной погрешности) в течении известного интервала времени.

В число СИ входят: измерительные преобразователи, измерительные системы, датчики, эталоны, меры.

Измерительный преобразователь - техническое средство с нормативными МХ, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований или передачи. Информация с выхода измерительного преобразователя недоступна для восприятия наблюдателем.

Измерительный прибор - СИ, предназначенное для получения значений измеряемой ФВ в установленном диапазоне.

КЛАССИФИКАЦИЯ СРЕДСТВ ИЗМЕРЕНИЙ

ПРИМЕРЫ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Аналоговый показывающий прибор

Цифровой показывающий прибор

Сигнализирующий прибор

Регистрирующий прибор

Интегрирующий прибор

Измерительная установка - совокупность функционально объединенных мер, измерительных приборов, расположенная в одном месте.

Измерительная система - совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и др. технических средств, размещенных в разных точках контролируемого объекта с целью измерений одной или нескольких ФВ, свойственных этому объекту и выработки измерительных сигналов в разных целях.

Измерительно – **вычислительный комплекс** (ИВК) - функционально объединенная совокупность СИ, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи.

Метрологическое обеспечение

- Под метрологическим обеспечением понимается установление и применение научных и организационных основ, технических средств, правил и норм, необходимых для достижения единства и требуемой точности измерений.
- **Требования МО:** 1. Что необходимо измерять (номенклатура измеряемых параметров)? 2. С какой точностью (нормы точности)?
- Задачи МО: 1. Обеспечение единства измерений (результаты выражены в узаконенных единицах; погрешность измерений выражена с заданной вероятностью).
- 2. Обеспечение требуемой точности измерений (погрешность не должна превышать пределов допускаемых значений).
- Основы МО:
- Научная
- Организационная
- Техническая.

Научной основой является метрология (теоретическая, прикладная и законодательная).

Теоретическая метрология занимается вопросами фундаментальных исследований.

Прикладная (практическая) метрология занимается вопросами практического применения результатов теоретических исследований.

Законодательная метрология включает совокупность взаимообусловленных правил и норм, которые имеют обязательную силу и находятся под контролем государства.

Организационной основой МО является метрологическая служба (МС).

Техническими основами МО являются

системы государственных эталонов, передачи размеров единиц физических величин; разработки, постановки на производство и выпуска в эксплуатацию СИ.

Системы и единицы физических величин

Системой единиц ФВ называется совокупность основных и производных единиц ФВ, относящихся к некоторой системе ФВ и образованную в соответствии с принятыми принципами. Основными величинами называются ФВ, входящие в систему и условно принятые в качестве независимых от других величин системы.

Производными величинами системы называются ФВ, определяемые через основные величины этой системы.

Единица ΦB – это ΦB , которой присвоенное числовое значение равное единице (1).

Основная единица ФВ – есть единица основной ФВ.

Производная единица ФВ –есть единица производной ФВ.

Когерентной системой единиц ФВ называется система единиц, в которой все производные единицы согласованы (когерентны)

Основные единицы СИ

Физическая величина		Единица физической величины		
Наименование	Размерность	Наименова	Обозначения	
		ние	междунар	русское
			одное	
Длина	L	метр	m	M
Macca	M	килограмм	kg	КГ
Время	T	секунда	S	c
Сила	I	ампер	A	A
электрическ				
ого тока				
Термодинамич	Θ	кельвин	K	К
еская				
температура				
Количество	J	МОЛЬ	mol	моль
вещества				
Сила света	N	кандела	1&d	кд

Производные единицы СИ

```
Частота – \Gammaц; сила, вес – H;
давление -\Pi a;
энергия, работа, количество теплоты — \mathbf{Д}\mathbf{x};
мощность, поток энергии — B_{T};
количество электричества – Кл;
электрическое напряжение -\mathbf{B};
электрическая ёмкость – \Phi;
электрическое сопротивление – Ом;
электрическая проводимость – См (Сименс);
магнитный поток — B6; магнитная индукция — Tл;
индуктивность – \Gammaн;
активность нуклида в радиоактивном источнике – Бк
(Беккерель); поглощённая доза излучения – Гр (Грей);
эквивалентная доза излучения – Зв (Зиверт);
световой поток — лм; освещённость — лк.
                                                 14
```

Внесистемные единицы ФВ: кратные и дольные

Кратной единицей называют единицу, в целое число раз большую системной или внесистемной единицы.

Дольной называют единицу, в целое число раз меньшую системной или внесистемной единицы.

$$x = \{x_1\}[x_1] = \{x_2\}[x_2]$$
 - значение ФВ
$$k = \frac{\{x_1\}}{\{x_2\}} = \frac{[x_2]}{[x_1]}$$
 - коэффициент пересчёта;
$$\frac{\{x_1\}}{\{x_2\}}$$
 - множитель;
$$\frac{[x_2]}{[x_1]}$$
 - приставка

Коэффициент пересчёта к

Множитель	Приставка	Обозначение (рус)	
10^{18}	экса	Э	
10^{6}	мега	M	
10^{3}	кило	К	
10^{2}	(гекто)	Γ	
10^{1}	(дека)	да	
10^{-1}	(деци)	Д	
10 ⁻¹ 10 ⁻² 10 ⁻³	(санти)	c	
10^{-3}	МИЛЛИ	M	
10-6	микро	MK	
10 ⁻¹⁸	атто	a	

Относительная величина представляет собой безразмерное отношение ФВ к одноименной ФВ, принимаемой за исходную

$$k = \frac{\{x_1\}}{\{x_0\}}$$

Относительные величины могут выражаться:

- в безразмерных единицах ($k = 1*10^{-0}$); - в процентах ($k = 1*10^{-2}$); - в промилле ($k = 1*10^{-3}$); - в миллионных долях – м. д. (или ppm) ($k = 1*10^{-6}$).

<u>Логарифмическая величина</u> представляет собой логарифм (десятичный, натуральный или при основании 2) безразмерного отношения двух одноименных физических величин. Единицей логарифмической величины является бел (Б),

$$1B=\lg \frac{N_1}{N_2}=2\lg \frac{F_1}{F_2}$$
, где $N_1=10N_2; F_1=\sqrt{10}F_2$ N_1 и N_2 - одноименные энергетические величины F_1 и F_2 - одноименные силовые величины 17

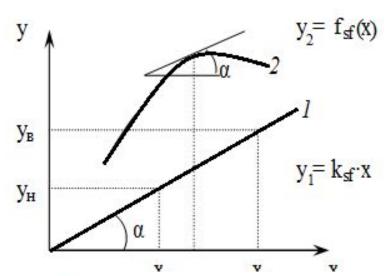
МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ (МX) СРЕДСТВ ИЗМЕРЕНИЙ

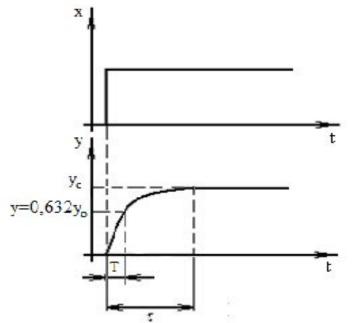
МХ: нормируемые и действительные

Статическая характеристика (функция преобразования, характеристика шкалы):

Y = f(X) — рабочая и Y = fsf(X) — градуировочная

Чувствительность


$$S = \frac{y_B - y_H}{x_B - x_H} = tg \alpha; \quad S = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dx}{dy} = tg \alpha$$


Динамическая характеристика (переходная характеристика)

$$y(t) = f[x[(t)]]$$

Время завершения переходного процесса

Постоянная времени T $(y = 0.632y_0)$

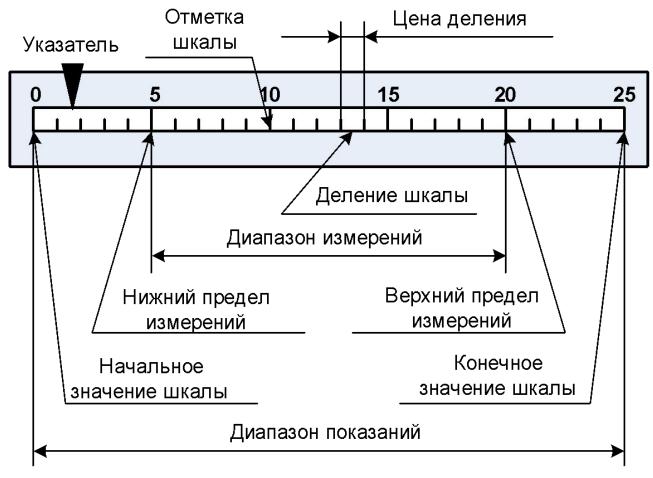
- Эталон единицы ФВ СИ (или комплекс средств измерений), предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера нижестоящим по поверочной схеме СИ и утвержденное в качестве эталона в установленном порядке.
- Метрологическая характеристика (МХ) характеристика одного из свойств СИ, влияющая на результат измерений и на его погрешность.
- **Нормируемые МХ** МХ, устанавливаемые в нормативнотехнической документации на данное СИ.
- Измерительная цепь совокупность элементов СИ, образующих непрерывный путь прохождения измерительного сигнала одной ФВ от входа до выхода. Датчик конструктивно обособленный первичный преобразователь, от которого поступают измерительные сигналы (от «дает» информацию).

Чувствительность — это свойство, определяемое отношением изменения выходного сигнала этого средства к вызывающему его изменению измеряемой величины:

абсолютная
$$S = \frac{\Delta y}{\Delta x}$$
, относительная $S_0 = \frac{\Delta y}{\Delta x/x}$

Порог чувствительности — характеристика СИ в виде наименьшего значения изменения ФВ, начиная с которого может осуществляться её измерение данным средством.

Цена деления шкалы — разность значений величины, соответствующим двум соседним отметкам шкалы.


Диапазон измерений — область значений величины, в пределах которой нормированы допускаемые пределы погрешности СИ.

Нижний и верхний пределы измерений — это значения величины, ограничивающие диапазон измерений.

Диапазон показаний — это область значений шкалы, ограниченная **начальным и конечным значениями шкалы.**

20

ПАРАМЕТРЫ ШКАЛ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Цена деления шкалы $C = \frac{x_e - x_u}{n}$ C = 1/S Число делений $n \ge 10/2A$

Класс точности — обобщенная метрологическая характеристика, определяющая различные свойства СИ и включающая в себя систематическую и случайную составляющую погрешности.

$$\gamma_{op} = \pm \frac{\Delta_{op} \cdot 100\%}{N} = \pm A,\%$$

где

$$N = x_{\scriptscriptstyle R} - x_{\scriptscriptstyle H}\;$$
 - предел измерения СИ.

 x_{B} и x_{H} - соответственно верхний и нижний пределы измерения СИ.

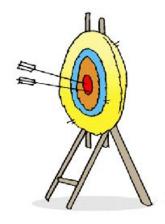
На СИ обозначаются в виде цифр 2.0.

Классы точности выбираются из следующего ряда:

$$(1, 0; 1, 5; (1, 6); 2, 0; 2, 5; (3, 0); 4, 0; 5, 0; 6, 0)* 10^n$$
, где $n = -2; -1; 0; 1$.

В круглых скобках указаны классы точности для глубинных СИ.

ПОГРЕШНОСТЬ ИЗМЕРЕНИЯ


Точность измерения

h

Погрешность измерения

 δ

 $h=1/|\delta|$

$$\hat{x}$$
 $\xrightarrow{\Delta}$
 c_H
 x

Модель погрешности измерения

$$\Delta = \Delta(x) * \Delta_{Ha\delta} * \Delta_{M} * \Delta_{o\delta p} * \Delta_{cu}$$

 $\Delta(x)$ погрешность от нестабильности измеряемой величины

 $\Delta_{_{Hd\tilde{0}}}$ погрешность наблюдателя

погрешность метода измерения

 $\Delta_{n\delta n}$ погрешность метода обработки результата

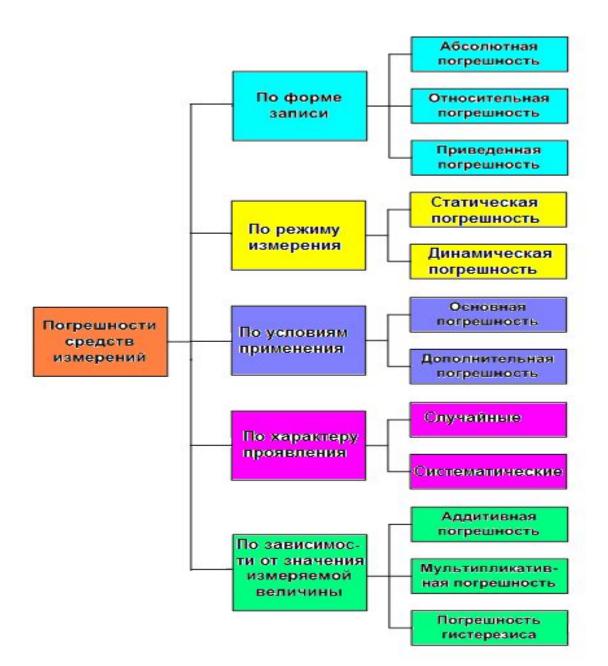
погрешность применяемого средства измерения

Погрешность измерения - это отклонение результата измерения от истинного значения измеряемой величины

$$\stackrel{\wedge}{=} \stackrel{\Delta}{=} \stackrel{\times}{=} \Delta = x - \hat{x}$$

Точность измерения - близость результатов измерения к истинному значению измеряемой величины.

В общем виде погрешность измерения имеет следующие составляющие:


$$\Delta = \Delta(x) + \Delta_{_{\mathit{Ha}6}} + \Delta_{_{\mathit{M}}} + \Delta_{_{\mathit{o}6p}} + \Delta_{_{\mathit{cu}}}$$

 $\Delta(x)$ - погрешность от нестабильности измеряемой величины х; $\Delta_{{}_{\it hab}}$ - погрешность наблюдателя;

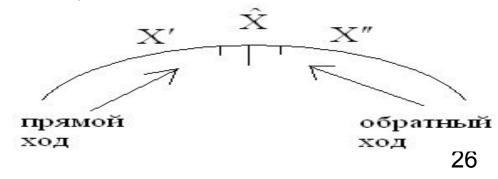
 $\Delta_{_{M}}$ - погрешность метода измерения;

 $\Delta_{_{oбp}}$ - погрешность метода обработки результата; $\Delta_{_{cu}}$ - погрешность применяемого средства измерения.

КЛАССИФИКАЦИЯ ПОГРЕШНОСТЕЙ СРЕДСТВ ИЗМЕРЕНИЯ

Абсолютная погрешность – $\Delta = x - \overset{\bowtie}{x}$

$$\Delta = x - \overset{\bowtie}{x}$$


Относительная погрешность — $\delta = \pm \frac{\Delta}{x} \times 100\%$

Приведённая погрешность —
$$\gamma = \pm \frac{\Delta}{N} \times 100\%$$
 где $N = (x_{_{\! 6}} - x_{_{\! H}})$

Систематическая Δ_{s} – это погрешность, остающаяся постоянной или изменяющаяся по определенному закону от измерения к измерению.

Случайной Δ называют составляющую погрешности, которая изменяется случайным образом при повторных измерениях одного и того же истинного значения измеряемой величины.

Вариация -H = |x' - x''| разность, полученная при прямом и обратном ходах стрелки измерительного механизма при измерении одного и того же истинного значения ФВ.

ПОГРЕШНОСТИ СРЕДСТВ ИЗМЕРЕНИЯ

Абсолютная

$$\Delta = x - \hat{x}$$

Относительная

$$\delta = \pm \frac{\Delta}{\hat{x}}. \quad \delta = \pm \frac{\Delta}{x} \times 100\%$$

Приведенная

$$\gamma = \pm \frac{\Delta}{N}$$
 $\gamma = \pm \frac{\Delta}{N} \times 100\%$

$$N = const$$
 $N = (x_{\scriptscriptstyle \theta} - x_{\scriptscriptstyle H})$

Статическая

$$\Delta_{st} = \Delta(x) = x - \hat{x}$$

Динамическая

$$\Delta_{dyn} = \Delta[x(t)] - \Delta_{st}$$

$$\Delta[x(t)] = x(t) - \hat{x}(t)$$

Систематическая

$$\Delta_S = \frac{\overline{\Delta}_{\scriptscriptstyle M} + \overline{\Delta}_{\scriptscriptstyle \delta}}{2},$$

Основная

$$\Delta_0 = x_0 - \hat{x}$$

Дополнительная

$$\Delta_C = \sqrt{\sum_{i=1}^{l} \Delta_{ci}^2}$$

Случайная

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}},$$

$$x_{\partial} = x \pm \Delta_{op}$$